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Preface: Background and Acknowledgments   
  
The starting point for this scoping study was two reports to the Department for Education and 
Skills. We refer to them in the current report and their contents must be regarded as pre-requisite 
reading. The first, which we shall refer to as ‘Report 1: Vignoles’ (Vignoles et al (2000)), 
reviewed existing research on the relationship between resource allocation and pupil attainment. 
It was felt that a wide variety of previous studies which failed to demonstrate such relationships 
(Hanushek, 1997) may suffer from methodological deficiencies. Two of these were addressed to 
some extent in a second report, where the outcome was attainment at Key Stage 3, and which we 
shall call ‘Report 2: Levačić’ (Levačić et al (2005)). Firstly, previous evidence had often rested 
on data aggregated to too high a level. What might be required was structured data from 
individual pupils in schools and higher level unit contexts.  Secondly, statistical modelling often 
did not recognise the endogeneity of the resource variable. This is the process whereby some of 
the same factors affecting resources also affect achievement leading to a mutual intertwined 
dependence. The approaches to these issues were also extended to GCSE outcomes in a follow 
up report (Jenkins et al (2006).  This issue of endogeneity in these contexts has also been 
discussed by Mayston (2002). 
 
The aim of this report is to scope the possibilities for extending the specification of the 
educational production functions for Key Stage 3 outcomes to encompass area of residence 
effects of pupils in addition to their school contexts. Not only are pupils nested in schools which 
they attend inducing intra-school correlations but they also are clustered hierarchically by 
geographical areas in which they live and this must be accounted for. Further if there is variation 
in outcomes due to net area effects over and above other effects including resources it is 
important that there is adequate control for these in well specified models (Fielding 2005)). 
Gibbons (2002) considers that there are such real effects which though relatively small may 
impact on education production functions.  
 
The approach will consider the potentialities of the use of multilevel cross-classified random 
effects models as a framework for these extensions. In some senses it further elaborates by 
incorporating crossed area effects in  a multilevel  model framework for school clustering 
suggested but not fully discussed in  ‘Report 2: Levačić’. The latter idea has, however, been 
more fully discussed in Steele et al (2006).  The present report and a companion review of 
complex multilevel models, ‘Report 3: CC Review’ (Fielding (2005)), have been written by 
Antony Fielding (University of Birmingham, Department of Economics). However large parts 
of the discussion, in particular that of the experimental trial results, have been informed directly 
by work undertaken by our consultants. These are Professor Harvey Goldstein, Dr Fiona Steele 
(both of  Centre for Multilevel Modelling, Institute of Education, University of  Bristol), Dr 
William Browne (University of Nottingham, School of Mathematical Sciences), Dr Alastair 
Leyland ( MRC Public Health Unit, University of Glasgow), and Dr Neil Spencer (University of 
Hertfordshire Business School). Mr Ian Davison (School of Education, University of 
Birmingham) worked on some of the investigative analyses forming the basis of Section 3 and 
Appendix 1. He also undertook some literature searches in connection with the review. The 
whole project has been jointly directed by Antony Fielding and Professor Hywel Thomas 
(School of Education, University of Birmingham). Professor Thomas has been a constant 
facilitator. We have also benefited from airing some of the problems arising in free ranging 
academic discussion at the monthly meeting of Fellows and Staff at the Centre for Multilevel 
Modelling, which includes many of our consultants and the writer.  
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1  Introduction  
 
Using data from the Pupil Level Annual Census merged with data on schools and characteristics 
of social environment from other sources, ‘Report 2: Levačić’ considered handling the issues of 
endogeneity of resources and disaggregated child level data through a detailed empirical 
exercise. Generally this was able to show that once these two particular issues were addressed 
then the effect of resources was somewhat more evident than might previously have been 
thought. Two approaches were used. The bulk of the analyses rested on the first: Instrumental 
Variable (IV) estimation. This is a well known approach to endogeneity in the econometrics 
literature. It was further adapted  to the clustered structure of the data whereby pupils are 
hierarchically arranged in  secondary schools which are in turn nested within Local Education 
Authorities (LEA). Robust standard error estimation was incorporated. It is well known that 
unless this form of estimation is used the clustered structure of the data will overstate precision 
of results leading to poorer inferences. Apart from tables of results, little detail was given in the 
report of the use of the second approach; explicitly specified multilevel models to handle the 
data structure. However, it has been subsequently been reported more fully by Steele et al 
(2006). 
 
In this approach an additional feature to handle resource endogeneity was by specifying linked 
simultaneous equations for both resources and achievement. Taking these features together this 
approach leads to what is referred to as multiprocess multilevel modelling.  It will become 
apparent in what follows that this is our preferred approach to analysis and estimation of 
education production functions involved.  
 
The previous models used, however, have been estimated recognising only a relatively simple 
one-way hierarchical structure with pupils nested within schools which were themselves nested 
within LEAs.  As such they do not explicitly consider the possibility that the areas within which 
a pupils lives will also impact on their attainment. The inclusion of area effects using an 
additional geographical residence hierarchy may improve the specification and evaluation of 
other net effects in the educational production functions including school resource effects. 
Goldstein (2003) and ‘Report 3: CC Review’ discuss more fully the methodolological reasoning 
behind this. Such an extension will also allow assessment of the importance of net  effects of 
residence area and then may give background insight into the relative importance of area based 
initiatives relative to school based ones. Thus this report, using KS3 outcomes will scope the 
possibilities of using a cross-classified multilevel modelling approach in various ways indicated 
below. It will also consider alternative ways of handling the endogeneity of resources issue 
within this general framework. 
 
As a product of the research for ‘Report 2: Levačić’ the final database was made available for 
the present scoping report. The general aim of this scoping was to investigate to what extent the 
model of production functions used could have a further extended specification to include 
effects not only of school and LEA but also of areas in which the pupils lived.  Since such 
models are likely to have more complex features a main aim was to investigate the feasibility of 
applying existing methodology and software to handle them. This feasibility may also be 
affected by the large size of the overall set of data and the range of definitions of area possible. 
Area of residence identifiers are available in the dataset provided to us in the form of a hierarchy 
of postcodes, census output area, ward, and local authority districts. This is a separate hierarchy 
from the educational one of schools and LEAs. The cross-cutting of these hierarchies is thus 
more complex to analyse than strictly hierarchical structures and must be handled by models and 
methods of analysis appropriate for cross-classified multilevel effects. To take an example we 
might regard pupils as nested within a level 2 of schools in the education hierarchy but also they 
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are nested within a ward level of the residence hierarchy. Further schools do not draw all their 
pupils from the same ward and pupils in particular wards may attend many different schools. 
Thus at a more complex higher level we may regard pupils as nested within particular cells in 
the cross-classification of wards and schools.  
 
The first part of our scoping study has already been produced in the form of a description and 
literature review of the approach to such structures known as cross-classified multilevel random 
effects modelling; the report we refer to as ‘Report 3: CC Review’. It also contains an extensive 
review of more complex extensions to cross-classified models known as multiple membership 
models. These will be required in future if research is to be undertaken on such factors as 
continuity of effects from longitudinal data or effects of combinations of teachers on an 
achievement outcome. The review also introduced in a readable way many features of statistical 
methodology which can be quite technically daunting. We draw on these in the current report 
but we would not wish too much repetition. Thus we regard the review as a necessary precursor 
to the understanding of some of the ideas introduced here. In this sense the review and this 
report should be taken together as complementary documents. A greater understanding of what 
we have to say here will be facilitated by a prior examination of the review. 
 
Apart from the production of the review, and given the above background and introductory 
remarks the rest of our remit for this scoping study was as follows: 
 

• We would interrogate the dataset made available to us to satisfy ourselves of its integrity 
and suitability for the present purpose. Any professional statistician needs to do this with 
second hand data before embarking on complex analyses. 

• We would undertake some preliminary investigation of the nature of the crossed 
classifications involved in the data hierarchies in terms of balance and sparseness. These 
are features which govern certain statistical properties and computational feasibility of 
available estimation methods. 

• We would investigate the possible ranges of estimation procedures available in terms of 
their appropriateness for the type of models and data to hand. This might include 
instrumental variable estimation, structural equations (multiprocess) and Monte- Carlo 
Markov Chain (MCMC) estimation. 

• We would consider the range of software that is available for various estimation 
procedures and consider what computational constraints there might be that are not a 
priori apparent. 

•  We would investigate the appropriate specification of area effects and consider for the 
future models based on diffuse spatial effects. This would also include which type of 
area identifier and how many levels might be incorporated into models. 

• We would produce some trial analyses in the light of these investigations on subsets of 
the data. These would highlight the potential uses and limitations of the range of 
methods and software investigated 

 
 
To some extent we have covered certain of the essentials of the third and fourth bullet points of 
the above remit in writing ‘Report 3: CC Review’. We will draw on these in this report but will 
not risk over rehearsing too much. The discussion of the potential of spatial modelling has also 
been explored in that review and will not be further discussed here. For the rest we now briefly 
describe the structure of this report and the broad issues addressed. 
 
In Section 2 we report in some detail on our detailed investigations of the available data. We 
anticipated some problems of interpretation and handling which often occurs with provided data 
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from a secondary source. However, the problems uncovered and their resolutions were more 
formidable and time consuming than originally envisaged. We also had more than a little 
difficulty in preparing the STATA data file provided  in forms suitable for other specialist 
software which handles multilevel models. We will conclude that this dataset or similar ones 
may need a lot of further attention if they are to be used in any more detailed future research.  
 
Section 3 firstly considers some of the reasons for our choice of subsets of the data with which 
we later experiment. Our concern here is also to examine the structure of the cross-classes from 
the point of view of separation, imbalance and sparseness. These are all factors which affect 
statistical properties and computationally feasibility of any proposed model and methods to 
estimate it. Of particular importance was that we discovered a thin spreading over different areal 
units of a certain minority though not insignificant proportion of a school’s children who lived 
in a different LEA than the one in which they went to school. Though we did not directly 
investigate this in particular, it has been pointed out to us that the borough organisation of 
education in London might make this phenomenon even more marked for London LEAs.  
 
