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Course outline

o Day 1:
1. Introduction to discrete-time models: Analysis of the time to a
single event
2. Multilevel models for recurrent events and unobserved
heterogeneity

o Day 2:
3. Modelling transitions between multiple states
4. Competing risks
5. Multiprocess models
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What is event history analysis?

Methods for the analysis of length of time until the occurrence of
some event. The dependent variable is the duration until event
occurrence.

Event history analysis also known as:

@ Survival analysis (especially in biostatistics and when events
are not repeatable)

@ Duration analysis

o Hazard modelling



Examples of applications

Health. Age at death; duration of hospital stay

Demography. Time to first birth (from when?); time to first
marriage; time to divorce; time living in same house or area
Economics. Duration of an episode of employment or
unemployment

Education. Time to leaving full-time education (from end of
compulsory schooling); time to exit from teaching profession



Types of event history data

o Dates of start of exposure period and events, e.g. dates of
start and end of an employment spell

- Usually collected retrospectively

- Sources include panel and cohort studies (partnership, birth,
employment and housing histories)

o Current status data from panel study, e.g. current
employment status at each year

- Collected prospectively



Special features of event history data

o Durations are always positive and their distribution is often
positively skewed (long tail to the right)

@ Censoring. There are usually people who have not yet
experienced the event when we observe them, but may do so
at an unknown time in the future

@ Time-varying covariates. The values of some covariates may
change over time



Start

Observation period

End



Types of censoring

Line starts when individual becomes at risk of event.
Arrowhead indicates time that event occurs.

i =1 start and end time known
i =2 end time outside observation period, i.e. right-censored
i =3 start time outside observation period, i.e. left-truncated

i =4 start and end time outside observation period

Right-censoring is the most common form of incomplete
observation, and is straightforward to deal with using EHA.



Right-censoring

@ Right-censoring is the most common form of censoring.
Durations are right-censored if the event has not occurred by
the end of the observation period.

- E.g. in a study of divorce, most respondents will still be
married when last observed

@ Excluding right-censored observations (e.g. still married) leads
to bias and may drastically reduce sample size

o Usually assume censoring is non-informative



Right-censoring: Non-informative assumption

We retain right-censored observations under the assumption that
censoring is non-informative, i.e. event times are independent of
censoring mechanism (like the ‘missing at random’ assumption).

Assume individuals are not selectively withdrawn from the sample
because they are more or less likely to experience an event. May be
questionable in experimental research, e.g. if more susceptible
individuals were selectively withdrawn (or dropped out) from a
‘treatment’ group.



Event times and censoring times

Denote the event time (also known as duration, failure or survival
time) by the random variable T.

i event time for individual /

O censoring/event indicator
=1 if uncensored (i.e. observed to have event)

= 0 if censored

But for a right-censored case, we do not observe t;. We observe
only the time at which they were censored, ¢;.

Our outcome variable is y; = min(t;, ¢;).

Our observed data are (y;, 0;).



Descriptive Analysis
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The hazard function

A key quantity in EHA is the hazard function:

< >
h(t) = A“mo Pr(t<T <£: At|T > t)
t—

where the numerator is the probability that an event occurs during
a very small interval of time [t, t + At), given that no event
occurred before time t.

We divide by the width of the interval, At, to get a rate.

h(t) is also known as the transition rate, the instantaneous risk, or
the failure rate.



The survivor function

Another useful quantity in EHA is the survivor function:

S(t)=Pr(T >t)

the probability that an individual does not have the event before t,
or ‘survives' until at least t.

Its complement is the cumulative distribution function:

F(t)=1-5(t) = Pr(T < t)

the probability that an individual has the event before t.



Non-parametric estimation of h(t)

Group time so that t is now an interval of time (duration may
already by grouped, e.g. in months or years).

r(t) is number at 'risk’ of experiencing event at start of interval t
d(t) is number of events ('deaths’) observed during t
w(t) is number of censored cases ('withdrawals') in interval t

The life table (or actuarial) estimator of h(t) is

)
= - w®

Note. Assumes censoring times are spread uniformly across interval t.
Some estimators have r(t) — 0.5w(t) as the denominator, or ignore
censored cases.



Estimation of S(t)

The survivor function for interval t can be estimated from h(t) as:
S(t) = [—h1)]x[1—=h@Q)]...x[1-h(t-1)]
S(t—1) x [1— h(t —1)]
E.g. probability of surviving to the start of 3rd interval

= probability no event in 1st interval and no event in 2nd interval

— 5(3) = [1 — A(L)] x [L — A(2)



Example: Time to 1st partnership

t r(t) d(t) w(t) h(t) S(t)
16 500 9 0 0.02 1

17 491 20 0 0.04 0.98
18 471 32 0 0.07 0.94
19 439 52 0 0.12 0.88
20 387 49 0 0.13 0.77

32 39 3 0 0.08 0.08
33 36 1 35 0.03 0.07

Source: National Child Development Study (1958 birth cohort). Note
that respondents were interviewed at age 33, so there is no censoring
before then.



Example of interpretation

Event is partnering for the first time.
'Survival' here is remaining single.
@ h(16) = 0.02 so 2% partnered before age 17

@ h(20) = 0.13 so, of those who were unpartnered at their 20th
birthday, 13% partnered before age 21

@ 5(20) = 0.77 so 77% had not partnered by age 20



Hazard of 1st partnership

0.25

02 *
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If an individual has not partnered by their late 20s, their chance of
partnering declines thereafter.



Survivor function: Probability of remaining unpartnered
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Note that the survivor function will always decrease with time.
The hazard function may go up and down.

35



Continuous-time Models

21/183



Introducing covariates: Event history modelling

There are many different types of event history model, which vary
according to:

@ Assumptions about the shape of the hazard function
@ Whether time is treated as continuous or discrete

@ Whether the effects of covariates can be assumed constant
over time (proportional hazards)



The Cox proportional hazards model

The most commonly applied model is the Cox model which:

@ Makes no assumptions about the shape of the hazard function

@ Treats time as continuous

@ Assumes that the effects of covariates are constant over time
(although this can be modified)



The Cox proportional hazards model

hi(t) is the hazard for individual i at time t

X; is a vector of covariates (for now assumed fixed over time) with
coefficients 3

ho(t) is the baseline hazard, i.e. the hazard when x; =0

The Cox model can be written:
h;(t) = ho(t) exp(ﬁx;)
or sometimes as:
log hi(t) = log ho(t) + fBx;
An individual's hazard depends on t through ho(t) which is left

unspecified, so no need to make assumptions about the shape of
the hazard.



Cox model: Interpretation (1)

hi(t) = ho(t) exp(5x;)

Covariates have a multiplicative effect on the hazard.

For each 1-unit increase in x the hazard is multiplied by exp(().
To see this, consider a binary x coded 0 and 1:

xi =0 = hi(t) = ho(t)

xi =1 = hj(t) = ho(t) exp(5)

So exp(/3) is the ratio of the hazard for x = 1 to the hazard for
x = 0, called the relative risk or hazard ratio.



Cox model: Interpretation (2)

exp(B) = 1 implies no effect of x on the hazard

exp() > 1 implies a positive effect on the hazard, i.e. higher
values of x are associated with shorter durations

- e.g. exp() = 2.5 implies an increase in h(t) by a factor of
(2.5 —1) x 100 = 150% for a 1-unit increase in x

exp(8) < 1 implies a negative effect on the hazard, i.e. lower
values of x are associated with longer durations

- e.g. exp(f) = 0.6 implies a decrease in h(t) by a factor of
(1 —0.6) x 100 = 40% for a 1-unit increase in x



Example: Gender effects on age at 1st partnership

t Coef. Std. Err. z P>|z| [95% Conf. Interval]

female .400507 .0833196 4.29 0.000 .217604 .5834101

@ The log-hazard of forming the 1st partnership at age t is 0.4
points higher for women than for men

@ The hazard of forming the 1st partnership at age t is
exp(0.40) = 1.49 times higher for women than for men

@ Women partner at a younger age than men



The proportional hazards assumption

Consider a model with a single covariate x and two individuals
with different values denoted by x; and x».

The proportional hazards model is written:
hi(t) = ho(t) exp(5x;)

So the ratio of the hazards for individual 1 to individual 2 is:

m(t) _ exp(Bx)
ha(2) ~ exp(Br)

which does not depend on t. i.e. the effect of x is the same at all
durations t.




Example of (a) proportional and (b) non-proportional
hazards for binary x

hit)




Estimation of the Cox model

All statistical software packages have in-built procedures for
estimating the Cox model. The input data are each individual’s
duration y; and censoring indicator ;.

The data are restructured before estimation (although this is
hidden from the user), and the Cox model is then estimated using
Poisson regression.

We will look at this data restructuring to better understand the
model and its relationship with the discrete-time approach. But
note that you do not have to do this restructuring yourself!



