Models for Equating Test Scores and for Studying the Comparability of Public Examinations

Harvey Goldstein
University of London Institute of Education

It is often felt to be necessary, when different educational or other mental tests are given to individuals, to be able to 'equate' the scores on the different tests. Thus for two tests, for every score x on the one test a single 'equivalent' score y is needed on the other test. In this way we obtain a unique conversion, or transformation, from one scale to the other. It will then not matter which test is actually given to an individual, since all individuals can each be assigned a final score on the same scale. For example, if we wished to change tests over a period of time in order to avoid any one test becoming too widely known and thus easier for subsequent candidates, an equating procedure between the tests would still allow all candidates to be compared. Such a motivation lies behind the procedures adopted by the British public exam boards in their 'comparability' exercises.

It is possible to imagine a number of procedures for producing equivalent scores, for example, by transforming separately the distribution of each test score so that it has a standard normal distribution, which means that any score can be given the equivalent normalized score. Alternatively, a sample of individuals could each be given the two (or more) tests and a suitable empirical relationship between the test scores be used to transform one into another. In the following section some basic requirements needed for test scores to be equitable will be outlined, with a discussion of models which incorporate these requirements. Practical methods of estimating equating relationships will be referred to, and references to more detailed discussions will be given where they are available. A valuable reference is the volume edited by Holland and Wainer (1988), which provides the most comprehensive account of modern test equating theory. The so-called comparability problem in public examination results will be discussed, and some suggestions will be made for alternative procedures.

The Theory of Test Equating

One of the fundamental assumptions in test score theory is that an individual's observed test score (X) consists of two components, his or her 'true score' (T) and a 'measurement error' (e) which add together to give the observed score thus

$$X = T + e$$

(1)

where the mean value of e in repeated testing is $E(e) = 0$.

Typically, it is the true scores which we are interested in equating, although some authors have argued in favour of observed score equating (see, for example, Braun and Holland, 1982). A major problem with observed score equating, however, is that when measurement error distributions differ, the equated scores generally will have different population distributions, in particular different reliabilities. Thus, confidence intervals for true scores, or for the proportion of the population selected by a cut score, will depend on the 'parents' test — an undesirable feature.

In practice, once a true score equating function has been derived, it is the observed scores with which the function has to be used. This procedure may be justified on the grounds that an individual's observed score is an unbiased estimate of her or his true score and thus of the equated true score. In fact, other estimates may often be preferred. For example, if estimates of reliability and other population distribution parameters are available, so-called 'shrunken' estimates of true scores could be used. A practical difficulty with such procedures would arise, however, if individuals are able to choose which estimates to use, for example, by choosing to be regarded as a member of one particular sub-population so that their equated score could be maximized. The advantage of the observed score is that it is an unbiased estimate for any given set of circumstances. Pothoff (1982) gives a detailed discussion of methods based on the equating of true scores estimated from observed scores.

Suppose that we have two tests with observed scores X, Y, whose true scores T, S are to be equated. For equating to be possible
we require every score S to be equivalent to one and only one score T in a strictly increasing or decreasing order. Thus, in the population, every individual with a given true score, say S, on the first test will have an equated true score, say T, on the second test. We can write this formulatively as:

\[S = T, \]

(2)

If we now consider the observed scores X, Y then (2) becomes

\[E(X|S) = E(Y|T), \]

(3)

where \(E(X|S) \) stands for the mean value of the observed X for an individual with true value S; likewise for \(E(Y|T) \). Equation (3) is referred to as the "weak" definition of equating. Lord (1977 and 1980) proposes a strong definition of equating. Not only does he require (3) to be true but also, after equating to a common scale, that the distribution of X about S, is identical to the distribution of Y about T, in particular that the variances of the corresponding measurement errors are equal. Lord notes also the additional requirement on the grounds of "equity" by which he means that an individual who is equally happy whether he takes test 1 or test 2 must, statistically, want the measurement accuracy of each test to be equal, arguing that a test with a small measurement error variance should be preferred to one with a large measurement error variance. This assumes, however, that individuals have a particular kind of utility function* with a very high cost attached to having an observed score a long way from the actual true score. Alternative utility functions are quite plausible, however.