Section 4 of the report considers the possible model structures and their possible statistical and 
substantive interpretations. We also discuss some possible implications for methodology and 
software of these model frameworks and their development. Not the least of these is the user 
friendly properties of software for iterative model development. We also raise the possibility of 
using a different areal unit in modelling but which is not presently identified in the dataset: 
census super output area. We also discuss the way in which we require to merge onto the dataset 
another area identifier:  the LEA area in which pupils live. Section 5 contains results of our 
feasibility experiments with the variety of models, estimation procedures and software. All of 
these previous sections inform the conclusions we reach and the recommendations we make in 
the final section 6.   
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2   Investigation and Editing Of Dataset 
 
This scoping study made use of the dataset used in ‘Report 2: Levačić’. This dataset is huge 
(464783 pupils and over 280 variables), assembled from different sources. The scoping revealed 
detailed errors and anomalies. It appears that coding decisions and variable manipulations have 
been made that are not fully documented in the information provided for the scoping. 
Consequently, it took considerable time to unpick some of these issues. More importantly, 
further data cleaning and greater understanding of the previous work might be required to enable 
construction of appropriately rigorous cross-classified multilevel models. It is clear that 
considerable attention would be required to the state of any database which might be provided 
for any future larger exercises. 
 
2.1 The Data As Received  
 
The database made available to the investigators consisted of a prepared STATA worksheet 
used for ‘Report 2: Levačić’. It contained records for 464783 children at Key Stage 3 (KS3) in 
2003 from the Pupils Annual School Census (PLASC). Added to PLASC data were school data 
derived from the Annual Schools Census and Registrar of Educational Establishments and 
Section 52 data on individual schools’ revenue and expenditure. The pupils’ postcode of 
residence also facilitated the addition of some socio-economic indicators from census output 
areas including this postcode. The range of these indicators in the database was limited and 
driven by what was thought relevant from exploratory analyses in ‘Report 2: Levačić’. 
Additional sources of data which were merged with the individual pupil database appeared to be 
Local Government Financial Settlement Reports, Guardian Local Authority Directory, Local 
Elections Centre at the University of Plymouth and the geodemographic system ACORN from 
CACI Information Solutions. ‘Report 2: Levačić’ gives details of these sources. 
 
It is clear that considerable work went into assembling this database since it required careful 
integration from a number of sources. However, as always with the secondary use of such 
databases by statisticians, unclear details of this assembly may pose many difficulties in its 
further use. We had such difficulties in this scoping exercise.  Modelling and data organisation 
provide an iterative interplay and the former is assisted if secondary data sets have greater 
clarity of description than is the case here. In Appendix 1 we draw attention in some detail to 
what we regard as deficiencies in the clarity of the way this particular dataset was presented for 
secondary analysis. Though particular to this dataset the detail does provide some general 
pointers to what may be required in general for adequate secondary analyses in similar 
situations. For instance the, first section of the appendix, A1.1, demonstrates the lack of 
adequate description of several variables relating to pupil, school and LEA identifiers in the 
data. This is compounded by the obscurity and apparent inconsistency of missing value codes. 
Conventions adopted for the latter had not been detailed in any transparent documentation. 
Some additional detail connected with the missing value issue is also considered in Appendix 
1.2. For these various reasons considerable difficulty was thus encountered in preparation for 
analysis.   
 
This initial exploration of the status of key level indicators necessary for multilevel exploration 
proved symptomatic of other problems later uncovered. Most statisticians find it necessary to 
subject acquired datasets to careful investigative scrutiny before undertaking analyses. Cleaning, 
editing, and checking reliability and unravelling anomalies is an essential part of this process 
particularly when complex modelling is envisaged. This is often problematic if the data set is 
third or fourth hand passed on by a previous analyst’s compilations from primary sources. A 
lesson to be drawn is the paramount importance of ensuring at a minimum the availability of 
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careful documentation of such data sets and accompanying codebooks of the sources, nature and 
content of the data. Lack of these meant that detailed scrutiny of some aspects of the database 
was a major initial focus of the current scoping work. The lack of codebooks meant that 
determining the structure of each variable, which is necessary in initial exploration, required 
prior analytical tabulation and listing. Some ingenuity was then required in interpreting values 
for some variables, in particular the representation of missing data. Another feature of lack of 
clarity of description meant that acronym type variable names in the data set were often 
confusing. In an appendix to a prior report or as side notes in the database descriptions were 
incomplete. Some descriptions which are given are also vague and lack the detail to pin them 
down precisely.  Some other variable descriptions are scattered through the report but are not 
drawn together in an easily interpretable form.  The listing of variables presented as appendix 
documentation also contains, rather confusingly, variable definitions which are superfluous to 
the database. Much of the detailed investigative work required might be avoided if proper 
attention was given to ways in which the database details are presented.  
 
The statistician is also conscious that data exclusion or inclusion decisions, either of cases or 
variables, may have been driven by a prior analyst’s main research and modelling frameworks. 
These may not be the same as those of investigators to whom the data has been passed. A 
cavalier treatment of any such acquired data is a process which any qualified statistician will 
seek to avoid. Treatment of excluded data is one that requires careful consideration if biased 
analyses and generalisations are to be avoided. In the case of the present data it was by no means 
certain how the final set of cases had been arrived at. The outline of the proposed investigation 
by DfES suggested there are over 600,000 relevant children on the PLASC database of which 
the current set represents a subset of below 77% of these. There are certain hints scattered 
throughout ‘Report 2: Levačić’ such as exclusion of middle schools. However, there is no 
definitive statement of how the final data set was arrived at. Many of the analyses presented in 
that report were based on fewer cases than the full subset presumably due to listwise deletion of 
cases with missing data on one or more included variables. It is likely that there are justifications 
for this process but it is by no means certain that such justifications will carry over for later 
more complex analyses. In this situation selectivity in choice of cases for analysis may imply 
biased judgements. Later we will suggest how multiple imputation or modelling missing data 
mechanisms may be undertaken along with analytical models to improve the reliability of 
results.  
 
2.2 The Area Data   
 
The main focus of this scoping was to extend the framework to include area of residence in a 
cross-classified random effects framework. Here we comment on some initial problems that 
arose with various area identifiers that needed resolution before this could be envisaged. 
 
The present dataset  has several area of residence  identifiers in the data set which will be 
necessary for various forms of cross-classified multilevel model; postcode, census output area , 
ward  and local authority district. These are hierarchically arranged but the postcode reference is 
on a different coding basis. Codes for the higher levels reflect the hierarchical structure, e.g. 
output area 00FBPE0029 is within ward 00FBPE which is within local authority district 00FB. 
In Appendix 1, A1.3, we detail some of the issues that arose out of our investigations of these 
identifiers and their potentialities in modelling. It will be evident from this detail that many 
similar problems as above will arise unless more detailed documentation is to be made available. 
 
Important modelling issues also arose out of this investigation. The data set had on average only 
1.45 Key Stage 3 children per postcode. Apart from substantive considerations discussed later in 
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the report, any treating of postcode as a higher level unit above children will yield inevitable 
statistical and computational difficulties. Census output areas have an average of 3.26 KS3 
children per output area. For some purposes it may be possible to separate out higher level 
effects for such small areas but the sparsity of the clustering and the necessity for large numbers 
of output area random effects may render the exercise somewhat infeasible for the full data set. 
Ward random effects in a multilevel model and/or a crossed model are possibly computationally 
easier to handle due to their larger size. Wards had an average of 58.4 KS3 children. The highest 
area of residence identifier in the dataset was the local authority district (LAD). Some modelling 
may trial such higher level authority residential area if it seems there is a possibility of an effect 
at this level. It should be noted that although many LEAs are also the same administrative areas 
as LADs in general they are a layer above. For many local authority districts the responsibility 
for education is the responsibility of a LEA which is at a higher level than the district. In many 
cases such as metropolitan districts like Birmingham the two are of course the same. For reasons 
which will become clearer when we consider the data structure and entertain possible modelling 
frameworks, we would like to identify the Local Education Authority area in which the student 
resides in addition to the LEA of his school. The two need not be the same. Indeed it became 
apparent after mapping that around 9% of KS3 children lived in a different LEA area than the 
one in which they went to school. This will have implications for the cross-classified model 
frameworks to be discussed. The residence LEA identifier is not available in the data set. Also 
the LEA coding for schools in data is based on the DfES system and is not an integral part of the 
code for local districts, though the latter are hierarchically arranged beneath the LEAs. A clear 
prior mapping of the LADs to LEA for residence purposes would have facilitated the avoidance 
of some tedious data preparation. 1  .  
 
2.3 Other Data Editing And Cleaning Issues 
  
We have discussed above the many issues that arose because of the unclear and unsystematic 
treatment of missing values. More complete detail is covered in Appendix 1.2. There are some 
clear indications there about the sort of initial preparation that might be required for further use 
of this or similar databases. It will be seen that in some cases the use of the  digit ‘0’ for missing 
values created some modelling problems particular when dummy indicators constructed from 
categorised variables  are entered as covariates. Without detailed further exploration it is 
impossible to distinguish between zero meaning ‘not this category’ and a missing response for 
the categorised variable. The point is not trivial either. For example in A1.2 (iii) we give the 
example of this potentiality occurring for certain ethnic group indicators. It is possible that 
‘missingness’ may be more prevalent in certain ethnic groups and often this is substantial. 
Where this is prevalent, the use of derived indicators as explanatory variables in models may 
seriously distort analyses.  
 
However, it is also apparent that for many variables in the dataset consistency checks which 
enable resolution of such issues are available in the data set itself (see A1.2 (iv)) and any 
thorough cleaning of the data could handle them. The question arises as to whether a secondary 
analyst should be expected to undertake such consistency checks, even if he has the necessary 
expertise to do so. This may be unlikely given relative lack of detailed knowledge of the 
construction of the databases.  
                                                 
1 Fortunately we were able to enlist the support of Professor John Shepherd (Birkbeck College) who was able to 
match the district codes in our full set of cases to a corresponding higher level LEA of residence. Another slight 
complication is that although this dataset relates to KS3 at English schools 67 cases travelled across the border from 
Welsh LEAs. These are such outliers, which though small in number may impact on the analysis unless their 
treatment is carefully considered.  
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Another important matter giving rise to some concern is missing data for many school variables 
(see A1.2 (v)). From preliminary information it seems that the schools involved have special 
characteristics which may be important to analysis and these characteristics also relate to the 
‘missingness’. It is likely that the schools with missing information are unique and special and 
for reasons directly connected with the objects of the analysis and so cannot be treated as 
missing at random. If this is so the possibility of distortion in analyses is evident although its 
likely impact is difficult to assess. However, we feel that some method of imputation might 
ultimately be beneficial and we return to this issue later. 
 
