prognostic difference between any of the groups—particularly no difference in age or time from primary diagnosis to first metastasis.

DISCUSSION
One might expect chemotherapy to lengthen overall survival in metastatic breast cancer because survival is longer from the time of metastasis in patients who respond than in those who do not. However, despite high response rates we have seen no improvement in overall survival for patients with primary breast cancer, nor a prolongation of survival from first metastases. In fact, since the introduction of multiple-drug chemotherapy survival from first metastases seems to have shortened.

It is possible that this recrudescence in survival reflects a change in the behaviour of the tumour, although this seems unlikely with the observed constant time from primary diagnosis to first metastasis seen with these new groups of patients. We appreciate that this is not a randomized controlled clinical trial, and bias may have occurred; although we have been unable to identify any differences in prognostic factors between the groups of patients.

The paradox of improved survival for responders to chemotherapy with apparent reduction in survival of the whole group with increasing intensity of chemotherapy may arise in several ways. First, the pool which is doence to patients who respond to chemotherapy may be more than outweighed by the harm done to non-responding patients by non-effective, potentially toxic chemotherapy. Secondly, the patients who respond to chemotherapy may be those with less aggressive disease and therefore better prognosis. Survival of patients given chemotherapy is usually related to the time from start of treatment, which may vary from the time of first metastasis to the pretreatment stage and therefore is meaningless in relation to overall survival. Finally, increasing use of chemotherapy may have reduced or delayed potentially successful endocrine therapy. We are now examining these factors in a larger series of patients.

We do not doubt that systemic chemotherapy prolongs survival of some patients with metastatic breast cancer—particularly those with life-threatening rapidly developing metastases in lung, liver, or bone marrow. We also have no doubt that this treatment may be of palliative benefit to many patients without necessarily prolonging survival. We suggest that these results indicate the need for more accurate identification of patients who will benefit from potentially toxic systemic chemotherapy. Overall survival and quality of life may improve if these patients are not treated. We also suggest that existing analytical methods for assessment of response, depending on (1) measurement of objective expression and (2) differences in survival from start of treatment, are misleading and have encouraged a falsely optimistic view of systemic chemotherapy for metastatic breast cancer. Assessment of palliation and differences in survival from first recurrence may be more informative.

The fact that expressions of breast cancer had no influence on overall survival must reflect the inadequacy of present-day chemotherapy. Clearly in the future with more effective treatments, such as we now have for Hodgkin's disease and some other tumours, objective regression may assume a closer relation to survival.

We thank Richard Shaw of the Cancer Registry and Ch Hill of the Department of Epidemiology in the Institute of Cancer Research for their help and advice. We particularly thank Cancer Garden, our research nurses, and the staff of St Peter's Hospital, Chertsey, for their help and cooperation.

This study was supported, in part, by the Breast Cancer Research Fund.

Requests for reprints should be addressed to T. J. P., Royal Marsden Hospital, Sutton, Surrey SM2 5XL.

ECOLOGICAL CONSIDERATIONS in the CREATION AND THE USE of CHILD GROWTH STANDARDS

H. GEORGE
J. H. TANNER
Institutes of Education and Child Health, University of London, London

Summary
There is no proper substitute for a country, especially a developing country, having its own child growth standards or norms for clinical use. Based on a representative sample of the population, separate standards may be derived for subgroups of the population, but the application to the whole population of sample-based on an economically privileged group is inappropriate, as is the use of an international standard. The structure or clinical use of growth standards should be sharply distinguished from the use of growth measurements to combat disadvantaged with privileged groups or populations. In particular, the use of growth measurements to assign individual children should not divert attention from the need to change existing differences between disadvantaged and privileged groups.

Introduction
The physical growth and development of children is a sensitive indicator of the health of a population. But how measurements of growth should best be used for this purpose is still not agreed. Are societal standards essential, and if so, from what sort of sample should they be derived and how should the results be interpreted? There are two distinct uses of growth measurements. First, they may be used to assess differences in health and nutrition between groups in a population and in

Child Care
monitor changes in such groups or in the whole population over time. This involves the selection and measurement of representative samples of the groups or populations concerned and, typically, comparison of mean values between populations and times. Secondly, they may be used as a detecting device to ascertain whether an individual child is abnormal, in the sense that his measurement lies beyond an extreme percentile of a population distribution (e.g., whether a child's height falls below the third percentile of heights for all children of the same age). We are hence concerned with the latter use, that is, with growth standards (or norms), although the two uses are closely connected.