Creation of risks sets

A risk set is defined for each observed event time and contains all
individuals at risk of the event at that time.

Suppose there are K distinct uncensored event times and denote
the ordered times by t(1), t(2), - -, t(k)-

Example. Suppose ordered uncensored event times (age at
marriage) are:

k 1 2 3 4 5 6
th 16 17 18 21 22 24

The event time ranges from 16 to 24, so there are potentially 9
event times (taking 16 as the origin). But there are 6 risk sets
because no events were observed at t = 19, 20, 23.



Risk set based file

Consider records for 3 individuals:

individual 7 Vi 0;
1 21 1
2 18 0
3 16 1
individual 7 risk set k E(k) yii (event
at t(k))
1 1 16 0
1 2 17 0
1 3 18 0
1 4 21 1
2 1 16 0
2 2 17 0
2 3 18 0
3 1 16 1




Results from fitting Cox model

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]
female .393816 .0934761 4.21 0.000 .2106062 .5770258
fulltime -1.031132 .1902864 -5.42 0.000 -1.40408¢6 -.6581774
_t Haz. Ratio sStd. Err. z P>|z| [95% Conf. Interval]
female 1.482628 .1385903 4.21 0.000 1.23442¢6 1.780734
fulltinme .3566031 .0678567 -5.42 0.000 .2455913 5177942

@ Hazard of partnering at age t is (1.48 — 1) x 100 = 48% higher
for women than for men (i.e. W partner quicker than M)

@ Being in full-time education decreases the hazard by
(1 —-0.36) x 100 = 64%



Discrete-time Models
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Discrete-time data

In social research, event history data are usually collected:

@ retrospectively in a cross-sectional survey, where dates are
recorded to the nearest month or year, OR

@ prospectively in waves of a panel study (e.g. annually)

Both give rise to discretely-measured durations.

Also called interval-censored because we only know that an event
occurred at some point during an interval of time.



Data preparation for a discrete-time analysis

We must first restructure the data.

We expand the event times and censoring indicator (y;, d;) to a
sequence of binary responses {y;i} where y;; indicates whether an
event has occurred in time interval [t, t + 1).

The required structure is very similar to the risk set-based file for
the Cox model, but the user has to do the restructuring rather
than the software.

Also we now have a record for every time interval (not risk sets,
i.e. intervals where events occur).



Data structure: The person-period file

individual 7 Vi 0;
1 21 1
2 33 0
individual 7 t Vii
1 16 0
1 17 0
1 20 0
1 21 1
2 16 0
2 17 0
2 32 0
2 33 0




Discrete-time hazard function

Denote by p;; the probability that individual / has an event during
interval t, given that no event has occurred before the start of t.

pei = Pr(y:i = 1|}’t—1,i =0)

pei is a discrete-time approximation to the continuous-time hazard
function h;(t).

Call py; the discrete-time hazard function.



Discrete-time logit model

After expanding the data fit a binary response model to y;;, e.g. a
logit model:

log (pt’> = aDy; + Bxy;
1— pyi

p:i is the probability of an event during interval t

D;; is a vector of functions of the cumulative duration by interval t
with coefficients «

Xt is a vector of covariates (time-varying or constant over time)
with coefficients (3



Modelling the time-dependency of the hazard

Changes in py with t are captured in the model by aDy;, the
baseline hazard function.

D;; has to be specified by the user. Options include:

Polynomial of order p

aDy =g +art + ...+ apt?

Step function

aDy = a1 D1 + an Dy —‘r...—i-anq

where Dy, ..., Dg are dummies for time intervals t = 1,...,q and
q is the maximum observed event time. If g large, categories may
be grouped to give a piecewise constant hazard model.



Discrete-time analysis of age at 1st partnership

Two covariates: FEMALE and FULLTIME (time-varying)

We consider two forms of aDy;:

@ Step function: dummy variable for each year of age, 16-33

o Quadratic function: include t and t? as explanatory variables



Duration effects fitted

as a step function

v Coef. Std. Brr. H Pz [95% Conf, Interval

t2 L1343721 4328896 0.31 0,756 -, 7140759 .9828201

t3 L7052694 L409333% 1.72 0,085 -.0970098 1.507549

td 1.097346 LA406424 2.70 0,007 .3007698 1.893923

] 1.2058112 4070036 2.97 0,003 L 4113958 2.006825

te 1.516555 4037025 3076 0,000 V7257128 2.308197

t7 1.440981 LA150112 3.44 0,001 . 6197341 2.262228

t8 1.308467 LA230047 3.05 0,002 LA676332 2.149301

t9 1.366649 L4350251 3.14 0,002 L 5140154 2.219282
t10 1.477445 4401949 3.6 0,001 LB146787 2.340211
t1l 1.398669 4534112 3.09 0,002 L51019594 2.267539
t12 1.596732 L4584545 3.48 0,000 . 6981773 2.495286
t13 1.498472 LAT3TT37 3.12 0,002 .5581328 2.438811
t14 1.279797 ,5111952 2.50 0,012 L2778724 2.281721
tls 1.704258 L502512% 3,39 0,001 L 7193507 2.689165
tle 1.072423 58813586 1.62 0,068 -, 0803015 2.225147
t17 L4545552 L717524% 0.63 0,526 -.9517672 1.660878
t18 -, 6196484 1.087373 -0.57 0,569 -2.750861 1.511564
female L4678989 W1022771 4.57 0,000 V2674395 L 6683582
fulltime -1.132822 L1968646 -5.75 0,000 -1.51867 - 746975
_cons -3.129274 ,395101 -7.92 0,000 -3.903658 -2.35489

Reference category for t is age 16 (could have fitted dummies for all

ages, t1-t18, and omitted intercept)



Comparison of Cox and logit estimates for age

partnership
Cox Logit
Variable B se(f) B se(pB)
Female 0.394 0.093 0.468 0.102
Fulltime(t) | —1.031 0.190 | —1.133 0.197

Same substantive conclusions, but:

at 1st

o Cox estimates are effects on log scale, and exp(f3) are hazards
ratios (relative risks)

o Logit estimates are effects on log-odds scale, and exp(/3) are

hazard-odds ratios



When will Cox and logit estimates be similar?

@ In general, Cox and logit estimates will get closer as the
hazard function becomes smaller because:

log(h(t)) ~ log <1f(ht()t)> as h(t) — 0.

The discrete-time hazard will get smaller as the width of the
time intervals become smaller.

@ A discrete-time model with a complementary log-log link,
log(—log(1 — pt)) , is an approximation to the Cox
proportional hazards model, and the coefficients are directly
comparable.



Duration effects fitted as a quadratic

i Coef. 5td. Err. z Prlz| [95% Conf. Interval]

t L3671895 0538752 5.37 0.000 257676 476703

£sq -. 0184918 003135 -5.87  0.000 - 0246657 -.0123179
female 468567 J102215 4,58 0.000 2682292 LBGEI0 48
fulltime -1.128162 1861813 -6.06  0.000 -1.493070 -.7632535
_cons -3.368389 2371865 -14.20  0.000 -3.833266  -2.903512

Approximating step function by a quadratic leads to little change

in estimated covariate effects.

Estimates from step function model were 0.468 (SE = 0.102) for

Female and —1.133 (SE = 0.197) for Fulltime.



Non-proportional hazards

@ So far we have assumed that the effects of x are the same for
all values of t

@ It is straightforward to relax this assumption in a discrete-time
model by including interactions between x and t in the model

@ Test for non-proportionality by testing the null hypothesis that
the coefficients of the interactions between x and t are all
equal to zero, using likelihood ratio test



Allowing and testing for non-proportional effects of

gender on timing of 1st partnership

Add interactions: t_fem = t x female and tsq_fem = t? x female

y Coef. Std. Err. 7 P>z [95% Conf. Interval]

t . 4283188 .C808491 5,30 0.000 .2698574 .5867801

tsq -.0196737  .C043619 -4.51 0,000 -.0262229  -.0112245
fenale 1.022456 4104085 2.4% 0,013 L 2160805 1.826852

t fem - 0651378 . 1066376 -0.61 0,541 -.2741829 L 1439072
tsq_fen -.0011804 . C062517 -0.19 0,850 -, 0134334 L01107%6
fulltime -1,114385 . 1862045 -5.,94 0,000 -1.479219 -, 7494109
_cons -3.,764402 . 2436493  -10,9%  0.000 -4,437842  -3.090861

Likelihood-ratio statistic comparing main effects and interaction
models = 2(1332.5 — 1328.0) = 9 on 2 d.f., p-value = 0.011

Conclude that interaction effects are significantly different from
zero, i.e. effect of gender is non-proportional



Predicted log-odds of partnering: Proportional gender

effects
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Predicted log-odds of partnering: Non-proportional

gender effects
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2. Multilevel models for recurrent
events and unobserved heterogeneity
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Unobserved Heterogeneity
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What is unobserved heterogeneity?