Other anomalies in the data are also detailed in Appendix A1.2 section (vi). Prior cleaning, 
editing and documentation might have resolved many of these. The necessity for thorough prior 
investigation as part of this process becomes even more apparent when some of the details are 
considered. Of particular importance, for example, for secondary analysis is the uncovering of 
seemingly absurd outlier values created during construction of derived variable such as ratios. 
As an example 24 schools in this data set are given as having ratios of fte pupils to fte 
unqualified teachers 02/03 of over 10,000. There may be explanations of why this should be so 
but such outliers give concern. The presence of such extreme outliers leads to highly skewed 
distributions. These may lead to distortions particularly if used in linear models unless the data 
features are recognised and handled. This may be missed unless detailed in codebooks and 
documentation.  
 
The use of derived ratios also creates other problems which may not be immediately recognised. 
Quite often the denominator is zero and when subjected to software calculations will yield 
system missing values which may not be appropriate in analysis. For example A1.2 (vi) shows 
that 12% of schools have zero unqualified staff and this yields missing values for ratios of 
qualified to unqualified. It would not be appropriate to treat these as missing in secondary 
analysis yet the reason for it would not be immediately apparent without careful prior 
documentation. 
  
2.4 Further Remarks On General Issues  
 
In Appendix 1 we have gone into some detail on the outcomes of the data investigation phase of 
our work and problems with handling a third or even fourth hand datasets.  In the above we have 
also summarised issues arising from this which may have broader applicability. We do these 
things for a number of reasons: 

• With hindsight we might have envisaged that this phase might have been more difficult 
than we initially thought. It certainly proved time consuming and hampered the progress 
with other phases. We recommend that any future work with the data set provides for 
this and perhaps refers back to the original primary sources. 

• We believe that any future more complex modelling work will require a fuller 
investigation and more extensive data editing and cleaning. We have only completed 
certain edits sufficient for our experimental subsets and variables used in analyses of 
them. However, the information provided will be a useful indication of the problems that 
might be more fully addressed by subsequent investigations.  

 
2.5 Format Of Databases and Software Compatibility 
 
There are many problems of having a dataset provided as a system worksheet for one particular 
general purpose programme such as STATA. For many other general purpose programmes such 
as SPSS transfer is often relatively unproblematic using the available STATtransfer programme. 
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However, data input is perhaps one of the less adaptable features of specialist statistical 
programmes for such matters as complex modelling. Such software is often very sensitive to the 
format of data input.   We had a little difficulty, for instance preparing data for the Multilevel 
modelling package MLwiN which we use intensively and also WINBUGS. Many of the 
difficulties arose because of the issues discussed above, particularly in the recognition of 
missing values.  
 
Other problems arose because these programmes are less adaptable to the use of string variables 
and alphanumeric identifier codes.  For example the 18 digit alphanumeric code for student 
identifier is cumbersome for transfer to other specialist programmes. A STATA encoding 
command to transfer the code to sequential integers proved infeasible due to large number of 
unique values so EXCEL was used as an intermediary to generate this unique code af_case_id in 
an edited STATA file.  
 
Another anomaly in the file which may also be more general for other databases is that values 
for string variables have occasionally been entered misspelled or with excess leading spaces. 
This means that the same value is often taken to be several distinct values. With careful 
attention, tabulation of the data variable by variable can uncover such difficulties and in 
previous analyses this has probably been the case. This problem also makes matching and 
transfer of data to other software more difficult.  
 
SPSS was also often used for some data manipulation facilities in addressing some of these 
issues since it has more flexible features for some purposes. For reasons outlined above transfer 
of files between STATA and SPSS is relatively easy. For other purposes we had to convert the 
STATA data set to formatted text files which is not a straightforward task. We believe the 
multilevel modelling work in ‘Report 2: Levačić’ using MLwiN took as its input a specially 
prepared formatted text file. Here we had to more or less start from scratch. 
 
The programme GENSTAT which we use in one of our scoping experiments can input files in a 
variety of formats including EXCEL. However, in this case the writing of special code was 
required to extract data for variables from the full data file for its use by GENSTAT. 
Intermediate data preparation programmes such as EXCEL could not handle the big file.  
 
Data transfer and conversion problems such as we have outlined are relatively well known to 
experienced statistical modellers. Common FAQs, for instance, on the multilevel mailing list 
concern themselves with many similar problems. We hope that details of our experience in this 
scoping exercise will lead to a non-trivialisation of this aspect in any future modelling work with 
this and other data sets. It could also provide some pointers as to why careful prior preparation 
of databases and how they are communicated to users could be much improved processes.   
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 3   Choice of Data Subsets And Investigation Of Crossed Structures 
  
It was recognised that scoping the models, methods and software on the full dataset might 
initially prove difficult. Firstly the sheer size of the dataset might impose storage and 
computational restrictions which might detract from this central purpose. This was handled quite 
satisfactorily in ‘Report 2: Levačić’ for strict hierarchical models and the methods of that 
research but might prove too cumbersome for more complex modelling.  Secondly, with crossed 
random effects in a model, there may be additional computational restrictions for some of 
specialist software and methods that we investigate. For instance, in such circumstances one 
approach requires extra dummy variable predictors to be created for each unit for one of the 
classifications in a two way crossing. The school by ward cross classification serves as an 
example. One particular method requires setting up dummies for 7963 wards resulting in a huge 
worksheet. Thirdly unless we can find discrete non overlapping blockings of groups of schools 
and wards matrix inversions required for many methods might prove practically infeasible. 
 
For these reasons, and for purposes of experimentation, we decided at the outset to select 
purposively a certain number of school LEAs comprising about 20% of cases. Since our concern 
was with trialling the methods and not inference from this sample to the larger population a 
purposive selection was not inappropriate. We used schools from 25 LEA s consisting of 80,032 
KS3 pupils which formed about 17% of the full data set. The cases are distributed over LEAs as 
in Table 3.1 below. This subset of the data was labelled the ‘Combined Selection’. It consisted 
of the LEAs beginning with a B in the alphabet plus the first two C’s and a few in the North 
West of personal but not noteworthy interest to the investigator. In fact this selection covers a 
wide range of different types of authority. It ranged from the cities of Birmingham and 
Manchester to large mixed urban/rural authorities such as Lancashire and some quite small ones 
such as Bracknell Forest. It will also be seen later that predictor effects estimated on this subset 
are not too different from those in ‘Report 2: Levačić’ on the full set of data. 
 
The initial part of our investigation was concerned with examining the structure of the cross-
classifications on the selected sets of data. As part of this we rapidly discovered a feature we had 
not initially contemplated and further implications of which receive comment in the next 
section. A small but substantial proportion of pupils were what we call ‘out of area’, i.e. they 
were resident in different areas than covered by their school LEA. The Combined Selection was 
fairly widespread geographically and such children are likely to come from adjacent LEAs not 
in the subset. Thus the number of area units such as wards and output area are inevitably very 
large. Further these children will be thinly spread over such ‘out of area’ units. These are two of 
the factors which might affect the feasibility of the methods and partly why we considered 
reducing the full data set in the first place. When we analyse the trials we will see that these 
features may indeed have led to certain difficulties with the dataset. However, we persevered 
with it for some trials since it gave us an idea of the impact of the large number of area random 
effects which might arise in extending analyses to all the data.  
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Table 3.1: Combined Selection data-set 
 

Local Education 
Authority 

Number of Pupils 

Barking and Dagenham 1,642 
Barnet 2,529 
Barnsley 1,969 
Bath and North 
Somerset 

1,812 

Bedfordshire 3,871 
Bexley 2,760 
Birmingham 9,763 
Blackburn with 
Darwen 

1,482 

Blackpool 1,333 
Bolton 2,957 
Bournemouth 1,489 
Bracknell Forest 896 
Bradford 4,657 
Brent 2,026 
Brighton and Hove 1,912 
Bristol City of 2,397 
Bromley 2,987 
Buckinghamshire 4,735 
Bury 2,026 
Calderdale 2,103 
Cambridgeshire 4,535 
Lancashire 12,088 
Manchester 3,321 
Oldham 2,545 
Rochdale 2,197 
  
Total 80,032 

 
For these reasons, therefore, we also decided to experiment with a smaller more compact set of 
LEAs which formed contiguous areas within a specified region of the country. We call this the 
West Midlands dataset. The ‘out of area’ phenomenon still exists, but travelling across 
boundaries for children is more likely to be to areas which are within the LEAs of the data set.  
Certain structural features of the Combined Selection dataset are thus less likely to be as 
prevalent here. As a result anticipated difficulties in fitting models may be possibly less severe. 
The West Midlands data set comprised 32,579 KS3 pupils from schools in eight LEAS and is 
distributed as in Table 3.2 below. 
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Table 3.2: West Midlands data-set 
  

Local Education 
Authority 

Number of Pupils 

Birmingham 9,763 
Coventry 3,031 
Dudley 3,481 
Sandwell 2,900 
Solihull 2,800 
Walsall 3,078 
Warwickshire 5,167 
Wolverhampton 2,359 
  
Total 32,579 

 
Next we examined the structural features of our data sets from a number of perspectives. From 
previous experience with complex cross-classified models it was thought likely that these would 
play a major part in the success of the exercise. This judgement was based on intertwined 
statistical and computational criteria. The features are 

• The number of  area units at each of the levels that it might be considered using 
• The extent of  the imbalance of  units across the cells in cross –classifications of 

school and areas  
• The nature of the ‘out of area’ problem 
• Sparseness of representation in certain cells of the cross-classifications. 

  
This initial examination proved an essential guide in exploring the desirability and feasibility of 
the various methods and software since not only do they address the criteria but also influence 
ways of setting up models for analysis. We have commented on the computational restrictions 
that might occur due to large numbers of units at any level. The number of units at any level also 
determines the extent of lower level representation within them, such as KS3 pupils within 
output areas. This in turn affects the precision of any specific random area effects we may 
ultimately wish to estimate. In the next section we will suggest creative ways of accommodating 
the ‘out of area’ issue in models.  
 