While large samples are necessary to define accurate standards for different groups, such as those in urban and rural areas, or those with different ethnic backgrounds. We can study a child according to the standards for his own subgroup rather than those for the whole population. Thus, a child from a deprived region could be assessed according to standards for that region. It is open to question if this is desirable. A child in such a region should perhaps be judged by the standards for an economically privileged area since these indicate the growth potential of the child who, like other children in his region, has failed to realize this potential because of various economic and other environmental circumstances. This would apply particularly in countries where there are large growth differences between rich and poor. We shall discuss the basis for this proposal and make some suggestions for the efficient use of growth standards with particular reference to developing countries.

BACKGROUND

In 1971 a committee of the International Union of Nutrition and Biology was set up to assess the relationship of the growth of the human population to dietary intake. The committee's own standards must be stated with carefully selected samples representing children growing in an optimal environment for that country.

In selecting the specific populations the first group should be from the "modern" elite groups in each study area.

It is felt that a criterion for the creation of growth standards is in follows: Anthropometric measures are the most important means of assessing nutrition and health in communities. Differences in these measures, appropriately developed standards can serve as reference points which to measure changes in health and nutrition of a given country and also in standards for evaluating the results of intervention programmes.

Other authors have supported these recommendations although they have not gone unchallenged. The quotations illustrate clearly some of the confusion prevalent in this field. Firstly, there is a failure to distinguish the different uses of these standards. For example, "elite" standards are obviously inappropriate for assessing whole population changes in health and nutrition or for evaluating the results of intervention programmes. Secondly, the definition of an elite group is ambiguous. The quotation mentions optimal environments, but does not define optimal. This problem has been described thus:

"There is, all the same, one argument against using "best" standards. The result in most countries gives up earlier and end up taller. If early maturation and large size 'advantages'... Growth is indeed a fine yardstick of the health of individuals and populations, perhaps the best there is. But it remains so only for as long as we view our standards as a relative balance to be adjusted if circumstances change, and not as a criterion to which we shall stick all our way."

Unless optimum can be defined and be shown to be operationally useful and valid the argument for the general clinical use of privileged-group standards largely disappears. In the next section we shall explain why this is so.

STANDARDS BASED ON ECONOMICALLY PRIVILEGED GROUPS

The argument in favour of using privileged-group standards runs somewhat as follows. In a given country it may be reasonable to assume that all individuals have a common growth pool. There are some individuals who constitute an economically privileged group within that society and whose standards of nutrition, medical care, and so on, are better than those of the rest of the population. The environment of these individuals is said to be "optimal". These individuals, therefore, should constitute the standardizing group. In this argument, however, the term optimal is used in a sense we think mistaken, namely that it is associated with the group living in the most "sophisticated" or technologically advanced environment. Although, in the recent past, the best nutrition has often been equated with the most food that can be obtained, it is now accepted that too much food may be as harmful as too little. A better definition of optimal would be the level of nutrition and medical care which is associated with the greatest amount of growth. Since, unfortunately, there is no yet a satisfactory definition of positive health, we normally have to use a criterion based on the lowest mortality and morbidity rates.

Those who advocate the use of privileged standards often do so because they believe that all individuals in a population have a right to attain the status of those who are in the economically most privileged group. While this argument has the appearance of being socially progressive, it is in reality a superficial appearance. We think it only valid if it is applied to groups rather than individuals, and (if "most healthy" is substituted for "most privileged") the point is that, within a given environment, the minimum morbidity is not necessarily associated with the maximum rate of growth. Many factors, including physical activity, climate and culture, as well as general economic level, interact with growth processes to determine what is optimal, in terms of growth, morbidity and mortality rates. Thus, in a poor environment, a child who is small may have an advantage over larger-growing children in terms of mobility and mobility in that poor environment. He remains disadvantaged by comparison with a child from the privileged environment because of the overall differences in morbidity and mortality rates between the two environments. Thus though we may describe an individual as performing as well as he can for his environment we must at the same time explicitly recognize the poverty of that environment itself. In these circumstances, therefore, it is the environment itself that needs altering, not just the circumstances of the individual child. As the environment of the disadvantaged group is improved, and morbidity
za mortality rates approach those of the privileged group, on the definitions of optimal growth in the two groups would tend to coincide.