Some individuals will be at higher risk of an event than
others, and it is unlikely the reasons for this variability will be
fully captured by covariates

The presence of unmeasured individual-specific
(time-invariant) risk factors leads to unobserved heterogeneity
in the hazard

Unobserved heterogeneity is also referred to as frailty,
especially in biostatistics (more ‘frail" individuals have a higher
mortality risk)



Consequences of unobserved heterogeneity

If there are individual-specific unobserved factors that affect the
hazard, the observed form of the hazard function at the aggregate
population level will tend to be different from the individual-level
hazards.

For example, even if the hazards of individuals in a population are
constant over time, the population hazard (averaged across
individuals) will be time-dependent, typically decreasing.

This may be explained by a selection effect operating on
individuals.



Selection effect of unobserved heterogeneity

If a population is heterogeneous in its susceptibility to experiencing
an event, high risk individuals will tend to have the event first,
leaving behind lower risk individuals.

Therefore as t increases the population is increasingly depleted of
those individuals most likely to experience the event, leading to a
decrease in the population hazard.

Because of this selection, we may see a decrease in the population
hazard even if individual hazards are constant (or even increasing).



lllustration of selection for constant individual hazards

Individuals with constant hazard

Logit(p,) with most susceptible having
- event first
_
ﬁ ‘ Decreasing population hazard

Duration t



Impact of unobserved heterogeneity on

duration effects

If unobserved heterogeneity is incorrectly ignored:

@ A positive duration dependence will be understated (so an
increasing baseline hazard will increase more sharply after
accounting for UH)

@ A negative duration dependence will be overstated

Note also that coefficients from random effects and traditional
logit models have a different interpretation (see later).



Allowing for unobserved heterogeneity in a

discrete-time model

We can introduce a random effect which represents
individual-specific unobservables:

log <pti > = aDyi + Bx¢ + uj
1— pi

pti is the probability of an event during interval t

D;; is a vector of functions of the cumulative duration by interval t
with coefficients «

X a vector of covariates with coefficients

u;j ~ N(0,02) allows for unobserved heterogeneity (‘frailty’)
between individuals due to time-invariant omitted variables



Estimation of discrete-time model with unobserved

heterogeneity

@ We can view the person-period dataset as a 2-level structure
with time intervals (t) nested within individuals (/)

@ The discrete-time logit model with a random effect u; to
capture unobserved heterogeneity between individuals is an
example of a 2-level random intercept logit model

@ The model can be fitted using routines/software for multilevel
binary outcomes, e.g. Stata xtlogit



Results from analysis of 1st partnership
without (1) and with (2) unobserved heterogeneity

Model 1 Model 2

Est (SE) Est (SE)
t 0.367 (0.056) 0.494 (0.122)
t2 —0.018 (0.003) —0.020 (0.004)
Female 0.469 (0.102) 0.726 (0.215)
Fulltime —1.128 (0.186) —1.187 (0.208)
Cons —3.368 (0.237) —4.134 (0.646)
oy — — 0.920 (0.400)

Likelihood-ratio test statistic for test of Hp : 0, = 0is 3.74 on 1
d.f., p=0.027 (one-sided test as o, must be non-negative).



More on comparing coefficients from random effects

and single-level logit models

In our analysis of age at 1st partnership, we saw that the positive
effect of age (‘duration’) was understated if unobserved
heterogeneity was ignored (as in Model 1).

Note also, however, that the effects of Female and Fulltime have
also changed. In both cases, the magnitude of the coefficients has

increased after accounting for unobserved heterogeneity.

This can be explained by a scaling effect.



Scaling effect of introducing vu; (1)

To see the scaling effect, consider the latent variable (threshold)
representation of the discrete-time logit model.

Consider a latent continuous variable y* that underlies observed
binary y such that:
)1 ifyz>0
YT 0 ifyr <0
Threshold model
Yii = oDy + Bxsi + Ui + e

@ e ~ standard logistic (with variance ~ 3.29) — logit model
@ e ~ N(0,1) — probit model

So the level 1 residual variance, var(e};), is fixed.



Scaling Effect of Introducing u; (2)

Single-level logit model expressed as a threshold model:

v = aDyi + Bxsi + ey

var(ysi|xei) = var(ef;) = 3.29
Now add random effects:

Yii = aDyi + Bxij + uj +
var(yi|xe) = var(u;) + var(e;) = 02 +3.29

Adding random effects has increased the residual variance
— scale of y* stretched out
— « and [ increase in absolute value.



Scaling Effect of Introducing vu; (3)

Denote by SR the coefficient from a random effects model, and
B°L the coefficient from the corresponding single-level model.

The approximate relationship between these coefficients (for a logit
model) is:

2
RE __ ASL Uu + 329
=5 V" 329

Replace 3.29 by 1 to get expression for relationship between probit
coefficients.

Note that the same relationship would hold for duration effects « if
there was no selection effect. In general, both selection and scaling
effects will operate on «.



Time to 1st partnership: Interpretation of coefficients

from the frailty model

o For a given individual the odds of entering a partnership at
age t when in FT education are exp(—1.19) = 0.30 times the
odds when not in FT education.

- This interpretation is useful because Fulltime is time-varying
within an individual

@ For 2 individuals with the same random effect value the odds
are exp(0.73) = 2.08 times higher for a woman than for a man

- This interpretation is less useful, but we can ‘average out’
random effect to obtain population-averaged predicted
probabilities



Population-averaged predicted probabilities

The probability of an event in interval t for individual / is:

By = exp(aDy + By + uj)
A exp(aDyj + Bxs + uj)

where we substitute estimates of «, 3, and u; to get predicted
probabilities.

Rather than calculating probabilities for each record ti, however,
we often want predictions for specific values of x. We do this by
"averaging out’ the individual unobservables u;.



Population-averaged predictions via simulation

Suppose we have 2 covariates, x; and x», and we want the mean
predicted p; for values of x; holding x» constant.

To get predictions for t =1,...,q and x; =0, 1:

1. Set t = 1 and x3+=0 for each record ti, retaining observed
X2ti

2. Generate u; for each individual i from N(0,52)

3. Compute predicted p; for each record ti based on xy; = 0,
observed xp:j, generated uj, and (&, f)

4. Take mean of predictions to get mean p; for t =1 and x; =0
5. Repeat 1-4 fort =2,...,q
6. Repeat 1-5 for x14 =1



Recurrent Events
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Multilevel event history data

Multilevel event history data arise when events are repeatable (e.g.
births, partnership dissolution) or individuals are organised in
groups.

Suppose events are repeatable, and define an episode as a
continuous period for which an individual is at risk of experiencing
an event, e.g.

Event Episode duration
Birth Duration between birth kK — 1 and birth k

Marital dissolution Duration of marriage

Denote by y;; the duration of episode i of individual j, which is
fully observed if an event occurs (4;; = 1) and right-censored if not
(6 = 0).



Data structure: the person-period-episode file

individual j | episode i Yij djj
1 1 2 1
1 2 3 0
individual j | episode | t Ytij
1 1 1 0
1 1 2 1
1 2 1 0
1 2 2 0
1 2 3 0




Problem with analysing recurrent events

We cannot assume that the durations of episodes from the same
individual are independent.

There may be unobserved individual-specific factors (i.e. constant
across episodes) which affect the hazard of an event for all
episodes, e.g. ‘taste for stability’ may influence risk of leaving a
job.

The presence of such unobservables, and failure to account for
them in the model, will lead to correlation between durations of
episodes from the same individual.