For example, large measurement errors will be associated with large over-estimates as well as large under-estimates and an individual, particularly one with low ability, may well prefer to "gamble" on turning up a large over-estimate of ability. Lord's condition therefore seems to be too constraining. It is also very restrictive in effectively limiting the types of test which can be equated to those which are strictly parallel. In fact, in the later discussion (Lord, 1980), he is forced to consider practical methods of approximate equating for the majority of tests which do not satisfy his extra condition. It seems more sensible and realistic, therefore, to avoid that difficulty and to take equation (3) as the fundamental definition of equated scores (see also Morris, 1982).

We now need to specify how to operationalize expression (2), that is to define a "transformation" of the S scores to the T scores. For example, a might be a simple linear transformation

\[T = a + bS \]

and in general we may write T as a function of S

\[T = (S) \]

where (S) defines a monotonic relationship, that is, a relationship that is one to one and preserves the ordering.

Equation (4) can be extended readily to a series of tests. Such a series of related tests forms a "unidimensional" set in the sense that once an individual is assigned a true score on one test, his true scores on the others are also uniquely defined. Note, however, that each separate test itself need not be composed of a unidimensional set of items, so that the test scores might, for example, be determined by a combination of two or more factors.

While (5) may refer to any monotonic relationship, it is simplest to begin with a linear one. A suitable model for this case is the one known as the congeneric test score model described by Jöreskog (1971), the simplest version of which is

\[X = a + bT + e, \]

(5)

where \(X \) refers to a test, \(T \) the observed score on that test, \(T \) the true score, \(e \), a measurement error and \(a, b \), scaling or equating parameters.

The usual assumptions for this model are

\[\text{covariance}(T,e) = E(e^2) = 0 \]

and for convenience of notation

\[E(T) = c, \text{ variance}(T) = 1 \]

If \(a = 0 \) and \(b = 1 \) then the tests are known as tau-equivalent and if in addition the variances of the e, are all equal then the tests are parallel.

The problem of equating then becomes the one of finding good estimates of \(a, b, e, \) for each test, since when these are available, we define

\[X = (X - a)b \]

(6)

then we have for two tests i, j

\[E(X_i|T) = E(X_j|T) = T \]

(7)

which is simply equation (3) with T being the true score on the common single dimension. Thus (7) satisfies our definition of equated scores and the transformation in equation (6) is known as a linear equating procedure (LP). Note that (7) does not require the measure-
Models for Estimating Test Scores and Comparability of Scores

Harry Goldman

The variance of X, \(\text{var}(X) \), is the mean of the sum of the squared deviations from the mean of X, \(\text{var}(X) = \text{mean}(X^2) - \text{mean}(X)^2 \).

New variables can be created for use in the analysis. For example, let Y be the sum of the scores on all tests and X be the sum of the scores on all the other tests. Then the variance of Y, \(\text{var}(Y) \), is the mean of the sum of the squared deviations from the mean of Y, \(\text{var}(Y) = \text{mean}(Y^2) - \text{mean}(Y)^2 \).

If we take for granted several facts about the distribution of scores, we can use these equations to estimate test scores. For example, we can use the equation for the variance of a set of scores to estimate the variance of a test score distribution. The variance of a test score distribution is the mean of the squared deviations from the mean of the test scores, \(\text{var}(T) = \text{mean}(T^2) - \text{mean}(T)^2 \).

In practice, we will not know the exact variance of a test score distribution, but we can estimate it by using the equation for the variance of a set of scores. We can then use this estimate to estimate the variance of a test score distribution.

Thus, a given test score distribution can be used to estimate the variance of the observed scores. However, the accuracy of these estimates will depend on the accuracy of the assumptions that were made in the analysis. For example, if we assume that the distribution of scores is normal, then the variance of the observed scores will be equal to the mean of the squared deviations from the mean of the observed scores.

In conclusion, the variance of a test score distribution can be used to estimate the variance of the observed scores. However, the accuracy of these estimates will depend on the accuracy of the assumptions that were made in the analysis.