Certain features of a structure are known to affect both statistical quality of estimation and also 
computational feasibility. The extent of imbalance in terms of concentration of cases either 
marginally in certain units of each of the crossed factors or in specific groups of cells of the 
crossing is one important feature. A related one is sparseness with few or no cases, both in the 
margins for specific units in the hierarchies and amongst cells in a cross-classification. The 
extent of the impact of these is still a relatively under-researched phenomenon. The problems 
form part of an ESRC project under the direction of Dr William Browne in the School of 
Mathematical Sciences at the University of Nottingham which is currently getting under way. It 
is hoped that much more will be known in future. However, we commented generally on some 
aspects of the impact of these features in ‘Report 3: CC Review’. Broadly we expect the 
structures to lack the balance of designed experiments but we would not like this to go too far, 
otherwise there may be confounding of separate effects in a cross classification of random 
effects . To avoid this there are certain general requirements. For instance there should be some 
reasonable spread of Level 1 units across units of one classification within each unit of the other. 
If  at an extreme, for example there were a very large number of schools which drew their pupils 
from just one ward and those wards sent their pupils  to  these  single schools then confounding 
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problems occur. It becomes difficult to identify separately what are school and area effects. 
Imbalance also affects sparseness of units and sometimes affects the precision with which 
particular effects can be estimated. This is likely to pose an interesting challenge in future 
research if for instance it was desired to specifically identify areas of low achievement. If some 
areas had very small numbers of children there would be much uncertainty about this 
identification.   
 
However, at this stage it might be useful to look at one example of our structural investigation to 
further highlight these concepts and to indicate what we might learn about our selected data sets. 
Many of the investigations we carried out to satisfy ourselves about the structural features are in 
the form of large cross classification tables with many rows and columns (often thousands). As 
such they are impossible practically too fully illustrate here. However, they are stored in an 
utilisable form. Thus the example is by necessity restricted to an examination of one medium 
sized authority, Cambridgeshire.  A few other examples and aspects of them which are feasible 
to illustrate in print are given in Appendix 1. We comment on these at the end of this section. 
 
The Cambridgeshire data had 4535 pupils attending 28 schools, averaging at around 160 pupils 
per school ranging from a minimum of 59 pupils to a maximum of 275.  Compared to the full 
data set a relatively small number, 123 (2.7%), had an area of residence outside the LEA as in 
the Table 3.3. The investigation was undertaken before LEA of residence was merged with the 
dataset. Hence local authority districts were used for this exercise. It may be noted that 
Cambridgeshire LEA itself comprises five local authority districts; Cambridge City, East 
Cambridgeshire, South Cambridgeshire, Fenland and Huntingdon. 
 
Not surprisingly most of these ‘out of area’ pupils are from areas adjacent to Cambridgeshire. 
However, their wards and output area will not be represented in the Combined Selection dataset 
which is geographically diverse. However, even if these areas were represented in the data, their 
cross-classes with Cambridgeshire schools would result in sparse cells and increase the number 
of discrete non-overlapping blocks of schools and residence areas in the data. If these features 
also  extended to all the  Combined Selection data set, as seems likely,  the total number of area 
units and hence random effects might not be much less than in the full dataset. These factors 
may affect computational feasibilities for many methods. Even within the West Midlands 
dataset, where such problems might be expected to be fewer, the total numbers of random 
effects for the chosen area levels will still be inflated considerably. Computation time in many 
procedures and also precision of estimates may be affected. Some of the areas in Table 3.3  
seem on the surface to be absurd, e.g. Winchester or Coventry and may be due to inaccuracies in 
the PLASC database, or to some other inscrutable reason. It is however, just for such pupils that 
the area effects are likely to be important and why the out of area pupils are often an important 
minority of pupils. Intuition suggests that pupils who travel some way to school may have 
different characteristics. They might be considered to have important distinct influences and 
cannot often justifiably be dropped to make analytical computation of model estimates easier. 
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Table 3.3: Local authority district of ‘out of area’ pupils in Cambridgeshire schools. 
 

Local Authority District No. of 
pupils 

St. Edmundsbury 32 
King's Lynn and West Norfolk 25 
Forest Heath 14 
North Hertfordshire  14 
Peterborough  10 
Bedford  4 
Uttlesford 4 
Mid Bedfordshire 3 
East Northamptonshire  2 
Waltham Forest  2 
Ashford 1 
Braintree  1 
Cannock Chase 1 
Coventry  1 
East Hertfordshire  1 
Hillingdon 1 
Luton  1 
Newham 1 
Northampton  1 
South Kesteven  1 
Tendring 1 
Welwyn Hatfield 1 
Winchester  1 
Total 123 

 
Restricting attention now to the 4412 pupils who live in the Cambridgeshire, it is instructive to 
examine the nature of the crossing of schools with both output areas and wards. There are 1471 
output areas and 123 wards. With a mean of 3.0 pupils, output areas were inevitably sparsely 
represented in the data. 10% of areas had just one pupil and only 7% had greater than 7 pupils. 
We anticipated that such features might make for difficulties if output area was used as a 
random effect in a model. Computationally the sheer number of areas is burdensome but also 
estimation precision might be low due these features. To some extent our trials confirmed these 
beliefs.  Table 3.4 below gives some summary statistics on the cross tabulations of schools and 
wards, and schools and output area. Detailed tables were used to examine the essential features 
of the structure but these summaries contain some pertinent information  
 
In this table it is seen that schools draw their pupils from a relatively large number of both 
output areas and wards so this lessens the dangers of confounding. Also with a large number of 
output areas, and hence few children in each it was found inevitably that few schools were 
represented amongst the pupils in each   output area. Amongst the output areas 73% had 
children in just one school. To some extent this represents what may be termed a near 
hierarchical structure .This might help with computation since it  means that non overlapping 
blocks of schools and output areas can be more readily found2. By contrast with Cambridgeshire 

                                                 
2  In ‘Report 2: CC Review we consider reasons for this based on the efficient algorithms developed by  
Rasbash and Goldstein (1994).   
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in some other areas we have examined, such as Oldham in Appendix 1, there is less of an issue 
with concentration of school representation amongst output areas. This may reflect something of 
a difference between large county authorities and urban metropolitan ones.  Of course, as 
elsewhere, large numbers of random effects and hence the lower precision with which they can 
be estimated are likely to raise further statistical and computational issues.  
  
Table 3: 4 Summary statistics on area structure for Cambridgeshire schools and for pupils 
who also lived in the five local authority districts making up the Cambridgeshire LEA 
 

School  No of  
pupils  

No of 
output 
areas 

Average no of 
pupils per 
output area 
represented  

No of 
Wards 

Average number of 
pupils per ward 
represented 

1 171 74 2.3 13 13.2 
2 152 74 2.0 17 8.9 
3 201 64 3.1 9 22.3 
4 92 71 1.3 17 5.4 
5 162 89 1.8 11 14.7 
6 59 41 1.4 7 8.4 
7 113 53 2.1 12 9.4 
8 94 49 1.9 12 7.8 
9 158 59 2.7 16 9.9 
10 138 43 3.2 8 17.3 
11 59 136 2.3 13 10.5 
12 30 49 1.6 4 12.3 
13 102 205 2.1 12 17.1 
14 88 275 3.1 11 25.0 
15  64 144 2.3 8 18.0 
16 67 150 2.2 10 15.0 
17 93 240 2.6 17 14.1 
18 92 241 2.6 15 16.1 
19 97 108 1.1 47 2.3 
20 35 95 2.7 7 13.6 
21 91 202 2.2 10 20.2 
22 59 162 2.7 10 16.2 
23 81 201 2.5 23 8.7 
24 67 135 2.1 14 9.6 
25  87 210 2.4 14 15.1 
26 68 179 2.6 10 17.9 
27 91 224 2.5 15 14.9 
28 34 116 3.4 6 19.3 
Total  4412     

 
Wards as random effects in a cross classification would appear to present few problems. There 
are a much smaller number of them. Also each school in Cambridgeshire is represented by a fair 
number of wards as Table 3.4 indicates. However, on further examination, 20 of the 123 wards 
had all their children concentrated in particular schools. This should help computationally. 
Further problems of confounding are likely to be minimal due to those schools drawing their 
children from quite a number of other wards. The maximum number of schools represented per 
ward was 7  
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Another feature of the imbalance of structure is the distribution of the pupils  
(Level 1) over possible cells of the crossed classifications. Table 3.5 shows that 94% of the 
school/output area cells are empty. Such features of sparsity do affect the statistical and 
computational qualities of model fits. However, given the need to distribute 4412 pupils over 
41188 cells, we judge from experience with similar structures that this type of structure as 
manageable.  Too many empty cells would verge towards confounding. Too few might add to 
computational demands in addition to that imposed already by the large number of output area 
effects. As we have mentioned very little is formally known, as yet, about the real impact of 
these sorts of phenomena on various methods. Table 3.6 gives similar information for the cells 
of the school by ward cross classification.    
 
Table 3.5, Sparsity: Frequencies of pupils over the 41188 school by output area cells for 
Cambridgeshire schools and for pupils who also lived in Cambridgeshire 
 

Number of pupils in 
cell 

0 1 2 3 4 5 6 7 8 9 10 11 12

Frequency 39265 883 395 257 189 90 51 32 10 6 4 2 3 
 
Table 3.6, Sparsity: Frequencies of pupils over the 3444 school by ward   area cells for 
Cambridgeshire schools and for pupils who also lived in Cambridgeshire 
 

Number of pupils in 
cell 

0 1 2 3 4 5 6 7 8 9 10 11 >11

Frequency 3076 124 35 18 16 15 11 6 5 0 5 8 125 
 
As indicated we carried out quite a number of such structural investigations. These are not 
detailed here. Broad patterns emerged that satisfied us of the applicability of similar essential 
impacts of the features in larger data sets. However, there were some differences in detail. For 
instance, the information for Oldham in Appendix 1 shows a pattern implying fewer (relatively) 
empty cells. We hypothesis some general differences between types of authority in terms of 
concentration of population and number of local government divisions. This Appendix also 
contains some investigation of the ‘out of area’ issue for Birmingham LEA. 
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4    Modelling Frameworks 
 
4.1 The Model Structures and Random Effects  
 
A full potential framework for characterising the possible random effects that might be 
incorporated into a cross-classified multilevel model is seen by examining complex structure in 
the classification diagram of Figure 1.The use of classification diagrams for characterising 
random effects in complex models are more fully described in ‘Report 3: CC Review’. It will be 
seen that there are two hierarchies which we shall often refer to as education (or school) and 
area (of residence). These hierarchies cut across one another and induce cross-classified effects. 
The education hierarchy leading to an examination of school and LEA effects has been the 
subject of ‘Report 1: Vignoles’. Our scoping report is concerned with extending the modelling 
frameworks to additionally encompass features of the area hierarchy. It will be noted that the 
structure as illustrated in Figure 1 adds  two classifications whose  identifiers are not available in 
the STATA data set; super output area and LEA of residence.   
 