Multilevel discrete-time model for recurrent events

Multilevel (random effects) discrete-time logit model:

log <pﬁj > = aDyjj + Bxejj + uj
1 — pijj

ptij is the probability of an event during interval t

D;j; is a vector of functions of the cumulative duration by interval
t with coefficients «

X¢jj @ vector of covariates (time-varying or defined at the episode or
individual level) with coefficients (3

uj ~ N(0,02) allows for unobserved heterogeneity (‘shared frailty’)
between individuals due to time-invariant omitted variables



Multilevel model for recurrent events: Notes

The model for recurrent events is essentially the same as the
(single-level) model for unobserved heterogeneity

- Both can be estimated using multilevel modelling
software/routines

Recurrent events allow better identification of the random

effect variance o2

Allow for non-proportional effects of covariate x by including
interaction between x and functions of t in D

Can allow duration and covariate effects to vary across
episodes
- Include a dummy for order of event and interact with t and x



Example: Women’s employment transitions

@ Analyse duration of non-employment (unemployed or out of
labour market) episodes

- Event is entry (1st episode) or re-entry (2nd + episodes) into
employment
@ Data are subsample from British Household Panel Study
(BHPS): 1399 women and 2284 episodes

@ Durations grouped into years = 15,297 person-year records

o Baseline hazard is step function with yearly dummies for
durations up to 9 years, then single dummy for 9+ years
o Covariates include time-varying indicators of number and age

of children, age, marital status and characteristics of previous
job (if any)



Multilevel logit results for transition to employment:

Baseline hazard and unobserved heterogeneity

Variable Est. (se)

Duration non-employed (ref is < 1 year)
[1,2) years —0.646* (0.104)
[2,3) —0.934*  (0.135)
[3.4) —1.233*  (0.168)
[4,5) —1.099% (0.184)
[5.6) —0.944%  (0.195)
[6,7) —1.011%  (0.215)
[7.8) —1.238%  (0.249)
[8,9) —1.330%  (0.274)
> 9 years —1.785* (0.175)

oy (SD of woman random effect) 0.662*  (0.090)

*p<05



Multilevel logit results for transition to employment:
Presence and age of children

Variable Est. (se)
Imminent birth (within 1 year) —0.842*%  (0.125)
No. children age < 5 yrs (ref=0)
1 child —0.212%  (0.097)
> 2 —0.346%  (0.143)
No. children age > 5 yrs (ref=0)
1 child 0251  (0.118)
>2 0.446*  (0.117)

*p <05



Multilevel logit analysis of employment:

Main conclusions

Unobserved heterogeneity. Significant variation between
women. Deviance = 23.5 on 1 df; p<0.01

Duration effects. Probability of getting a job decreases with
duration out of employment

Presence/age of children. Probability of entering employment
lower for women who will give birth in next year or with young
children, but higher for those with older children

Other covariates. Little effect of age, but increased chance of
entering employment for women who are cohabiting, have
previously worked, whose last job was full-time, and whose
occupation is ‘professional, managerial or technical’



Grouping time intervals

When we move to more complex models, a potential problem with
the discrete-time approach is that the person-period file can be
very large (depending on sample size and length of the observation
period relative to the width of discrete-time intervals).

It may be possible to group time intervals, e.g. using 6-month
rather than monthly intervals.

BUT we must assume the hazard and values of covariates are
constant within grouped intervals.



Analysing grouped intervals

If we have grouped time intervals, we need to allow for different
lengths of exposure time within these intervals.

e.g. for any 6-month interval some individuals will have the event
or be censored after the 1st month while others will be exposed for
the full 6 months.

Denote by n;j; the exposure time in grouped interval t of episode /
for individual j . (Note: Intervals do not need to be the same
width.)

Fit binomial logit model for grouped binary data, with response y;;;
and denominator ny; (e.g. using the binomial() option in the
Stata xtmelogit command)



Example of grouped time intervals

Suppose an individual is observed to have an event during the 17th
month of exposure, and we group durations into six-month
intervals (t). Instead of 17 monthly records we would have three
six-monthly records:

Jot NG Vi
1 1 1 6 0
1 1 2 6 0
1 1 3 5 1




Software for Recurrent Events

o Essentially multilevel models for binary responses

@ Mainstream software: e.g. Stata (xtlogit), SAS (PROC
NLMIXED)

@ Specialist multilevel modelling software: e.g. MLwiN (also via
runmlwin in Stata), SABRE, aML



3. Modelling transitions between
multiple states
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States in Event Histories

In the models considered so far, there is a single event (or
transition) of interest. We model the duration to this event from
the point at which an individual becomes “at risk”. We can think
of this as the duration spent in the same state.

Eg.
@ In the analysis of transitions into employment we model the
duration in the non-employment state

@ In a study of marital dissolution we model the duration in the
marriage state

More generally, we may wish to model transitions in the other
direction (e.g. into non-employment or marriage formation) and
possibly other transitions.



Examples of Multiple States

Usually individuals will move in and out of different states over
time, and we wish to model these transitions.

Examples:
@ Employment states: employed full-time, employed part-time,
unemployed, out of the labour market
@ Partnership states: marriage, cohabitation, single (not in
co-residential union)

We will begin with models for transitions between two states, e.g.
non-employment (NE) <+ employment (E)



Transition Probabilities for Two States

Suppose there are two states indexed by s (s = 1,2), and Sy
indicates the state occupied by individual j during interval t of
episode /.

Denote by y;;; a binary variable indicating whether any transition
has occurred during interval t, i.e. from state 1 to 2 or from state
2 to 1.

The probability of a transition from state s during interval t, given
that no transition has occurred before the start of t is:

pstij = Pr(yej = 1|ye—1,j = 0, Stij = s), s=1,2

Call pstjj a transition probability or discrete-time hazard for state s.



Event History Model for Transitions between 2 States

Multilevel two-state logit model:

Dstii
log (]_stu) = Oésttij + ﬁsxstij + usj,
— Pstij

Pstij is the probability of a transition from state s during interval t

D.:jj is a vector of functions of cumulative duration in state s by
interval t with coefficients s

Xstjj @ vector of covariates affecting the transition from state s with
coefficients s

usj allows for unobserved heterogeneity between individuals in their
probability of moving from state s. Assume u; = (uyj, tpj) ~
bivariate normal.



Random Effect Covariance in a Two-State Model

We assume the state-specific random effects wug; follow a bivariate
normal distribution to allow for correlation between the
unmeasured time-invariant influences on each transition.

For example, a highly employable person may have a low chance of
leaving employment and a high chance of entering employment,
leading to cov(uyj, uaj) < 0.

Allowing for cov(uyj, upj) # 0 means that the equations for states
s = 1,2 must be estimated jointly. Estimating equations separately
assumes that cov(uyj, up;) = 0.



Data Structure for Two-State Model (1)
Start with an episode-based file.

E.g. employment (E) <+ non-employment (NE) transitions

Jj i State; t; 05 Agej
1 1 E 3 1 16
1 2 NE 2 0 19

Note: (i) t in years; (ii) 6; = 1 if a transition (event) occurs, 0 if
censored; (iii) Age in years at start of episode



Data Structure for Two-State Model (2)

Convert episode-based file to discrete-time format with one record
per interval t:

t yj Ej NE; EjAge; NE;Age;
1 0 1 0 16 0
2 0 1 0 16 0
3 1 1 0 16 0
1 0 O 1 19
2 0 0 1 0 19

Note: E; a dummy for employment, NE;; a dummy for
non-employment.



Example: Non-Employment <+ Employment
o corr(uyj, upj)=0.59, se=0.13, so large positive residual

correlation between E — NE and NE — E

- Women with high chance of entering E tend to have a high
chance of leaving E

- Women with low chance of entering E tend to have a low
chance of leaving E

@ Positive correlation arises from two sub-groups: short spells of
E and NE, and longer spells of both types



Comparison of Selected Coefficients for NE — E

Only coefficients of covariates relating to employment history

change:
Single-state Multistate
Ever worked 2.936 2.677
Previous job part-time —0.441 —0.460

So positive effect of ‘ever worked' has weakened, and negative
effect of ‘part-time’ has strengthened.



Why Decrease in Effect of ‘Ever Worked’ on NE — E?

Direction of change from single-state to multistate (2.936 to
2.677) is in line with positive corr(uyj, upj) in multistate model.

@ Women in ‘ever worked' must have made E — NE transition

@ Positive correlation between E — NE and NE — E leads to
disproportionate presence of women with high NE — E rate
among ‘ever worked’

@ These women push up odds of NE — E among ‘ever worked'’
(inflating estimate) if residual correlation uncontrolled



Why Increase in Effect of Previous Part-Time Job on
NE — E?

Strengthening of negative effect when moving to the multistate
model (—0.441 to —0.460) is also in line with positive

corr(uyj, tj).

@ Women with tendency towards less stable employment (with
high rate of E — NE) selected into part-time work

o Positive correlation between E — NE and NE — E leads to
disproportionate presence of women with high NE — E rate in
‘previous PT' category

@ These women push up odds of NE — E in ‘previous PT’
(reducing ‘true’ negative effect of PT) if residual correlation
uncontrolled



Autoregressive Models for Two States

An alternative way of modelling transitions between states is to
include the lagged response as a predictor rather than the duration
in the current state.

The response y;;; now indicates the state occupied at the start of
interval t rather than whether a transition has occurred, i.e.

- 1 ifinstatel
Y=\ 0 ifin state 2



1st Order Autoregressive Model

An AR(1) model for the probability that individual j is in state 1 at
t, ptj is:

log (ptj > = a+ Bxy + Y1)+ U
1—py

« is an intercept term

v is the effect of the state occupied at t — 1 on the log-odds of
being in state 1 at ¢t

uj ~ N(0,02) is an individual-specific random effect



Interpretation of AR(1) Model

Suppose states are employment and unemployment. Common to
find those who have been unemployed in the past are more likely to
be unemployed in the future. Three potential explanations:

@ A causal effect of unemployment at t — 1 on being
unemployed at t (state dependence )

@ Unobserved heterogeneity, i.e. unmeasured individual
characteristics affecting unemployment probability at all ¢
(stable traits uj)

o Non-stationarity, e.g. seasonality (not in current model)

The AR(1) model is commonly referred to as a state dependence
model.