Therefore, the variance of a test score distribution can be used to estimate the variance of the observed scores. However, the accuracy of these estimates will depend on the accuracy of the assumptions that were made in the analysis.
Harvey Goldstein

Reference Populations

The previous discussion has referred to the equating of tests for a given population. The empirical equating literature, however, tends to be a little vague about the appropriate reference population for any given procedure. For example, that a procedure for equating two tests works well in one population does not guarantee it will do so in another. Furthermore, an equating procedure can work satisfactorily in a population but poorly in a sub-population — for example, a minority ethnic group. There is then an urgent question of the circumstances under which identifiable sub-populations ‘gain’ or ‘suffer’. This is an empirical issue which has hardly been addressed at all by existing studies. Thus, the most common justification for the use of equating methods tends to be the existence of high (disattenuated) intercorrelations between the tests used. Part of the high intercorrelations, however, may well be explained by other factors such as socio-economic group, income, curriculum, etc., so that ‘partial’ correlations within relatively homogeneous sub-groups may be much smaller.

Equatability

Much of the equating literature seems to take the view that two tests either are equatable, or they are not. Since, short of studying every member of a population exhaustively, we cannot ascertain whether a procedure is perfect, we need some measure of how good a procedure is. Traditionally, a linear correlation coefficient is used, but this seems inappropriate for equipercentile methods. A rank correlation would be better and the following suggestion provides such a measure and suggests how it can be used to improve the practical application of an equating procedure.

Consider a population of individuals who take test A and test B and assume true scores are available, although in practice observed scores will be used. Then we can define perfect equating such that

\[X_1 > X_2 \Rightarrow X_{1'} > X_{2'} \]

where \(i, j \) refer to individuals and \(X \) to test scores. If we have \(n \) individuals arrange the \(X_{1'} \) in ascending order and for each of the \(C_2 \) pairs of \(X_{1'} \) scores see whether (8) holds. The proportion of pairs for which it does is our index \(E \). Clearly, if \(E \) is near to 1.0 we may be content with our procedures. If not, then we may be able to improve matters by amalgamating or grouping scores on both tests to eliminate cases where (8) does not hold. Of course, this will not always be possible, but one would reasonably expect most inconsistencies to arise from nearby scores so that grouping these will lead to a higher value of \(E \). Algorithms to do this could be programmed readily. Thus, we would produce a hierarchy of \(E \) values, from the original minimum value upwards. For any \(E \) we would have modified test score scales and when one was reached which was thought ‘acceptable’ this would give the corresponding procedure for equating the grouped test scores. We can regard the functions which carry each original score to the grouped scales as an expression of the loss of score precision required in order to carry out an ‘acceptable’ equating.

If \(E \) is used to measure equatability then we would want to report this for as many sub-populations as possible before recommending that the procedure is used in the total population. Thus, a high value of \(E \) over the whole population might be considerably reduced within sub-populations if the variable defining the sub-population was strongly associated with the test scores.

Designs for Equating

The first systematic attempt to devise a framework for equating studies seems to have been that of Angoff (1971). He proposed four main designs, and the following summary is based on these, incorporating the models of the previous section. (The case of just two tests is used for illustration.)

1. Each test is given to a different sample of the population. For the EP Method, equation (6) is used to equate to a common scale with \(a, b \) estimated using the reliabilities and means as given in the previous section. For the EP Method the ‘shrinking’ procedure is used separately for each sample.
2. Each test is given to all individuals in a sample, with the administration in one order for a random half and the reverse order for the remainder. This uses individuals more efficiently (by cutting down on the numbers needed) and the ‘crossover’ design enables allowance to be made for possible practice effects. Angoff’s method, while incorporating an adjustment for practice, does not make explicit use of the relationship between the tests, although this can be incor-
poorly in the congeneric model (5) to obtain improved
estimates. In the non-linear case, efficient EP methods are
complicated but estimates based on the separate distributions
can be used. The relationship information does, however,
allow a check on some assumptions. 1

3 An additional common test U is given to each group in
design (1). The purpose is to increase precision by adjusting
for sampling fluctuations in the selection of the groups, using
'regression estimation' procedures for the LP method. Any
variable with a fairly high correlation with the scores can be
used for U, or a combination of variables can be used.
For the EP method, assuming a large enough sample, an
iterative non-parametric standardization procedure can be
used. Both LP and EP methods are given in Bianchini and Loret (1974).