To set the scene it is worth considering for the full data set the number of units at each level in 
the hierarchies, where these are known. These directly determine the scale of the exercise in 
terms of numbers of different random effects for particular models. They form constraining 
factors affecting the feasibility of different estimation procedures and software implementations. 
The STATA dataset available contains 464,783 KS3 pupils (level 1) nested within 2943 schools 
within 149 LEAs for the education hierarchy. The area hierarchy has postcode areas nested 
within 142, 597 census output areas within an unknown (but discoverable) number of super 
output areas (SOA). For simplicity of illustration we have indicated only one level of SOA but  
three hierarchically arranged layers are ultimately envisaged. 3 In turn  SOAs are nested within 
7964 wards from 360 local authority districts. The top level of the area hierarchy may be 
additionally defined in terms of the same set of units as school LEAs and we refer to this as the 
LEA of residence. A large number of these are the same as the local authority districts (e.g. 
Metropolitan Districts such as Birmingham). Thus many top level units will have single 
members at the lower level of district, but multilevel modelling methodology can handle this 
situation.4
The use of this ‘fullish’ structure, and which elements we consider in specifying random effects 
for particular models, is something of an open question. Without full scale research and iterative 

                                                 
 
3 The Office for National Statistics website (www.statistics.gov.uk/geography/soa.asp ) gives the following 
projected information on Super Output Areas: ‘There will ultimately be three layers of Super Output Areas (SOAs), 
each nesting inside the layer above, with areas intermediate in size between 2001 Census Output Areas (OAs) and 
local authorities. This will offer a choice of scale for the collection and publication of data, and allow for the release 
of local data that could be disclosive if published for OAs. At present just the first two of these layers have been 
created. The 34,378 Lower Layer SOAs in England and Wales were generated automatically and released to the 
public in February 2004. The 7,193 Middle Layer SOAs were defined in a two-stage process: an initial set was 
generated automatically but the boundaries were then modified in consultation with local authorities and other local 
bodies. The final boundaries were released to the public in August 2004. The Upper Layer SOAs are expected to be 
created in 2006.’ 

 
4  Since many LEAs contain several districts conceptually a random effect for district below that of LEA can be 
envisaged. Estimation of its variance from the conceptual distribution of random effects is made possible by these 
multiple occurrences. The further estimation of  random district effects where these are required is also feasible 
since such effects are ‘shrunken estimates’ borrowing strength from the full distribution of effects. Full theoretical 
and computational aspects of this are considered by any text on multilevel modelling methodology such as 
Goldstein (2003). 
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model development we can only partly answer it. We can and will, however, give some general 
views based on the information above and what we judge may be worthwhile. Firstly, however, 
we might comment on some other features of this structure which have a bearing on these views. 
Although we will return to them let us ignore for the moment the top LEA levels of the twin 
hierarchies. The central direction of proposed models will then focus initially on the crossed 
effects of schools with areas of residence lower in the hierarchy. This crossing will occur at 
whatever level of the residence hierarchy it is chosen to focus and whichever area random 
effects a particular model specifies. In the classification diagram of Figure 1 we have placed 
schools alongside local districts to indicate that the crossing occurs at that level. As discussed in 
‘Report 3: CC Review’ the implication is that schools are also crossed with area units lower 
down the hierarchy. This tautology is important in thinking about crossed hierarchies. Model 
formulations in terms of random effect will by necessity reflect this. Certain models for various 
reasons may say only include ward units as a basis for the study of area effects, or only output 
areas, or perhaps both. School effects will then be crossed with either or both of these in the area 
hierarchy. 
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Figure 1: Classification diagram for full structure
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Thus a central question to which any model development and investigation may be directed is 
the extent to which we reflect in analysis the full complexity of the various area effects (beneath  
residence LEA). In principle and if there is evidence of variation at each level then perhaps all 
that are feasible should be included. However, it must be recognised that for certain procedures 
there may be computational constraints to this. The more the complexity the less easy it is to 
implement a random effects model. Further iterative model development may bring greater 
clarity this but in this scoping study we have focused on two of the area units whose identifiers 
are available to us, ward and output area. Local authority districts are perhaps too close to the 
top LEA level to be useful if the latter are also included. The basic area identifiers in the PLASC 
data are postcodes of pupil residence and from this the higher area units are established. 
However, postcodes have an average of little over one pupil within them. Separation of random 
effects and variances between postcodes from those at the pupil level will inevitably be difficult. 
This confounding of pupil and postcode effects seems to make inclusion of postcode random 
effects not a very practical proposition. Even with greater representation of children the sheer 
number of postcode units would add to computational difficulties. However, it must be stressed 
that this does not mean that observable variables at postcode level would not be a useful adjunct 
to further research. They could easily be introduced as fixed effect predictors.  No such 
information is available in the present data set so we must leave this issue aside. Perhaps 
however, if such information was merged it might be closer to the family and social 
circumstances that are proxied by the census output area variables utilised in ‘Report 2: 
Levačić’. To some extent both output area and wards may be useful to include as random 
effects. In the models in ‘Report 2: Levačić’ output area fixed effect variables are included and 
the incorporation of such areas as a level in a multilevel model would mean that the random 
effects for output area reflect additional residual variation due to unobserved sources at that 
level. Such variation may provoke substantive interest in further ways of finding proxies for 
social circumstance effects. However, output areas are still very close to highly localised 
circumstances with on average only a little over 3 KS3 pupils within them. Our experimental 
analyses may show that the sheer number of output areas may impose above anything else 
computational constraints on model fits. The ward is of course the aggregate on which many 
social exclusion initiatives are based. Until recently it was also the area basis for much empirical 
research due to ready availability of data such as deprivation indices at ward level only. Wards 
are highly aggregated collections of KS3 children. However, if ward variation is of interest 
inclusion of wards in models are certainly more feasible technically. Some of our analyses later 
will utilise both wards and output areas but if it is decided that one or other is more appropriate 
then it is certainly easier to fit models including only one set of random effects rather than both. 
 
Pertinent to all this is the fact that the area unit boundaries are administrative and rather artificial 
in reflecting the social and economic circumstances in which our KS3 children find themselves. 
Diffuse spatial modelling such as occurs in some health research and discussed in ‘Report 3: CC 
Review’ may be useful but is beyond our present experimental concern. The administrative 
nature of boundaries is a well known aspect and limitation of much policy directed research on 
area effects. The substantive question is really a matching of area unit boundaries on which it is 
proposed to implement area initiatives and the empirical research which is designed to evaluate 
them. Thus in the present context we could in principle use whichever area units seemed 
appropriate and between which there was evident variation. It is then not statistical matters but 
rather research and policy issues which should suggest where analyses should lead. To some 
extent these questions are outside our present remit. We experiment only with the area units 
given to us.   
 
Evident in our classification diagram but not in the data are possibilities for the use of  census 
Super Output Areas. We believe these may be worthy of further investigation. Substantively one 
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or other layer of these may form area units  to which more realistic policy initiatives may be 
directed  if real source of variation are found amongst them.  This may have more impact than 
dilution of activity might yield if it was at ward level. It might have greater practicality than 
highly localised output area activity, if indeed the latter were thought feasible at all. These issues 
are deep ones and are geared to any research objectives set but they can inform the ends to 
which any analysis might be directed. A model which examined areal variation through super 
output areas might replace a possible joint operation of ward and output area. From an analytical 
and computational perspective this might certainly be easier to handle. Although not in the 
current dataset super output area identifiers could be merged using a geo-demographic system. 
Variables defined at these levels may also be derived from census information and used as 
potential explanatory fixed effects in multilevel education production functions. For the moment 
we can only leave these matters as a recommendation that they could be considered. 
 
4.2 The Role of LEA in Both Education and Area Hierarchies. 
 
We return now to the possibility of including higher level LEA random effects, and then we may 
begin to see that some new challenges arise. Our original perception, before detailed 
examination of the data revealed otherwise, was that a crossing of schools and areas at say ward 
level (if district was ignored) might be sufficient to reflect the complexity of the crossed 
hierarchies. This optimism was based on the initial misguided belief that the combinations of 
school and area of residence of all KS3 pupils would be nested entirely beneath the LEA of the 
school.  If this was the case one set of random effects for LEA would be an adequate and 
relatively simple specification of this higher level random effects were it desired to include 
them. For the vast majority of pupils this situation arises. However, it was found that an 
important minority of children cross LEA boundaries to go to school. These children may also 
be of a qualitatively different kind from the rest so it would be important to reflect this. 
However,  with the  existing area identifiers in the data, which omits LEA of residence,  the only 
way to handle this would have been to ignore ‘residence effects’ associated with higher level 
areas  defined by the geography of  LEAs, whilst recognising that areas of residence are not 
nested within School LEA.  In terms of Figure 1 we would omit the Residence LEA box in the 
top right hand corner of the classification diagram and associated linked crossing to School 
LEA. We would then cross whatever top level area of residence was chosen, possibly ward or 
LAD with School LEA.  In Figure 1 this top level area of residence would then move up to be 
horizontal to School LEA in the recast classification diagram. It is to be noted that lower level 
education effects such as schools and area effects such as output areas are then implicitly nested 
within cells of this crossing. Lower level crossings are then also implicitly taken care of within 
this nesting. A detailed technical explanation of why this should be so and illustrative examples 
are given in ‘Report 3: CC Review’. After some thought and discussion it was felt that ignoring 
LEA of residence might not be entirely appropriate since higher level residence effects might be 
potentially evident. A solution was to identify the LEA areas of residence in ways we have 
indicated in a previous section and then merge it to the dataset. A model with higher level 
effects could then cross classify School LEA with Residence LEA. Within cells of this any 
lower level crossings are now nested.  A feature of this setup is that the set of highest level units 
forming the residence area and the set of highest level units for the education area classifications 
are common. In this case there is a strong possibility that the two LEA effects may correlate; in 
that the LEA effect operating because a child’s school was located in it may be related to the 
geodemographic LEA area residence effect. In our experiments we entertain this possibility but 
recognise the limitations of some existing software to handle it. We also pose the question of 
whether these effects are sufficiently important to justify the extra complexity and the greater 
difficulty in handling them. Of course, as in previous discussion these statistical and 
computational questions must be balanced against substantive research requirements. 
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4.3 Fixed Effect Covariates in the Model 
 