Transition Probabilities from the AR(1) Model

We model p;j = Pr(state 1 at start of interval t) = Pr(y; = 1)

Suppose we fix x;; = 0 and u; = 0.

Probability of moving from state 1 to 2

Pr()’tj = 0’)/t—1,j =1) = 1- Pr()/tj = 1\)’t—1,j =1)
— 1 _ _explaty)
1+exp(aty)

Probability of moving from state 2 to 1

exp(a)

Pr(yf{l - 1|.yt_]-aj = 0) = l—i—exp(a)
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Initial Conditions (1)

y may not be measured at the start of the process, e.g. we may
not have entire employment histories.

Can view as a missing data problem. Suppose we observe y at the
start of T intervals:

Observed Oy, y1)
Actual (y—ku"'ay()ayla"'ay—r)

where first kK + 1 measures are missing.

We need to specify a model for y; (not just condition on y1).



Initial Conditions (2)

In a random effects framework, we can specify a model for y;; and

estimate jointly with the model for (y»j,...,y7j), e.g.
|Ogit(p1j) = a1+ ,31Xt1j + )\uj-
logit(pyj) = o+ Bixy +VYe-1;+ uj, t>1

Variants on the above are to set A = 1 or to include different
random effect in equation for t =1, e.g. vy, and allow for
correlation with u; in equation for t > 1.

The inclusion of A\ allows the between-individual residual variance
to differ for t =1 and t > 1.



Key Features of the AR(1) Model

o All relevant information about the process up to t is captured
by y:—1 (1st order Markov assumption). This is why duration
effects are not included.

@ Because of the 1st order Markov assumption, there is no
concept of an ‘episode’ (which is why we drop the i subscript)

o Effects of x (and time-invariant characteristics u;) are the
same for transitions from state 1 to 2, and from state 2 to 1

- But it is straightforward to allow for transition-specific effects
by interacting x with y;_1



Which Model?

Consider AR(1) model when:
@ Interested in separation of causal effect of y; 1 on y; from
unobserved heterogeneity
@ Frequent movement between states (high transition
probabilities)
@ Duration in state at t = 1 is unknown, e.g. in panel data

Consider duration model when:
@ Expect duration in state to have an effect on chance of
transition
@ More stable processes with long periods in the same state
(low transition probabilities)
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Software for Multiple States

@ Two-state duration model can be framed as a multilevel
random coefficients model

- Coefficients for the two state dummies are intercepts which
vary randomly across individuals to give random effects for
each state

- Software options as for one-state recurrent events model, but
using xtmelogit in Stata

@ Autoregressive model (with equation for t = 1) can also be
fitted as a random coefficient model, but more general models
(e.g. allowing different residual variances for t =1 and t > 1)
require specialist software such as Sabre and aML



4. Competing risks
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More than Two states

In general there may be multiple states, possibly with different
destinations from each state. E.g. consider transitions between
marriage (M), cohabitation (C) and single (S).

/'S\.C etc.
\C/M
\S Note that censoring can

occur in any state, at which
point no further transitions

/S are observed.
/ M\%C
C



Competing risks

We will begin with the special case where we are interested in
transitions from one origin state, but there is more than one
destination or type of transition.

Assume these destinations are mutually exclusive. We call these
‘competing risks'.

Origin state  Competing risks

Alive Different causes of death
Employed Sacked, redundancy, switch job, leave labour market

Single Marriage, cohabitation




Approaches to Modelling Competing Risks

Suppose there are R types of transition/event. For each interval t
(of episode i of individual j) we can define a categorical response

Yiij-

0 if noeventint
Yiij = . .
r ifeventof typerint (r=1,...,R)

Analysis approaches

1. Multinomial model for y;;;

2. Define binary response yt(ijr-) for event type r, treating all other

types of event as censored. Analyse using multivariate
response model



Multinomial Logit Model

Define pgu) = Pr(ysj = rlys—1,=0) for r=1,..., R,

Estimate R equations contrasting event type r with ‘no event':

(r)

Prij ir r) (r r
log | g7 | =t DY) + B + uf", r=1,....R
tij
where (Ufl)a UJ(2)> cees UJ(R)) ~ multivariate normal.

Correlated random effects allows for shared unobserved risk factors.



Multivariate Binary Response Model

In the second approach to modelling competing risks we define, for
each interval t, R binary responses coded as:

(r) _ { 1 if event of type rin t
tij

0 if event of any type other than r or no event in ¢t

and estimate equations for each event type:

p’ r r r r
log tj(r) = ()D§U)+B()§U)+u() r=1,...,R
= o
where (ugl), u(2), e uJ(R)) ~ multivariate normal.



Logic Behind Treating Other Events as Censored

Suppose we are interested in modelling partnership formation,
where an episode in the ‘single’ state can end in marriage or
cohabitation.

For each single episode we can think of durations to marriage and
cohabitation, t(M) and +(©).

We cannot observe both of these. If a single episode ends in
marriage, we observe only t(™M) and the duration to cohabitation is
censored at t(M). A person who marries is removed from the risk
of cohabiting (unless they become single again).

For uncensored episodes we observe min(t(M), ¢(€)).



Comparing Methods

Coefficients and random effect variances and covariances will be
different for the two models because the reference category is
different:

@ ‘No event’ in the multinomial model

- Coefficients are effects on the log-odds of an event of type r
relative to ‘no event’

@ ‘No event + any event other than r’ in the multivariate binary
model

- Coefficients are effects on the log-odds of an event of type r
relative to ‘no event of type r’

However, predicted transition probabilities will in general be similar
for the two models.



Transition Probabilities

Multinomial model

pl) = exp(a) D} +5 xi) +u")
§ A Zk:l exp(a(k) tlJ + plk) tU) +u ( ))

Multivariate binary model

) _ exp(al")D tU +5 tU ) + u(r))
(r) o, (r

tij
1+ exp(al?D{) + SO + uf"))

In each case, the ‘no event’ probability is p® =1_— Zk 1 pk),

To calculate probabilities for specific values of x, substitute
u(") = 0 or generate u(”) from multivariate normal distribution.



Example: Transitions to Full-time and Part-time Work

Selected results from bivariate model for binary responses, y(FT)

and y(PT)

NE — FT NE — PT
Variable Est (se) Est (se)
Imminent birth —1.19% (0.18) —0.26 (0.15)
1 kid < 5 ~127*% (0.15)  0.60* (0.12)
24 kids <5  —1.94* (0.27) 0.81* (0.17)
1kid > 5 —0.42* (0.19)  0.80* (0.14)
2+ kids >5  —0.26 (0.18) 1.24* (0.15)

So having kids (especially young ones) reduces chance of returning
to FT work, but increases chance of returning to PT work.



Example: Random Effect Covariance Matrix

NE — FT  NE - PT
NE — FT  1.49 (0.13)
NE — PT —0.05 (0.11) 0.98 (0.11)

Note: Parameters on diagonal are standard deviations, and the off-diagonal

parameter is the correlation. Standard errors in parentheses.

Correlation is not significant (deviance test statistic is < 1 on 1
d.f.).



Dependency between Competing Risks

@ A well-known problem with the multinomial logit model is the
‘independence of irrelevant alternatives’ (IlA) assumption

@ In the context of competing risks, IIA implies that the
probability of one event relative to ‘no event’ is independent
of the probabilities of each of the other events relative to ‘no
event'

@ This may be unreasonable if some types of event can be
regarded as similar

@ Note that the multivariate binary model makes the same
assumption



Dependency between Competing Risks: Example

Suppose we wish to study partnership formation: transitions from
single (S) to marriage (M) or to cohabitation (C).

@ Under IIA, assume probability of C vs. S is uncorrelated with
probability of M vs. S

o E.g. if there is something unobserved (not in x) that made M
infeasible, we assume those who would have married distribute
themselves between C and S in the same proportions as those
who originally chose not to marry

@ But as M and C are similar, we might expect those who are
precluded from marriage to be more likely to cohabit rather
than remain single (Hill, Axinn and Thornton, 1993,
Sociological Methodology)



Relaxing the Independence Assumption

@ Including individual-specific random effects allows for
dependence due to time-invariant individual characteristics
(e.g. attitudes towards marriage/cohabitation)

@ But it does not allow for unmeasured factors that vary across
episodes (e.g. marriage is not an option if respondent or their
partner is already married)



Modelling Transitions between More than 2 States

So far we have considered (i) transitions between two states, and
(ii) transitions from a single state with multiple destinations.

We can bring these together in a general model, allowing for
different destinations from each state.