4 A common test U is administered as in (3) but U is now used
to predict the true scores, with scores predicted by the same
value of U deemed equated. Alternatively the tests may
be used to predict U, with scores predicting the same value of
U deemed equated. These methods seem not to be justified by
any general model, but are used in public examination
comparability exercises and they will be discussed more fully
in a later section.

In evaluating the performance of these designs it is useful to
assess how closely the sample data conform to the model. For this
purpose we can define the conditional variance of equating (D) as
follows:

\[D = \frac{E[(X^2 - X_1)^2|X_1 = X]}{E(X_1^2)} \]

is the variance of the second test score values about the equated score
for all individuals (i) with the same first test score.

Empirical Studies

The most comprehensive equating study so far has been the Anchor
Test Study, commissioned by the US Office of Education and carried out
by the Educational Testing Service from 1971 to 1974.

One part of the study, which is not of prime concern here, was a
normal study involving 150,000 children. The test equating part of
the study involved a stratified random sample of 200,000 fourth, fifth

Models for Equating Test Scores and Comparability

and sixth grade children from the whole of the US and seven tests
(with one added later in a supplementary study). One of the tests, the
Metropolitan Reading Test, was chosen as the 'Anchor' Test (and was the
one which was normed) and the others were equated to the scale
and norms for this.

The study design consisted of sixteen replications of a basic
design involving twenty-eight schools each given a testing assignment
at random. For each test there were twenty-one possible pairs and
each test had a parallel form giving another seven pairs. Then within
each school the testing was repeated using the reverse order to that for
first assigned. This resulted in 2 × 28 = 56 ordered pairs of tests.
The final report is in thirty volumes and describes the results, and a
project report (Bianchini and Loret, 1974) of 295 pages gives details of
the design and methodology of analysis. Both LP and EP methods
were used to obtain equated results.

Several studies have compared latent trait models with LP and
EP methods, for example, Holmes (1980), Marco et al. (1980) and
Peterson et al. (1982), but no one method emerges as clearly superior,
and few useful simulation experiments seem to have been attempted.

The Comparability of Public Examinations

The General Certificate of Education boards in England, Wales and
Northern Ireland issue graded certificates to individuals for each
examination subject. Each board issues grades A, B, C, etc., in a
particular 'O' level subject, carrying the implication that a grade A
from one board is 'equivalent' to a grade A from any other board. As
with test equating, therefore, an implicit equivalence relationship
underlies the award of grades. I will begin by describing briefly how
two common methods of equilibrating operate and then consider
what theoretical underpinnings there may have. A more detailed
description of the methods can be found in Bardell et al. (1978).

Monitor or Reference Tests

In this method, for each examination paper to be equilibrated, the
examination score or, more usually, grade (using a simple scoring
system) is regressed on a 'reference' test score. The difference
between the intercepts of the regression lines (assuming them to be
parallel) estimates the differences in the mean grade scores. These
Harvey Goldstein

difference scores can then be used as the basis of adjustments to grade
definitions in order to equate the mean grades with respect to the
reference test. A detailed description of the workings of this
procedure with examples can be found in Newbold and Massey
(1979).

Apart from any theoretical difficulties, several practical difficul-
ties occur with this procedure. Firstly, it may not be possible to
adjust grade boundaries to produce coincident regression lines, and
this will be so particularly if the original lines are not parallel or show
signs of non-linearity. Secondly, the use of a simple scoring system
for the grades is rather crude. Although it seems not to have been
tried, a direct method of relating proportions of candidates in
each grade to the reference test score would be preferable, using,
for example, a logistic linear model. Thirdly, some account should be
taken of the measurement error in the reference test; it appears
that only one research study has attempted to do this (Willmot,
1977).