Advocates of the use of privileged group standards for clinical assessment of local populations argue that each individual's environment should be suitably altered if his or her development is judged to be suboptimal in relation to these standards. They point out that environmental conditions are not consistently homogenous, and even in poor environments some individuals may not be very badly off, it may be more efficient to treat only those particular individuals identified as suboptimal in this way. Treatment might involve nutritional supplementation or more frequent medical attention. There are, however, practical objections to this argument. It is difficult to alter one individual's immediate environment without affecting others, and it is often socially unacceptable to do so. Moreover, such measures usually do little to remedy the underlying reasons for the poor environment itself, since they are not primarily aimed at raising the general economic level of its inhabitants. Although a similar programme might be initially successful, if the extra nutritional or health interventions are subsequently withdrawn or reduced, the individual may be no better off than before. Indeed he may be worse off as a result of having to revert to his former level of subsistence. Thus, such interventions are useful only if they imply a continuing commitment to the alteration of the environment.

If we accept that we should design programmes to alter the general environmental conditions, growth measurements will still be necessary to establish the existence and size of growth differences between groups or populations. Such studies do not necessarily require per capita standards, but they must be based on proper sampling and measurement procedures to give reliable estimates of average differences. Without such a knowledge about the total population, the widespread use of privileged standards might merely be a symptom of ignorance from the more relevant task of measuring and thus dealing with overall health inequalities.

Nevertheless, for any given environment it is no doubt useful to have percentile growth standards to screen for abnormalities that respond to medical, social, or nutritional treatments. For example, there will always be children considered too small who may need clinical attention to determine whether any specific treatment is necessary. In a poor environment such measures will be additional to those done to improve the environment overall. The percentile standards used should be those of the population of the environment which actually exists rather than those of a privileged group, and should be updated as often as necessary. The purpose of percentile growth standards is to screen individual children in relation to other children, the purpose of comparing average values of groups is to identify those groups which may require a replication of social, medical, or other resources to alter their general environmental condition.

Finally, we have briefly to query the assumption that the privileged group has the same statural background as the remainder of the population. There are relatively few studies that have demonstrated that genetically homogenous groups are not also partly refine ethnic groupings. Indeed, this is true also of many industrial nations. Until the distribution of nutritional genes in groups of the population is better understood, it is difficult to decide for any factor.

Indications

We have argued that for using privileged group standards to a whole population is dubious. How many separate standards should that be used? Clearly it is impossible to decide which each child is exposed to a different subgroup. However, men and women are nearly always considered separately in the population because the sex develops differently. Standards for children's growth levels on the height of their parents are increasingly used and this seems a useful approach towards coping with genetic and ethnic differences.

Such standards enable a greater precision to be applied in distinguishing whether a child is small in relation to others in the population. The exact considerations about improving the whole environment still apply, of course, since part of the resemblance between parents and children may reflect similar environments. A similar situation also exists with respect to birthweights. In defining the subgroups of the population for which separate standards might be created, we have to consider the ease with which such children can be classified and, secondly, to select groups of children that have large differences in growth, because this will increase the accuracy with which a child can be judged. Sex, family size, where a child lives, and his ethnic characteristics are usually easy to classify. Percentile height is a more sensitive indicator than sex at most ages, but this may be some extent counterbalanced by the ease with which they can be determined.

In some developing countries it may be useful to have separate standards in different regions where there are large differences in growth. Such areas are usually identified by random or selective surveys that are used for detailed surveys that are used for the standardization of standards. This would be the case in Cuba, whose highest and sex as a national set of standards for use in the clinical assessment of all children, there will also be separate standards for experimental use in deferent areas to that their usefulness can be properly tested.