So far we have commented only on the range of possible random effects that we might model to 
reflect the complex structure evidenced in Figure 1. Any analysis will also investigate and 
incorporate relevant and observable fixed effect covariates at any of the levels. The final choice 
would be a major part of any detailed analytical approach to model development in future 
research. ‘Report 2: Levačić’ conducted some such model development within the context of the 
hierarchical school model and arrived at sets of predictors as indicated in their reported results. 
There is no guarantee that this set of predictors would be fully appropriate in the new model 
framework. Most of them possibly would be but this feature of the models may be capable of 
more refinement. Other questions of interest also arise and have been raised during the 
discussions around this project. We might, for instance, examine such features as regional 
variation or differential progress for different subgroups of children. The latter might involve 
trying and testing interaction of the KS2 prior achievement with other child characteristics. 
Similar further refinement to other aspects of the specification may also reveal answers to 
additional interesting questions. In principle such refinements could be carried out in the current 
context. There is also the possibility of differential school effects on progress or impact of area 
being different for types of children. This would require the added complexity of random 
regression coefficients. Suffice it to say that for the purposes of limited experimentation we 
consider only the predictors and their characterisation as given in ‘Report 2: Levačić’. Within 
this scoping we also cannot at present extend to a consideration of random regression 
coefficients. The latter though adding to computational demands are statistically feasible within 
the model frameworks we have outlined. 
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5  Methodology, Software and Trial Analyses   
 
5.1 Introductory Comments 
 
In this section we present some detail on the experimental analyses we have undertaken to guide 
us on the feasibility of aspects of the modelling work. In all of this we are conscious of three 
interrelated themes. Firstly from substantive background considerations we might be led to a 
consideration of a particular type of model specification to be fitted to a particular set of data. 
Statistical considerations might then lead us to suggest that a particular type of estimation might 
be most appropriate. However, we might find that software and computing constraints might 
make this preference infeasible. Therefore on a second theme, we might approach the issue the 
other way round. We ask what estimation procedures are available within obtainable and 
feasible computing resources and then assess their statistical quality for fitting the model at 
hand. Thirdly either of these first two approaches might lead us to question whether we might 
drop certain aspects of the model specification. To a large extent our scoping exercise and trial 
analyses are a matter of balancing these themes.  
 
For reasons explained previously this experimentation was with two selected subsets that we 
have labelled West Midlands and Combined Selection. In addition one limited trial has been 
undertaken on the full dataset to explore the possibilities of the GENSTAT software. 
 
In the previous section we outlined the full structure of potential models. However elaborate the 
models to be ultimately developed become, there are two distinct complexities that we must 
address in the present context. First is the presence of several levels in the hierarchies as well as 
crossing of different classifications at each level. In a previous section we have examined some 
aspects of the nature of the cross-classifications in terms of numbers of units at various levels, 
balance and sparsity. All of these will affect the statistical quality and feasibility of any 
projected model fitting. The latter are also conditioned by the variety of estimation procedures 
available. They will also affect the computational feasibility of the procedures which in turn is 
conditioned by availability of software and its practical implementation with computing 
resources available. The statistical and computational aspects are to some degree intertwined. 
The second complexity is the endogeneity of the resources variables which was the subject of 
detailed review in ‘Report 1: Vignoles’, ‘Report 2: Levačić’ and Mayston (2002). To handle this 
there are again a variety of statistical estimation procedures of varying quality and feasibility 
available.  These are also conditioned by the availability of appropriate software and the 
feasibility of its implementation. 
 
To some extent in our trial analyses we have separated out the two model complexities and 
concentrated on handling them one at a time. Also we have not always brought together all the 
features of the complex structure of random effects at the same time.  The ultimate aim might be 
seen as exploring the feasibility of bringing everything together to produce model estimates with 
high statistical estimation quality within feasible computational frameworks. Where appropriate 
we will comment on where our concentration on particular aspects might ultimately bring this 
aim to fruition. To start with an over ambitious full set of complexities might mean running into 
many initial difficulties, solutions to which might be difficult to discern. The point of a scoping 
exercise as a learning process might then be lost. This is our general rationale for the approach 
to scoping we have adopted. However, we will shortly detail aspects of particular trials and 
specific reasons for considering them but mainly they are connected to matching and balancing 
particular aspects of desirability and feasibility. 
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Before doing this it is worthwhile commenting on availability of modelling software and some 
of the reasons for narrowing down our choices for experimentation to the main three we do use; 
MLwiN, WINBUGS and GENSTAT.  For initial purposes in commenting on instrumental 
variable estimation we also entertain STATA used in ‘Report 2: Levačić’ and for which our 
provided data is instantly useable. STATA would possibly also be our preferred option for 
general purpose advanced statistics apart from multilevel modelling. ‘Report 3: CC Review’ 
commented on the wide range of software that can now handle cross-classified models and the 
various estimation procedures used. The reader of this report is cross-referenced to that parallel 
report.  The possibilities are now increasing at an accelerated rate. The continuously updated 
review of available software on the Centre for Multilevel Modelling web page 
www.multilevel.ioe.ac.uk includes a crossed effects model as one of its experimental media. 
From this review and personal experience with similar data structures we conclude that it might 
be practically difficult and infeasible to contemplate using much of this reviewed software for 
the sort of model specifications we wish to ultimately entertain. However, although we have not 
been able to investigate here there certainly seems some promise in anticipated future 
developments of the GLAMM procedures in STATA9. Often the complexities of structure and 
number of levels in required models or the desired output constrains the attractiveness of most 
of the software. Almost all the wider range of software will also not easily allow us to build into 
our multilevel modelling the more refined features we might wish to explore. For instance, we 
might wish to consider the possibility of different area or school resource effects for certain 
subgroups of children. This will require us to specify regression slopes as randomly varying 
effects over such groups and these are difficult, if not impossible, to implement in much 
software. Also procedures for adapting to endogenous covariates in a multilevel setting are often 
unavailable.  
 
There is also another important consideration. We wish to use software that has an attractive 
interface for iterative model development and model selection. The graphical interface of 
MLwiN makes it attractive for adapting model specification, examination of diagnostics and 
exploring results.  MLwiN also encompasses both approaches to estimation that are widely used 
for linear multilevel models; maximum likelihood through iterative generalised least squares 
(ILGS) and Monte-Carlo Markov Chain (MCMC). These approaches to estimation are more 
fully explored in ‘Report 3: CC Review’.  MLwiN also has a very flexible macro language and 
facility which means that its range of procedures for a variety of situations can be adapted 
straightforwardly to new situations. This can be profitably used to implement our preferred 
approach to the endogeneity issue, the multiprocess multilevel model. Apart from its general 
attractiveness on these grounds MLwiN is also the most widely used specialist software for 
multilevel modelling in the UK and familiarity with its use and application is now fairly 
widespread. It is also under continuous development and some of the limitations for our 
purposes that we uncover in our trials may soon be remedied.  
 
To fill the gaps where the limitations arise and learn more about statistical and computing 
feasibility we also use WINBUGS and GENSTAT for some trials. The WINBUGS general 
purpose modelling package relies entirely on the Bayesian framework of MCMC estimation. It 
can implement our complexities fairly readily to parallel MCMC procedures in MLwiN. 
However, we think it fair to say that it is not as user friendly or as fast as the MLwiN 
implementation. GENSTAT has a very fast performance and is quite impressive in the 
complexity of the multilevel, crossed and other random effects structures it can entertain. 
However, perhaps due to lack of familiarity we find it less user friendly in data input and 
procedure preparation. It does not have an equations window displaying the models 
symbolically which would enhance the user’s ability to interact with it in model development. It 
is also very difficult to see at present how it could handle the endogeneity complexity which will 
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ultimately be necessary for most of our purposes, though it is said that it could be adapted with 
some suitable programming development 
 
For our projected experimental analyses our starting points are the analyses in ‘Report 2: 
Levačić’. Thus where we have introduced covariate explanatory variables, and for ease of 
comparison, we have used the same that appear in that report’s Tables of results. Ultimately 
other covariates may be required when new complexity is desired and further model 
development and exploration takes place. For instance, there are a limited number of census 
output variables in the results and data sets. These may require expanding once area random 
effects are also considered. Ward level covariates may also be required. It may also be useful to 
seek   explanatory variables for any significant LEA variation that may emerge. With changing 
model specification it might also be the case that different pupil level characteristics and 
interactions between them are required. Thus we wish to emphasise that the choice of covariates 
used in our trial analyses and ‘Report 2: Levačić’ may not entirely be the end of the story.  
 
The bulk of analyses in ‘Report 2: Levačić’ do not explicitly consider multilevel specifications 
of the model. Instead the use of robust standard errors to adjust for school clustering has been 
generally adopted, though not for LEA clustering. In our review, ‘Report 3: CC Review’, we 
briefly comment that there may be some limitations to this type of model fitting and the related 
Generalised Estimation Equation approaches. Some references on the contrasting approaches are 
also given in this source. The approach to the endogenously issue has been through a standard 
Instrumental Variation (IV) two stage least squares (2SLS) procedure which again has its 
limitations. Not the least of these is the well known inefficiency and sometimes poor precision 
of estimates although it can be satisfactory in certain situations. In principle this approach if it 
was thought useful could be extended fairly easily using the STATA programme to encompass 
further levels of clustering induced by crossing of areas with schools. We have undertaken a 
repeat of some of the analyses but redefined in this way the clustering basis for the robust 
estimation. We do not present our detailed results. Suffice it to say we get more or less the same 
covariate effect estimates but now the robust standard errors as expected are different and 
induced by the specified additional clustering. This will affect any statistical inference on results 
It has been recognised that full multilevel modelling appears preferable to encompass explicit 
recognition of complex level effects. However, one more thing is certain about handling the 
endogenously issue. At first sight it might have been thought that the available first stage 
predictions of resource variables which are formed from instruments in stage 1 of the original IV 
2SLS estimation might just be used in multilevel specification for the achievement equation.  
This would be just as if the endogenously issue had been dealt with by this prior analysis. 
Although convenient and easy to implement this is statistically entirely inappropriate for two 
reasons. Firstly although this might lead to consistency in estimation of model parameters 
inappropriate standard error estimates for them would result. The reason for this is that 
information on contribution to precision of estimates arising from the instrumental variable 
approach is carried forward from stage 1 in the original two stage process itself and is not 
available from the predictions alone. Intuitively the two stages cannot be seen as entirely 
unrelated exercises. The process of just inputting the predictions would treat them as 
exogenously given and the associated usual procedures for standard error estimation are not 
correct. Secondly, although the resource variable is a school level variable, its model equation in 
terms of instruments will also need to be specified using an appropriate more elaborate 
multilevel model. The original resource equation from which predictions might be found does 
not properly recognise this.  
 