Example: partnership transitions
e Formation: S - M, S — C
@ Conversion of C to M (same partner)

@ Dissolution: M — S, C — S (or straight to new partnership)

Estimate 5 equations simultaneously (with correlated random
effects)



Example of Multiple States with Competing Risks

o Contraceptive use dynamics in Indonesia. Define episode of
use as continuous period of using same method of
contraception

- 2 states: use and nonuse
- Episode of use can end in 2 ways: discontinuation (transition
to nonuse), or method switch (transition within ‘use’ state)

o Estimate 3 equations jointly: binary logit for nonuse — use,
and multinomial logit for transitions from use

@ Details in Steele et al. (2004) Statistical Modelling



Selected Results: Coefficients and SEs

Use — nonuse Use — new method Nonuse — use
(Discontinuation)  (Method switch)
Urban 0.13 (0.04) 0.06 (0.05) 0.26 (0.04)
SES
Medium —0.12 (0.05) 0.35 (0.07) 0.24 (0.05)

High —0.20 (0.05) 029 (0.08) 0.45 (0.05)




Random Effect Correlations from Alternative Models

Discontinuation Method switch  Nonuse — use

Discontinuation

Method switch

Nonuse — use

1

0.020 1

0.011
—0.783* 0.165* 1
—0.052 0.095

Model 1: Duration effects only
Model 2: Duration + covariate effects

*Correlation significantly different from zero at 5% level



Random Effect Correlations: Interpretation

@ In ‘duration effects only’ model, there is a large negative
correlation between random effects for nonuse — use and use
— nonuse

- Long durations of use associated with short durations of
nonuse

@ This is due to short episodes of postnatal nonuse followed by
long episodes of use (to space or limit future births)
- Correlation is effectively zero when we control for whether
episode of nonuse follows a live birth (one of the covariates)



Software for Competing Risks

o Multivariate binary response model can be framed as a
multilevel random coefficients model

- Coefficients for the response dummies are intercepts which
vary randomly across individuals to give random effects for
each type of event

- Software options as for one-state recurrent events model, but
using xtmelogit in Stata

@ Multinomial model cannot currently be fitted in Stata (apart
from via runmlwin). Other options include SAS (PROC
NLMIXED), MLwiN and aML



5. Multiprocess models
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Endogeneity in a 2-Level Continuous Response Model

Consider a 2-level random effects model for a continuous response:

Yij = Pxij + uj + €

where x;; is a set of covariates with coefficients /3, u; is the level 2
random effect (residual) ~ N(0,02) and e; is the level 1 residual
~ N(0,02).

One assumption of the model is that x;; is uncorrelated with both
uj and ejj, i.e. we assume that x;; is exogenous.

This may be too strong an assumption. If unmeasured variables
affecting y;; also affect one or more covariates, then those
covariates will be endogenous.



2-Level Endogeneity: Example

Suppose y;; is birth weight of child i/ of woman j, and zj; is the
number of antenatal visits during pregnancy (an element of x;;).

Some of the factors that influence birth weight may also influence
uptake of antenatal care; these may be characteristics of the
particular pregnancy (e.g. woman'’s health during pregnancy) or of
the woman (health-related attitudes/behaviour). Some of these
may be unobserved.

i.e. y and z are to some extent jointly determined, and z is
endogenous.

This will lead to correlation between z and v and/or e and, if
ignored, a biased estimate of the coefficient of z and possibly
covariates correlated with z.



lllustration of Impact of Endogeneity at Level 1

Suppose the ‘true’ effect of z;; on y;; is positive, i.e. more
antenatal visits is associated with a higher birth weight.

Suppose that w;; is ‘difficulty of pregnancy’. We would expect
corr(w,y) < 0, and corr(w, z) > 0.

If w is unmeasured it is absorbed into e, leading to corr(z, e) < 0.

If we ignore corr(z, e) < 0, the estimated effect of z on y will be
biased downwards.

The disproportionate presence of high w women among those
getting more antenatal care (high z) suppresses the positive effect
of z on y.



lllustration of Impact of Endogeneity at Level 2

As before, suppose the ‘true’ effect of z on y is positive, i.e. more
antenatal visits is associated with a higher birth weight.

Suppose that w; is ‘healthcare knowledge’ which is constant across
the observation period. We would expect corr(w,y) > 0, and
corr(w, z) > 0.

If w is unmeasured it is absorbed into u, leading to corr(z, u) > 0.

Question: What effect would ignoring corr(z, u) > 0 have on the
estimated effect of z on y?



Handling Endogeneity in a Single-Level Model

To fix ideas, we will start with the simplest case: outcome y and
endogenous predictor z both continuous.

E.g. y; birth weight of last born child of woman i, z; number of
antenatal visits.

We specify a simultaneous equations model (SEM) for z and y:
Z = Bzxf = e,-z
yi = P'x +qzi+¢

where x# and x! are exogenous covariates (assumed to be
uncorrelated with e and &).



Estimation

If corr(e?, e’) = 0, OLS of the equation for y; is optimal.

Endogeneity of z; will lead to corr(e?, e’) # 0 and an alternative

estimation procedure is required. The most widely used approaches
are:

@ 2-stage least squares (2SLS)

@ Joint estimation of equations for z and y (Full Information
Maximum Likelihood, FIML)



Estimation: 2-Stage Least Squares

1. OLS estimation of equation for z; and compute z; = [g’zxf
2. OLS estimation of equation for y; replacing z; by prediction Z;

3. Adjust standard errors in (2) to allow for uncertainty in
estimation of Z;

Idea: 2; is ‘purged’ of the correlated unobservables e, so Z;
uncorrelated with e’



Estimation: FIML

Treat z; and y; as a bivariate response and estimate equations
jointly.

Usually assume e7 and e,?’ follow a bivariate normal distribution
with correlation pg”.

o Can be estimated in a number of software packages (e.g.
mvreg in Stata or Sabre)

@ Sign of p2 signals direction of bias

o Generalises to mixed response types (e.g. binary z and
duration y)

@ Generalises to clustered data (multilevel multivariate model)



Testing for Exogeneity of z

To test the null hypothesis that z is exogenous:

2SLS
Estimate y; = 8Yx) + vz + 687 + e via OLS

where &7 is the estimated residual from fitting the 1st stage
equation for z;

Test Hp : § = 0 using t (or Z) test.

FIML

Jointly estimate equations for z; and y; to get estimate of residual
correlation pg”.

Test Hg : p& = 0 using likelihood ratio test.
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Identification

Whatever estimation approach is used, identification of the
simultaneous equations model for z and y requires covariate
exclusion restrictions.

x7 should contain at least one variable that is not in xf./.

In our birth weight example, need to find variable(s) that predict
antenatal visits (z) but not birth weight (y).

Call such variables instruments.

Note: The term ‘IV estimation’ is commonly used interchangeably
with 2SLS, but both methods require instruments.



Requirements of an Instrument (1)

Need to be able to justify, on theoretical grounds, that the
instrument affects z but not y (after controlling for z and other
covariates).

E.g. indicator of access to antenatal care may be suitable
instrument for no. visits, but only if services are allocated

randomly (rare). Instruments can be very difficult to find.

If there is > 1 instrument, the model is said to be over-identified.



Requirements of an Instrument (1)

Testing over-identifying restrictions
Instruments should not affect y after controlling for z.

Fit the SEM with all but one instrument in the equation for y and
carry out a joint significance test of the included instruments. If the
restrictions are valid, they should not have significant effects on y.

Instruments should be correlated with z
Carry out joint significance test of effects of instruments on z.

Also check how well instruments (together with other covariates)
predict z. Bollen et al. (1995) suggest a simple probit for y is
preferred if R? < 0.1.
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Effect of Fertility Desires on Contraceptive Use (1)

Reference: Bollen, Guilkey and Mroz (1995), Demography.

Interested in the impact of number of additional children desired
(z, continuous) on use of contraception (y, binary).

Unmeasured variable affecting both z and y could be ‘perceived
fecundity’.

Women who believe they have low chance of having a(nother)
child may lower fertility desires and not use contraception —
corr(e?, el’) > 0.



Effect of Fertility Desires on Contraceptive Use (2)

Expect ‘true’ effect of fertility desires (z) on contraceptive use (y)
to be negative.

o If residual correlation ignored, negative effect of z on y will be
understated (may even estimate a positive effect)

o Estimated effects of covariates correlated with z also biased
(e.g. whether heard family planning message)



Effect of Fertility Desires on Contraceptive Use (3)

Cross-sectional data: z and y refer to time of survey.
Use 2SLS: OLS for z equation, probit for y.

Instruments: Indicators of health care facilities in community when
woman was age 20 (supplementary data).