Conclusions

Perente 4 growth standards for screening children should be derived from the whole population to which the children belong. It may be inappropriate and even harmful to use standards derived from an essentially privileged group if it is also inappropriate in one country to use standards derived from another. The concept of a single international growth standard is invalid, although there is some use for international reference values. 5 International standards, usually derived from populations of industrialized societies, are sometimes

* Such an approach has been adopted by the U.S. H.H.S. in its growth chart for noncaucasian populations, derived from one set of measurements, for the community of all races with the expectation that the values of this cross-racial distribution would better reflect ethnic differences. The I.C.D.A. has established similar standards for the United States and the United Kingdom. Although these standards are derived from a single ethnic and cultural environment, they are based on a multiple analysis and are not intended for use by primary health care workers.
Occasional Survey

THE POSSIBILITY OF PREVENTING AMBLYOPIA
R. M. INGRAM

General Hospital, Kettering, Northamptonshire NN14 2ZJ

INTRODUCTION

Amblyopia is a reduced visual acuity, unilateral or bilateral, in eyes which are organically healthy. It was once thought to be caused by squint, but is frequently found in the absence of noticeable squint. Squint and/or amblyopia arises in about 1/7 of children, so these disorders are much seen in ophthalmic clinics.1 Of the various treatments,1 occlusion is the best known, but doubts persist about its efficacy.2 Reported results are not satisfactory1,3 and many children relax.4

Your observer that, "after two centuries of using occlusion, we still do not know which eye to occlude, with what for how long.5 Attempts have also been made to stimulate the amblyopic eye with photopsia6 or rotating gratings,7 but no more completely restored visual acuity. Non-traditional amblyopia does not consistently and permanently improve with occlusion.4 The numerical importance of this type of amblyopia has only lately been recognized.8,9 Formerly, ophthalmologists dealt mainly with amblyopia associated with squint, and in such cases the most severe amblyopia undoubtedly does improve although probably only to a level of vision that was present at the time the squint appeared (as Chavasse apparently suspected10)

VISUAL-DEPRIVATION STUDIES IN ANIMALS

Some understanding of the basic factors in squint and amblyopia has come from investigation of the developing visual system of kittens and infant monkeys.2 These studies, started by Hildes and Woolf in 1963,11 have shown that visual deprivation—i.e., blurring of vision by various methods—during a "sensitive period", the first three to six months of life, has a permanent detrimental effect on the functional connections between retina and occipital cortex. The result is decreased

recovery of the visually deprived eye and loss of binocular function. Switching occlusion to the good eye allows recovery of vision in the deprived eye, but only if the right visual field within the sensitive period2 and even this the recovery at the expense of binocular function.12 Visual deprivation (e.g., occlusion) after the sensitive period neither restores nor creates amblyopia.

CLINICAL IMPLICATIONS OF THE SENSITIVE PERIOD

It would be strange if there was not a corresponding period in man within which visual deprivation had a similar effect on vision. Some evidence for this comes from Japanese children who attended school children who attended school during a period of enforced amblyopia.13 It was supposed that the eye was covered for one week, and all those treated before eighteen months of age ended up with amblyopia and defective binocular vision.14 In the U.K., Rees and Wright15 warned that, if one eye of a child was excluded during the sensitive period, the excluded eye could become amblyopic. This worried ophthalmologists, who feared that such a catastrophe seldom happens in practice. If occlusion, does not regularly create amblyopia, why should we expect the neural connections of the amblyopic eye to be amenable to alteration? The observation that occlusion did not permanently improve the vision of the non-seeing amblyopic, or of squinting amblyopia whose squint was of short duration, led to the suggestion that visual deprivation in infancy had caused abnormal neuronal connections between retina and cortex, and that those connections were unalterable because the child had presented after the sensitive period.16 They called this primary amblyopia, and suggested that if more severe amblyopia associated with long-standing squint, which partly respond to occlusion, might have a different origin and be, for some reason, secondary to the "binocular insensitivity" of prolonged squint. This agrees with Chavasse’s dual classification17: amblyopia of arrested development18 and 2) amblyopia caused by "disuse"—and hence, probably, the classification.19

Earlier also picture, ophthalmologists advocated occlusion to "prevent" amblyopia, but it is doubtful if they really prevented amblyopia, in some children, the onset of secondary amblyopia.