Cross-Moderation

This has now become the favoured method and since 1978 all nine
GCE boards have taken part in cross-moderation exercises at 'O'
(Ordinary) and 'A' (Advanced) level.

Subject experts (usually examiners) scrutinize examination
scripts to decide whether grades are 'comparable' across boards. This
is done either by using a wide range of scripts from each board in
order to establish where grade boundaries should be, or by using
narrower ranges of scripts chosen on grade boundaries determined by
each board a priori. In the latter case it is often found that examiners
from one board find another board too lenient, whereas the other
board's examiners find the first board too lenient! This indicates that
each examiner is using his or her own criteria, based on particular
examination experience, to make judgments. To overcome this,
 attempts have been made, often involving outside experts, to evolve
common criteria for these exercises. Nevertheless, agreement on
criteria is not easy, and the result may be a compromise which is not
as relevant to any single board as were the original criteria.

The advantage claimed for cross-moderation is that it comes
close to the actual examining process, allowing the full use of expert
judgment. On the other hand, it tends to be costly so that in practice
only relatively small samples of scripts can be compared. It is also,
Models for Equating Test Sources and Comparability

ultimately, subjective and dependent on which examiners or experts
are used.

Both the reference-test and cross-moderation methods may be
used either to compare different boards in the same subject in one
year or to compare different examinations in the same subject for
a single board for two or more years. The first application is designed
to ensure that every candidate is treated 'fairly' or 'comparably'
irrespective of which board's examination is chosen, and the second
is designed to ensure that examination 'standards' remain constant over
time. The reference test method has also occasionally been used to
study comparability between subjects, but in the light of the follow-
ing discussion this seems especially difficult to justify.

In the previous paragraph words such as 'fairly' and 'standards'
have been used somewhat imprecisely, and little attempt has been
made to provide a strong justification for the methods, unlike those
underlying equating. In the next section I will attempt to outline the
logic of a comparable model for public examinations, and then to
see whether the procedures used actually satisfy the requirements of
the model.

Models for Comparability

Perhaps the simplest procedure which could be used to attempt to
obtain grade or score comparability would be a direct application of
equipercentile equating using the cumulative grade or score distribu-
tion of each examination. An obvious objection to this is that the
students taking the various examinations cannot be viewed as random
samples from the same population. To overcome this, both the

reference test and cross-moderation procedures attempt to 'adjust'
for such student differences. Thus, the reference test is assumed to be
a measure of student ability which captures such differences. The
difficulty is that there is no simple ability or attainment which can
be measured objectively (in the reference test case) or subjectively (in
the case of cross-moderation). The very point of having different
syllabuses is to promote different abilities and attainments. Hence, as
well as being different in degree, student attainments are different in
kind since different aspects of a subject will have been studied and
learnt, corresponding to the different exam syllabuses. Such deliber-
ate diversity precludes representation by a single score on a reference
test or by the average judgment of a set of examiners. The argument
may be formalized in the following way.
Harvey Goldstein

For a given examination subject, consider two boards, A, B, and two syllabuses 1, 2. Syllabus 1 is the appropriate one for board A’s examination and syllabus 2 for board B’s examination. That is to say, each examination is designed to test attainment in the subject as described in the appropriate syllabus. Of course, in practice there are several boards and often more syllabuses than boards, but this raises no new issues of principle.

Now consider a hypothetical experiment whereby half of the candidates following syllabus 1 are allocated at random to paper A and the other half to paper B, and likewise for syllabus 2. For those candidates from syllabus 1 we compute the mean score difference between papers A and B, and similarly for syllabus 2, say y. Since the allocations are at random, the average ability of the candidates is the same for each examination, so that we have the possibility of using the difference, x, for each syllabus separately, as adjustments to the examination mark, so that on average we can be far to all candidates irrespective of which exam they take.

Unfortunately, since each examination is linked to a syllabus, we would expect those from syllabus 1 to do less than justice to themselves when taking examination B and vice versa for syllabus 2 examinees so leading to different values of x, y. Thus any supposed difference in examination difficulty is confounded with the examination/syllabus link and indeed x and y may even have opposite signs.

