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Abstract

In this talk I’ll examine some issues in the foundations of applied probability and applied statistics,
a topic that has surprising relevance to day-to-day work in those fields.

Probability: From the 1650s (Fermat, Pascal) through the 18th century (Bayes, Laplace) to the pe-
riod 1860–1930 (Venn, Boole, von Mises), three different ideas about how to think about uncertainty
quantification — classical, Bayesian, and frequentist probability — were put forward in an intuitive
way, but no one ever tried to prove a theorem of the form {given these premises, there’s only one
sensible way to quantify uncertainty} until the mathematician Kolmogorov (1933), the statistician
and actuary de Finetti (1937), and the physicist RT Cox (1946). Kolmogorov — following and rig-
orizing Venn, Boole, and von Mises — created a repeated-sampling (frequentist) foundation based
on set theory; this is excellent, as far as it goes, but many types of uncertainty cannot (uniquely,
comfortably) be fit into Kolmogorov’s framework. de Finetti developed a Bayesian foundation based
on estimating betting odds about true/false propositions ; this is more general than Kolmogorov, but
betting odds are not fundamental to science. Cox — following and rigorizing Laplace — built up
a Bayesian foundation (starting with principles, developing them into axioms, and finally proving
a theorem) based on numerically summarizing the information content of propositions; this is both
fundamental to science and as general as you can get, and it’s the story that makes the most sense
to me. The foundations of a version of probability flexible enough for an extremely wide range of
statistical applications seem secure.

Statistics: Given an unknown θ (this could be almost anything, but think of a vector in <k for
concreteness), a data set D relevant to decreasing your uncertainty about θ (this could also be almost
anything, but think of a vector in <n for concreteness), and a set B of propositions detailing your
background assumptions and judgments describing {how the world works as far as θ, D and future
data D∗ are concerned}, in the Laplace-Cox approach (almost) everything you’d want to be able to
do is covered by a set of three equations: one for inference about θ, one for prediction of D∗, and
one for making a decision in spite of your uncertainty about θ. However, to implement this program
you have to specify

• two things for inference and prediction: two probability distributions, p(D|θB) and p(θ|B),
summarizing the information about θ internal and external to D, respectively; and

• two more things for decision: a set A of possible actions and a utility function U(a, θ) quan-
tifying the costs and benefits arising from the choice of action a if the unknown were in fact
θ;

and Cox’s Theorem is (almost entirely) silent about how to perform these specification tasks. At
present we have no progression, from principles through axioms to theorems, that characterizes
optimal Bayesian model specification; instead we have an ad-hoc collection of methods, some of
which seem more or less sensible. Thus the foundations of applied statistics do not seem to me
to be secure; fixing this would yield a Theory of Applied Statistics, which we need and do not yet
have. In this talk I’ll explore the extent to which four principles (Calibration, Modeling-As-Decision,
Prediction, and Decision-Versus-Inference) constitute progress toward this goal.