Results:
@ Residual correlation estimated as 0.07

@ Stronger negative effect of z after allowing for endogeneity
(changes from —0.17 to —0.28), but large increase in SE

o But fail to reject null that z is exogenous, so simple probit for
contraceptive use is preferred



Handling Endogeneity in a Multilevel Model

Let's return to the multilevel case with y;; the birth weight of child
i of woman j, zjj number of antenatal visits.

We specify a multilevel simultaneous equations (multiprocess)
model for z and y:

oo — ZyZ z z
zy = P'xi+ul tef

yi = B'x;+vzi+ul +ef

where ujZ and uj-' are normally distributed woman-level random

effects, and x7 and xf-;- are exogenous covariates (assumed to be

Y

o z z y
uncorrelated with uf, ui, e; and &)



Estimation

If corr(uf, u') = 0 and corr(ef, e};) = 0, the equation for yj can be

estimated as a standard multilevel model.

However, endogeneity of z; will lead to corr(ujz, ujy) %0 or
corr(ef, e;;) # 0 (or both).

If zj; is endogenous we need to estimate equations for z and y
jointly.

In the most general model, we assume (uJ-Z, ujy) ~ bivariate normal
and (e,j, e,?}) ~ bivariate normal. The SEM is a multilevel bivariate

response model.



Identification (1)

Identification of the full multilevel SEM for z and y, with
corr(u? ) # 0 and corr(e? # 0, requires covariate exclusion
restrlctlons

<)

x? should contain at least one variable (an instrument) that is not

i 4
In XU

e.g. need to find variable(s) that predict antenatal visits (z) but
not birth weight (y).

Call such variables instruments.

BUT if one of the residual covariances is assumed equal to zero,
covariate exclusions are not strictly necessary for identification.



Identification (2)

Suppose we are prepared to assume that endogeneity of z is due to
a residual correlation at the woman level but not at the pregnancy
level, i.e

&) —
corr(uf ) # 0 but corr(ef, e;;) = 0.

We are then assuming that bias in the estimated effect of number
of antenatal visits on birth weight is due to selection on
unmeasured maternal characteristics that are fixed across
pregnancies.



Identification (3)

Given the difficulty in finding instruments, allowing only for
selection on time-invariant unobservables (in a longitudinal design)
is a common identification strategy BUT:

@ It does not allow for selection on time-varying unobservables
so some bias may be remain

@ Some within-individual variation in z and y is required because
we are estimating the effect of a change in z on y for a given
woman (i.e. conditioning on woman-specific unobservables)



Allowing for Endogeneity in an Event History Model

Suppose that y;; is the duration of episode / of individual j and z;
is an endogenous variable. We first consider case where z is
continuous and measured at the episode level.

We can extend our earlier recurrent events model to a SEM:

Zij = Bzxz'i_ujz"_ez
Iog(lp;’;m> = oDy + B¥x}; + vz + uf

tij

where py;; is the probab|||ty of an event during interval t, ayDtU is
the baseline hazard, and x . a vector of exogenous covariates.

We assume (u7, y) ~ bivariate normal, i.e. we allow for selection
on tlme—mvarlant |nd|V|dua| characteristics.



Examples of Multilevel SEM for Event History Data

More generally z can be categorical and can be defined at any level
(e.g. time-varying or a time-invariant individual characteristic).

We will consider two published examples before returning to our
analysis of women's employment transitions:

@ The effect of premarital cohabitation (z) on subsequent
marital dissolution (y)
- Lillard, Brien & Waite (1995), Demography

o The effect of access to family planning (z) on fertility (y)
- Angeles, Guilkey & Mroz (1998), Journal of the American
Statistical Association



Example 1: Premarital Cohabitation and Divorce

Couples who live together before marriage appear to have an
increased risk of divorce.

Is this a ‘causal’ effect of premarital cohabitation or due to
self-selection of more divorce-prone individuals into premarital
cohabitation?

The analysis uses longitudinal data so observe women in multiple
marriages (episodes). For each marriage define 2 equations:

@ A probit model for premarital cohabitation (z)
@ A (continuous-time) event history model for marital
dissolution (y)

Each equation has a woman-specific random effect, u? and u”,
which are allowed to be correlated



Premarital Cohabitation and Divorce: ldentification

Lillard et al. argue that exclusion restrictions are unnecessary
because of ‘within-person replication’.

Nevertheless they include some variables in the cohabitation
equation that are not in the dissolution equation:

@ Education level of woman's parents
@ Rental prices and median home value in state

@ Sex ratio (indicator of ‘marriageable men/women’)

They examine the robustness of their conclusions to omitting these
variables from the model.



Premarital Cohabitation and Divorce: Results (1)

Correlation between woman-specific random effects for
cohabitation and dissolution estimated as 0.36.

Test statistic from a likelihood ratio test of the null hypothesis that
corr(u?, uJy) = 0is 4.6 on 1 d.f. which is significant at the 5% level.

“There are unobserved differences across individuals which make
those who are most likely to cohabit before any marriage also most
likely to end any marriage they enter.”



Premarital Cohabitation and Divorce: Results (2)

What is the impact of ignoring this residual correlation, and
assuming premarital cohabitation is exogenous?

Estimated effect of cohabitation on log-hazard of dissolution

0.37 and strongly significant if corr(ujz, ujy) = 0 assumed

-0.01 and non-significant if corr(ujz, ujy) allowed to be non-zero

Conclude that, after allowing for selection, there is no association
between premarital cohabitation and marital dissolution.



Example 2: Access to Family Planning and Fertility

Does availability of family planning (FP) services lead to a
reduction in fertility in Tanzania?

Problem: FP clinics are unlikely to be placed at random. They are
likely to be targeted towards areas of greatest need, the type of
area with high fertility.

Question: If true impact of access to FP is to increase birth
spacing, how will ignoring targeted placement affect estimates of
the impact?



Data and Measures

Birth histories collected retrospectively in 1992. Women nested
within communities, so have a 3-level structure: births (level 1),
women (level 2), communities (level 3).

Constructed woman-year file for period 1970-1991 with y;;;=1 if
woman / in community j gave birth in year t. (Could have extra
subscript for birth interval as we model duration since last birth.)

Community survey on services conducted in 1994. Construct
indicators of distance to hospital, health centre etc. in year t, z;.
Time-varying indicators derived from information on timing of
facility placement.



Multiprocess Model for Programme Placement and
Fertility

The model consists of 4 equations:

@ Discrete-time event history model for probability of a birth in
year t with woman and community random effects

o Logit models for placement of 3 types of FP facility in
community j in year t with community random effects

Allow for correlation between community random effects for
fertility and FP clinic placement.

Rather than assume normality, the random effects distribution is
approximated by a step function using a ‘discrete factor’ method.



Programme Placement and Fertility: Identification

The following time-varying variables are included in the FP
placement equations but not the fertility equation:

o National government expenditure on health
@ Regional government expenditure on health

o District population as fraction of national population

These are based on time series data at the national, regional and
community levels.



Programme Placement and Fertility: Findings

@ From simple analysis (ignoring endogeneity of programme
placement) find hospitals have more impact on reducing
fertility than health centres

o But this analysis overstates impact of hospitals and
understates effects of health centres

@ Controlling for endogenous programme placement reveals that
health centres have more impact than hospitals

@ After controlling for endogenity, impact of FP facilities was
45% larger than in simpler analysis



Modelling Correlated Event Processes

Now suppose that z;; is a time-varying endogenous predictor.

z4jj is often the outcome of a related event process.

Example: Marital dissolution and fertility

yjj is duration of marriage / of woman j

z4jj is number of children from marriage i of woman j at time t,
the outcome of the birth history by t

See Lillard (1993) and Lillard & Waite (1993).



Multiprocess Model SEM for 2 Interdependent Events

Simultaneous discrete-time event history equations:

Iogit(pf,-j) = oDy + ﬁzxtu + u?
Iogit(p)t/ij) — ayD}t/U + Byxtu + vz + u

We assume (uJ u; ) ~ bivariate normal, i.e. we allow for selection
on time-invariant individual characteristics.

The model can be extended to include outcomes of the y process
in the model for z.



Example: Marital Dissolution and Fertility

Lillard’s model has 2 (continuous-time) event history equations for:

@ hazard of conception (leading to a live birth) at time t of
marriage i of woman j

@ hazard that marriage / of woman j ends at time t

Consider dummies for z;;, the number of children from marriage /,
in dissolution equation.



Marital Dissolution and Fertility: Results (1)

Lillard (1993) finds that the residual correlation between hazard of
dissolution and hazard of a conception is estimated as —0.75
(se=0.20).

= women with a below-average risk of dissolution (ujy < 0) tend
to have an above-average chance of a marital conception (uf > 0).

= selection of women with a low dissolution risk into having
children.

Question: If the ‘true’ effect of having children is to reduce the risk
of dissolution, what impact would this type of selection have on
estimates of this effect?