In effect, this underlies the apparent contradiction found in cross-modation exercises mentioned previously. In addition there is the practical difficulty that nominally the same syllabuses in different institutions may, in reality, differ considerably in the emphasis given to various topics, hence making them effectively different syllabuses. Moreover, this hypothetical experiment involves random assignment of candidates which is usually quite impractical. Nevertheless, the above arguments will apply to other methods of adjusting for ability differences, such as reference-test and cross-modation methods.

The former uses an objective regression or covariance model to judge which candidates are equivalent, that is, have the same ability, and the latter method judges which candidates are equivalent according to subjective criteria developed by one or more moderators, this time using the internal evidence from the examination answers themselves. For both methods the average score difference for equivalent candidates is used to adjust examination scores. We see, therefore, that there can be little theoretical justification for the usual between-board comparability exercises.

Nevertheless, there is one special case when it would be appropriate to attempt to adjust for 'ability', namely where, for a single examination board there are equally relevant examination for two syllabuses. This might apply over time where comparability was desired from one year to the next. Here, however, there are additional problems related to the fact that syllabuses could change from year to year so that the relevance of a reference test to the examiners may change, as might the moderators' criteria.

Having shown that the current attempts at comparability have no adequate theoretical justification, it is relevant to ask whether an alternative theoretical model exists. Imagine, again, a hypothetical experiment in which individuals are initially randomly assigned to one or other syllabus. This would give, on average, equal distribution of ability at the outset, and if it were possible to ensure equality of education provision, teaching, etc., then if both groups take the same examination, any difference in scores would reflect differential relevance of the examination to the syllabuses, apart from sampling fluctuations. If there are now two different examinations, each related to one syllabus, then the difference in scores will reflect both 'relevance' and 'difficulty'. Nevertheless, it could be deemed fair in this case to use this difference to adjust scores, since the two groups of students are assumed to be equivalent. This imaginary experiment does seem to be the strongest sense in which public examination comparability can achieve fairness but, as before, we need to ask how closely the hypothetical experiment can be approached.

Firstly, neither the cross-modation nor reference-test methods come close, since both rely on assessing examinees at the end of exposure to a syllabus. In principle, it would be possible to attempt to measure 'abilities' prior to syllabus allocation and also factors associated with teaching, etc. In practice no comparability studies along these lines seem to have been carried out, and to do so would involve a time-consuming longitudinal study. In addition to the above factors, moreover, variables such as student choice would have to be measured, since generally the choice of which examination to take is not made at random. In practice we know relatively little about how to measure the relevant factors associated with teaching or student choice. While further research aimed at understanding these is worthwhile, clearly we are far from possessing the knowledge needed to create satisfactory comparability exercises.

It should be noted that the above arguments are not limited to current, largely norm-referenced methods of examining. They apply with equal force to attempts to produce so called 'criterion-referenced' examinations. Even were such attempts successful in
Models for Equating Test Sources and Comparability

take examinations and those who use the results might accept the system fairly readily. The students would make their own decisions about their prospects with different examination boards, and the users would make allowances for different 'standards' adopted by the boards. Naturally, the boards would wish to maintain stable 'standards' but those would be incorporated into the setting of the examination papers. Since these papers themselves and the objectives of the syllabuses upon which they are based would be publicly available, the onus for a valid interpretation of the examination results would rest with the user rather than the present somewhat shaky comparability procedures. Furthermore, in those cases where valid exercises might still be carried out, such as overtime for a single board with an unchanging syllabus, these would provide a useful check on examination standards.

Acknowledgement

This chapter has benefited from helpful comments by Dr. J. Houston, Dr. M. Cresswell and Professor D.L. Nuttall to whom I am most grateful.

Note

1 In order to satisfy equation (4) a further assumption is necessary, namely, that E(15) = 15, with a similar condition for the other tests. However, this ought to be the case so long as the reliabilities are not too low. Also, this assumption can be examined empirically.

References

Harvey Goldstein