One of our trial analyses does however investigate a similar type of IV estimation using a macro 
procedure for multilevel models that has been developed for MLwiN. Although this proved 
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rather unsuccessful from a computational perspective, if IV estimation was thought to be useful 
its further development might be an option. Our overall preferred option using statistical criteria   
for handling both structural and endogenously complexities would be a multiprocess multilevel 
model. This involves estimating both a resource and an achievement process equation 
simultaneously, whilst allowing for endogenously by having a proper structure of correlated 
effects and disturbances. This approach has been used in ‘Report 2: Levačić ’ for the strict 
hierarchical model involving school and LEA random effects. However, there is not much 
emphasis on it and details of the procedure are left somewhat unelaborated. This aspect of that 
work did however rely on a special MLwiN macros written by Fiona Steele to which we have 
access. It modifies the two equation structure in a way that can be handled by the multivariate 
response facilities of MLwiN. Fiona is also one of the consultants on this scoping project and 
the macros have been adapted for the present trialling with crossed random effects structures. 
  
5.2 MCMC Estimation Using MLwiN and Ignoring Endogeneity  
  
We now outline on a case by case basis some of the trials we carried out, our reasons for 
undertaking them, the success or otherwise with which they were implemented and some 
comparative results. We use the KS3 mathematics score as the dependent response5, for brevity 
denoted by y, and where appropriate the expenditure per pupil averaged over the 3 years as the 
resource variable6. The feasibility results and conclusions for these will be made without loss of 
generality for other achievement responses and resource variables.  Initially for each type of trial 
we were probably overambitious in what could be achieved given time and resource constraints 
and computational difficulties. However, important lessons were learned. After discussing the 
trials we will then return to recommendations regarding any future full scale work. 
 
5.2.1 Features of trials 
 
The trials in this section were concerned with examining the behaviour of Monte Carlo Markov 
Chain (MCMC) estimation in MLwiN on both our selected datasets. Accumulated experience 
has led the Centre for Multilevel Modeling to recommend this approach where very complex 
cross-classified structures and many levels are concerned. Prior to the development of the 
MCMC implementation the analysis of such complex structures required an adaptation of the 
main Iterative Generalised Least Squares (IGLS) procedure which was at the heart of MLwiN.  
Following Rasbash and Browne (2004) we call this adaptation the RG method. The methods are 
further discussed in ‘Report 3: CC Review’ and full technical details of the RG method are 
described in Rasbash and Goldstein (1994). One advantage of an MCMC approach is that 
certain information on structural aspects of crossings is not an integral part of the estimation 
process as it is with RG. For instance, one  practical aspect  of this in RG is that there  model 
estimation need to use large numbers of columns of  variables since explicit indicator dummy 
variables  are required for each unit in  certain classifications in the crossings. If there are a large 
number of units in such classifications, for example wards, demands on the worksheet size 
create memory restrictions.  There is also the necessity in the RG method for the inversion of 
large matrices and this creates additional computational difficulties. Frequently model fitting 
crashes or takes an inordinate amount of time. Some of these problems are related to increased 
need for memory and the exhaustion of that which is available, but there is also a technical 
limitation. The RG method necessitates estimating large numbers of variances which need to be 
constrained to be equal. This often creates numerical instability and causes a failure of the 
method to converge. For simpler smaller scale models and datasets, MCMC processing may be 

                                                 
5  This is labelled k3matscr in the results of ‘Report 2: Levačić’ and in the edited data sets.  
6  This is labelled pexaav  in the results of ‘Report 2: Levačić’ and in the edited data sets.  
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much more demanding than RG due to extensive simulation, and in those cases RG may be 
preferred. However and conversely, there is a trade off due to the greater processing 
requirements and intricacies of RG when it is required to handle much complexity and larger 
scale models. Experience has shown that in many cases with suitable choice of Bayesian priors, 
the two approaches give similar results. Rasbash and Browne (2004) discuss these methods 
more fully and give a more detailed comparison of their relative advantages and disadvantages 
with example analyses. 
 
There are two limiting features of the MCMC results to be discussed in this section which we 
should carefully note here: 

• They ignore the endogeneity issue since our point is to examine how the estimation 
handles the complex data structures involved. Any computation problems will be 
magnified for larger datasets, since although the structures remain similar, the number of 
units at various levels multiplies. Thus we wish to see how the procedures manage for 
our subsets in this respect. The hope might be to extend the MCMC approach to the 
multi-process models for handling endogeneity that we have suggested. We will make 
some comments on the feasibility of this in discussion of one of our other trialing 
processes. 

• The MCMC approach currently implemented in MLwiN cannot fit models where 
random effects from two classifications that share the same set of units are specified as 
correlated.  As discussed previously we may wish to consider this situation for LEA of 
school and LEA of residence. Therefore later in this section we contrast with an 
approach using WINBUGS with MCMC estimation that allows such correlated effects in 
order to examine possible consequences of this restriction. MLwiN is also currently 
being developed to allow this feature.  

 
In the discussion we need by necessity to touch on a number of technical matters, terminology, 
and diagnostic statistics connected with MCMC. We refer unfamiliar readers to the user’s 
manual, Browne (2003), for detailed explanations. This includes full information on Gibbs 
sampling which is  the simulation method used,  the meaning of default prior distributions used 
for the model parameters, suitable choices of number of iterations after ‘burn ins’ and  other 
technical concepts we may refer to. For the models considered here following the guidelines and 
from experience with similarly sized problems the MCMC algorithms are run for 50,000 
iterations after a 5,000 iteration burn in. A desktop machine with 0.5Mb of RAM running under 
Windows 98 was used. 
 
We firstly consider the West Midlands subset of the data and initially part of the fairly full 
random effects structure considered in the previous chapter. The structure is illustrated in the 
classification diagram of Figure 2.  First we cross-classify school by ward. Since the geography 
of the cells of this specification is not hierarchically arranged beneath specific LEAs, we have 
separate effects for LEA of school and LEA of residence at the top levels. Thus there  are the  4 
higher random classifications lea(school), lea(area), school and ward, with respectively 8 , 34 , 
223 and 452 units on a dataset with 32579 level 1 units (pupils). We see that there are many 
more lea (area) units consequent on the pupils crossing the boundaries to go to school from 
areas outside West Midlands LEAs. Since the data selection has been based on LEA of West 
Midland’s schools there are very few lea (school) units. As noted in a previous chapter the pupil 
representation of the 26 outside lea (area) units will be rather sparse. We also note that for this 
subset with only 8 West Midlands lea (school) units the estimation of the variance of that 
random effect might be quite imprecise. An alternative might be to specify these LEA effects as 
fixed in a practical application. However, our concern is to examine the feasibility of the random 
effects structure, so for the trial we leave them specified as random. It might also be pointed out 

 26



that,  as is well known in modelling treating them as fixed effects would prevent us later 
introducing  covariates defined at the lea(school) level (see Fielding (2004) for example). 

 

Lea (school) Lea (area) 

Ward 
School 

KS3 
pupils 

  Figure 2: Classification diagram for Models  1-4 involving the ward by school 
 crossing at level 2 and lea (school) by lea (area) at level 3 
 
 
We then use the same structure but now apply it to the larger and more extensive Combined 
Selection data. For this the 4 higher random classifications lea(school), lea(area), school and 
ward have respectively 25 , 112 , 534 and  1995 units with 80,032 level 1 units (pupils). We 
note that due to out of area children and since the selected 25 school LEAs were geographically 
spread, most of the English LEAs are represented in the lea (area) classification. There are 
consequently a large number of wards of residence many of which will again be sparsely 
represented.    
  
We will firstly consider simple variance components models in both cases with an intercept but 
no predictor covariates. These are labelled Model 1 and Model 2 for West Midlands and 
Combined Selection respectively. The variance components models establish bases by which we 
may judge the relative sizes of the sources of structural variation. In most substantive 
applications it is the convention to use such bases against which further model developments are 
judged. We will later look at fitting more predictors in each case. We will then in a later 
subsection consider using output area rather than wards to extend the scope of the 
experimentation. The latter will be restricted to the Combined Selection dataset.  
 
The models we fit in this using MCMC in MlwiN are summarised in Table 5.1.  A reference to 
this table might help the reader in keeping track of the essentials of each of the model fits as 
they develop. The classification diagram in Figure 2 will be appropriate for the first four models. 
It will be essentially the same for Model 5 and Model 6 but the ward will be replaced by output 
area in the right hand box at level 2.    
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Table 5.1: Essential features of Models 1-6 
 

Model  Levels and crossings Data Set  Predictor 
covariates 

3: lea (area) by lea (school) 
2: ward by school 

1 

1: pupil 

West Midlands  No 

3: lea (area) by lea (school) 
2: ward by school 

2 

1: pupil 

Combined Selection No 

3: lea (area) by lea (school) 
2: ward by school 

3 

1: pupil 

West Midlands  Yes 

3: lea (area) by lea (school) 
2: ward by school 

4 

1: pupil 

Combined Selection Yes 

3: lea (area) by lea (school) 
2: output area  by school 

5 

1: pupil 

Combined Selection  No 

3: lea (area) by lea (school) 
2: output area  by school 

6 

1: pupil 

Combined Selection Yes 

  
There are two possible software reasons for an analysis not to be feasible; time and memory. If 
the problem requires too much memory then that may make a problem totally infeasible on a 
particular computer, whilst if it will take 2 years to run this will also be infeasible.  
 
Note that for each model we have chosen to only run for 50,000 iterations after a burn in of 
5000 iterations as a basic test of memory usage. If we needed to run for longer then we could 
use thinning (see Browne (2003)), thus not requiring additional storage. In evaluating we will 
time the 55k iterations and look at convergence diagnostics to estimate how long we need to run 
for.  Since this exercise is to scope analysis feasibilities we will barely comment on the 
substance of the empirical estimates apart from, in passing, brief remarks on a few essentials 
which may be of interest.  
 