Marital Dissolution and Fertility: Results (2)

Estimated effects (SE) of number of children from current
marriage on log-hazard of dissolution before and after accounting
for residual correlation:

# children Before After

0 (ref) 0 0

1 —-0.56 (0.10) —-0.33 (0.11)
2+ —0.01 (0.05) 0.27 (0.07)

Selection of low dissolution risk women into categories 1 and 2+



Other Examples of Correlated Event Histories

Employment transitions and fertility (next example)
Partnership formation and employment

Residential mobility and fertility

Residential mobility and employment

Residential mobility and partnership formation/dissolution



Multiprocess Model for Entry into Employment and
Fertility (1)

At the start of the course (and in computer exercises) we fitted
multilevel models for the transition from non-employment (NE) to
employment (E) among British women.

Among the covariates was a set of time-varying fertility indicators:

@ Due to give birth within next year
@ Number of children aged < 5 years
@ Number of children aged > 5 years

These are outcomes of the fertility process which might be jointly
determined with employment transitions.



Multiprocess Model for Entry into Employment and
Fertility (2)

Denote by yt,’\-J’-E and yﬁj binary indicators for leaving
non-employment and giving birth during year t.

Estimate 2 simultaneous equations (both with woman-specific
random effects):

@ Discrete-time logit for probability of a birth

o Discrete-time logit for probability of NE — E (with fertilty
outcomes as predictors)

Note: While we could model births that occur during
non-employment, it would be more natural to model the whole
birth process (in both NE and E). In the following analysis, we
consider all births.



Estimation of Multiprocess Model

We can view the discrete-time multiprocess model as a multilevel

bivariate response model for the binary responses yt,'\-J’-E and yl:?j.

o Stack the employment and birth responses into a single
response column and define an index r which indicates the
response type (e.g. r =1 for NE and r = 2 for B)

@ Define dummies for r which we call r; and r say

o Multiply 1 and r» by the covariates to be included in the NE
and B equations respectively

@ Fit woman-level random effects to r; and r» and allow to be
correlated



Entry into Employment and Fertility: Residual
Correlation

Likelihood ratio test statistic for test of null hypothesis that
corr(u JNE B)—0|580n 1d.f.

= reject the null and choose the multiprocess model.

Correlation between woman-level random effects, uj\”-E and uJB,
estimated as 0.34 (se=0.11).

The positive correlation implies that women whose unobserved
characteristics are associated with a high probability of a birth
(e.g. latent preference for childbearing) tend also to enter
employment quickly after a spell of non-employment.



Effects of Fertility Outcomes on Entry into Employment

Single process

Multiprocess

Variable Est. (se) Est. (se)
Imminent birth (within 1 year) —0.84* (0.13) —1.01* (0.14)
No. children < 5 yrs (ref=0)
1 child —0.21% (0.10) —0.35* (0.11)
> 2 —0.35* (0.14) —0.60* (0.17)
No. children > 5 yrs (ref=0)
1 child 025% (0.12) 018  (0.12)
>2 0.45% (0.12) 0.27* (0.13)
*p<05

Selection of women with high NE — E probability into categories 1 and > 2



Multiple States and Correlated Processes

We can extend the multiprocess model to include transitions
between multiple states and further correlated processes.

E.g. we could model two-way transitions between NE and E jointly
with births, leading to 3 simultaneous equations and 3 correlated
random effects.

Stack employment transition and birth responses into a single
column with a 3-category response indicator r (e.g. r=1 for
employment episodes, r=2 for non-employment episodes, r=3 for
birth intervals).

Create dummies for r and interact with covariates as for two-state
and multiprocess models.



Employment Transitions and Fertility: Random Effects
Correlation Matrix

NE — E E — NE Birth

NE — E 1
E— NE 0.62(0.12) 1
Birth 045 (0.11) 0.23(0.08) 1

Standard errors in brackets



Effects of Fertility Outcomes on Exit from Employment

Single process Multiprocess
Variable Est. (se) Est. (se)
Imminent birth (within 1 year)  2.31% (0.14)  2.23* (0.15)
No. children < 5 yrs (ref=0)

1 child 0.41* (0.10)  0.31* (0.11)
> 2 0.33 (0.17) 0.15 (0.18)
No. children > 5 yrs (ref=0)
1 child —0.35% (0.12) —034 (0.12)
> 2 —0.28* (0.12) —0.37* (0.13)
*p<05

Selection of women with high NE — E probability into categories 1 and > 2



Example: Family Disruption and Children’s Education

Research questions:

@ What is the association between disruption (due to divorce or
paternal death) and children’s education?

@ Are the effects of disruption the same across different
educational transitions?

o To what extent can the effect of divorce be explained by
selection?

- There may be unobserved factors affecting both parents’
dissolution risk and their children’s educational outcomes

Reference: Steele, Sigle-Rushton and Kravdal (2009), Demography.



Strategies for Handling Selection

Exploit longitudinal study designs

- e.g. measures of child wellbeing before divorce, measures of
parental conflict and family environment

Exploit differences across space

- compare children living in places with differences in availability
of divorce (e.g. US states)

Compare siblings

- Siblings share parents (or parent) but may have different
exposure to disruption

Multiprocess (simultaneous equations) models



SEM for Parental Divorce and Children’s Education

@ Selection equation: event history model for duration of
mother’'s marriage(s)

@ Sequential probit model for children’s educational transitions
(nested within mother)

@ Equations linked by allowing correlation between
mother-specific random effects (unmeasured maternal
characteristics)

o Estimated using aML software



Simple Conceptual Model

Observed
family
characteristics

Unobserved
characteristics
of the mother

\/

Unobserved
characteristics
of the mother

Parental
divorce

Observed
family and child
characteristics

}

Educational
attainment




Sequential Probit Model for Educational Transitions (1)

@ View educational qualifications as the result of 4 sequential
transitions:
- Compulsory to lower secondary
- Lower to higher secondary (given reached lower sec.)
- Higher secondary to Bachelor's (given higher sec.)
- Bachelor’s to postgraduate (given Bachelor’s)

o Rather like a discrete-time event history model

o Advantages:

- Allow effects of disruption to vary across transitions
- Can include children who are too young to have made all
transitions



Sequential Probit Model for Educational Transitions (2)

Transition from education level r for child i of woman j indicated

y,.S.r) =1 if child attains level r + 1 and 0 if stops at r.

yé'r)* = B0x; + 4Dz + Xy + ei(jr), r=1,...,4

ylg.r)* latent propensity underlying yij('r)

z;; potentially endogenous indicators of family disruption
x;j child and mother background characteristics

u; mother-specific random effect

elg-r) child and transition-specific residual



Unobserved Heterogeneity: Educational Transitions

Parameter Transition Estimate (SE)
Random effect loading
20 To low secondary 1 -
2@ To high secondary  1.078*  (0.041)
ple To Bachelor’s 0.864*  (0.041)
2@ To Master’s + 0.584*  (0.077)
Standard deviation &, 0.498*  (0.014)

*Significant at 1% level, Constrained to equal 1

Effect of mother-level unobservables less important for later

transitions.



Evidence for Selection

@ Residual correlation between dissolution risk and probability of
continuing in education estimated as -0.43 (se=0.02)

@ Suggests mothers with above-average risk of divorce tend to
have children with below-average chance of remaining
education

o Note that we are controlling only for selection on
unobservables at the mother level (i.e. fixed across time)



Effects of Disruption on Transitions in Secondary School

Compulsory to Lower to higher
lower secondary secondary
Model 1 Model 2 Model 1 Model 2
(I)m': O) (l)ll‘.' £ O) (I)m' = O) (l)n‘.' £ O)
Parents separated | -0.580* -0.349* -0.631* -0.386*
Age at separation 0.019* 0.013* 0.018* 0.013*
Father died -0.201* -0.178% -0.318* -0.295%
Female 0.217* 0.217* 0.318* 0.320%
Female <separation | 0.034 0.034 0.005 0.003
Female ~father died |-0.126 -0.125 0.107 0.110

*Significant at 1% level



Predicted Probabilities of Continuing Beyond Lower
Secondary (Before and After Allowing for Selection)

S, on [ Before B After

No Father's Divorce age Divorce age Divorce age Divorce age
disruption death 0 5 10 15
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Software for multiprocess modelling

Stata
- Responses of same type only: continuous (xtmixed) or binary
(xtmelogit)
- Can handle multiple processes in theory, but slow
MLwiN (and runmlwin in Stata)
- Designed for multilevel modelling; multiple levels
- Handles mixtures of continuous and binary responses
- Markov chain Monte Carlo estimation

Sabre

- Developed for analysis of recurrent events
- Handles mixtures of response types; up to 3 processes; 2 levels

aML

- Designed specifically for multilevel multiprocess modelling
- Mixtures of response types; multiple processes and levels



Further Reading
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