5.2.2   MCMC estimation of variance component models with four random classifications  
 
Model 1 (West Midlands) and Model 2 (Combined Selection) have classification diagram as in 
Figure 2 and both are expressed symbolically as  
 

i i i i

(5) (4) (3) (2)
i 0 0,lea (school) 0,lea (area ) 0,ward 0,school 0iy u u u uβ += + + + + + e  

 
The substantive results on variance component estimates for Model 1 and Model 2 are displayed 
in Table 5.2. 
  
Table 5.2: Results for Models 1 and 2 
 

 Model 1:  
WEST MIDLANDS  

Model 2:  
COMBINED 
SELECTION  

 Estimate Standard 
error 

Estimate Standard 
error 

Fixed effects     
Intercept 5.945 0.0744 5.962 0.0541 
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Random effect 
variances  

    

Lea(school) 0.020 0.028 0.042 0.019 
Lea (area) 0.013 0.011 0.013 0.004 
Ward 0.023 0.004 0.025 0.002 
School  0.426 0.043 0.357 0.023 
Pupil  1.206 0.010 1.176 0.006 
     
MCMC Deviance* 98456.77  240110.21  

 
* Note:  Here and in later tables of MCMC analyses we include the MCMC deviance statistic for completeness 
and for any future comparison with other analyses on the data set. It is not directly relevant to the comments we 
offer here. It is a goodness of fit statistic which offers one basis for model selection as models are fully developed 
and elaborated. Full technical details of the form and use of this statistic are found in Browne (2003). 
 
Model 1 took around 20 minutes to run. The larger Model 2 took just over an hour. For Model 1 
the Effective Sample sizes for the 6 parameters are 211, 682, 1428, 32k, 5.3k and 48k 
respectively.  Browne (2003) gives a technical explanation of the meaning of this concept and 
its role in judging the performance.  The Effective Sample sizes were 176, 1017, 857, 30k, 3777, 
46k for Model 2. Broadly though, this information and examination of other MCMC diagnostics 
such as the set of Raftery- Lewis statistics suggests that 50k stored iterations will give for the 
most part reasonable estimates for both models. The possible exception is for the intercept 
estimate in Model 2 where the diagnostics suggest that 60k iterations might be preferable. We 
note that the refinement of mixing of the Markov chains and hierarchical centring as discussed 
in detail by Browne (2004) might improve performance. We might also note as previously 
discussed that for the West Midlands set the LEA school effect might have been fitted as fixed 
effects due to there being only 8 LEAs in this subset. This might have improved computation 
time if models without covariates as here were all that were eventually required  
 
Initially for substantive reasons we note that area ward variation is noticeably smaller than 
school. This may be due to wards being too large in aggregate to pick up area variation which 
might be evident for smaller discrete pockets of area effects whose socio-economic 
characteristics may influence educational achievement. The two LEA effects are relatively small 
and are also imprecisely estimated relative to their size. There may be a small element of 
confounding of these two effects since information on their separation is provided only by out of 
area children. However, we believe there are sufficient numbers of such children for us to 
separately identify such effects. There is scope for further research on methodology for looking 
at this aspect of these models.  
 
We also might note that despite the two datasets being purposive selections with possibly 
different characteristics the variance component estimates are not widely dissimilar. The 
implication might be that subsampling of the full dataset would not necessarily be an 
undesirable operation in a full scale analysis. We can also see that the standard error estimates 
are much smaller for the larger Combined Selection set of Model 2 than they are for West 
Midlands. This is unsurprising since the variances for each set of random effects are based on 
much larger samples of units at each level.  
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5.2.3   MCMC estimation of models with four random classifications and with predictor 
variables 
  
We next investigated adding predictor variables to the models using the same structure. For 
comparison the predictors are the same as the ones developed and used in the final models of 
‘Report 2: Levačić’.  Readers are referred to that report for full definitions. These predictor 
covariates are a mixture of variables measured at various levels in the hierarchy. Thus we would 
expect some changes in the residual random effects variances away from those in the base 
model as predictors explained part of that variation. 
 
There were some initial problems in fitting these models resulting in the programme crashing. 
On investigation there appears to be a newly discovered bug in MLwiN (now corrected) 
involving the missing data prior to entering the MCMC estimation code. Missing data often 
applied to whole units in the various lower level classifications and this creates problems since 
the current procedure tries to fit these units into the analysis. This bug is informative in 
developing the relatively new MCMC procedures and will be worked on.  However a 
workaround is not to rely on automatic handling with missing data but to listwise delete cases on 
the required columns prior to analysis.  This reduced the number of cases by 10% to 30910 for 
the West Midlands set and by 5% to 75983 for the Combined Selection.  As a check on the 
impact of this case deletion the initial variance components models were re-run on the reduced 
sets. These gave similar results to before. We are thus reasonably assured that the missing data 
mechanism is not informative and that results are unlikely to be biased for these reasons 
 
We then added the predictors and ran the full models; Model 3 for West Midlands and Model 4 
for the Combined Selection. We note that three of the original predictors, Start lowest age 12 
(school has 12 as lowest age of entry), Start lowest age 13 (school has 13 as lowest age of 
entry), and Jewish school could not be used in West Midlands model since they took on constant 
values for that subset. Similarly Start Lowest Age 12 was not used for the Combined Selection 
Model.  . These unfitted predictors are indicated by * in the results displayed in Table 5.3. 
 
The Model 3 run was successful and took around 78 minutes for the total 55k iterations. The 
Model 4 run took several hours.  Model 4 as a one-off for the larger dataset, however, seems 
feasible. However, iterative model development which would be required in a full scale analysis 
would be very time consuming since each time we adopt a model change according to standard 
model fitting strategies we might have to wait a considerable length of time before moving to an 
improved changed model.  For both models from an examination of the Effective Sample size 
statistics and other diagnostics it appeared that 50,000 stored iterations in the MCMC procedure 
was sufficiently long run to get precise estimates. 
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 Model 3:  
WEST MIDLANDS  

Model 4:  
COMBINED 
SELECTION  

     
 Estimate 

 
Standard  
Error 

Estimate Standard  
Error 

Fixed effects     
Intercept 3.280 0.511 3.0488 0.167 
Expenditure per pupil (averaged) -0.0000014 0.000033 0.000013 0.00002 
Female 0.0445 0.007 0.051860 0.004 
Age (days from Sept 1st 1989) 0.00019 0.00003 0.00020 0.000 
SEN Action/Action Plus -0.290 0.011 -0.2936 0.007 
SEN Statement -0.331 0.034 -0.3118 0.018 
Eligible for FSM -0.104 0.009 -0.105 0.006 
Ethnicity (base, white)     
Asian, Indian 0.096 0.020 0.0799 0.016 
Asian, Pakistani/Bangladeshi 0.028 0.023 -0.0142 0.016 
Asian, other 0.038 0.042 0.0922 0.028 
Black -0.016 0.018 -0.0144 0.013 
Chinese 0.296 0.056 0.226 0.031 
Mixed Ethnicity -0.011 0.017 -0.0160 0.013 
First language not English 0.038 0.018 0.0967 0.012 
Key stage 2 maths adjusted -0.126 0.023 -0.0786 0.016 
Key stage 2 maths adjusted squared 0.166 0.003 0.162 0.002 
School Variables:     
School has sixth form -0.0029 0.025 -0.0100 0.017 
Start lowest age 12 *   *  
Start lowest age 13 *  0.130 0.072 
Gender of school (base, mixed)     
Boys' school 0.066 0.056 0.0376 0.028 
Girls' school 0.146 0.052 0.0654 0.065 
Type of school (base, comprehensive)     
Grammar school 0.175 0.069 0.217 0.039 
Secondary modern school 0.094 0.064 0.0022 0.042 
Other type of school 0.145 0.158 0.0039 0.055 
Religious denomination of school 
(base, non-denominational) 

    

Roman Catholic -0.013 0.036 -0.0206 0.020 
Church of England 0.039 0.065 0.0486 0.031 
Other Christian 0.053 0.093 0.0553 0.067 
Jewish *  0.101 0.111 
Per cent eligible for FSM in school -0.012 0.003 -0.00878 0.002 
Per cent eligible for FSM squared 0.00013 0.00005 0.00005 0.00003 
Per cent AEN in school 0.00020 0.0010 0.00156 0.001 
Specialist school 0.031 0.024 0.0227 0.014 
Special measures -0.051 0.074 -0.0748 0.040 
EIC or EAZ  0.095 0.057 0.0441 0.038 
Beacon school 0.099 0.047 0.0331 0.024 
Leading Edge Partnership -0.090 0.082 0.0250 0.036 
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Leadership incentive grants -0.061 0.053 -0.0608 0.035 
Teachers' pay ratio (averaged) 0.187 0.457 0.220 0.128 
Urban local authority district -0.088 0.053 0.00012 0.021 
Capacity Utilisation (averaged) 0.014 0.053 -0.0196 0.049 
Census variables:     
Proportion Unemployed -0.159 0.168 -0.176 0.122 
Proportion Black Ethnicity -0.057 0.099 0.100 0.063 
Proportion Chinese Ethnicity -0.285 0.284 -0.0936 0.157 
Proportion  Pakistani/Bangladeshi 
Ethnicity 

-0.203 0.044 -0.1283 0.028 

Proportion Indian Ethnicity 0.089 0.049 0.0722 0.046 
Proportion Lone Parent Households  -0.099 0.033 -0.161 0.021 
Proportion NVQ Level 1 or less  -0.419 0.039 -0.388 0.024 
     
Random  effects variances     
Lea(school) 0.0027 0.003 0.0021 0.00113 
Lea (area) 0.0024 0.002 0.0047 0.0020 
Ward 0.0039 0.001 0.0186 0.0014 
School  0.022 0.003 0.0043 0.0005 
Pupil  0.294 0.002 0.300 0.002 
     
MCMC deviance 49898.88  124113.2  

 
Table 5.3: Results for Models 3 and 4 
 
Note: * indicates that covariate effects could not be fitted since the covariates       
                had constant values within the data subsets analysed 
 
The results for fixed effect coefficients are broadly what we might expect from substantive 
results in ‘Report 2: Levačić’ so we are confident that data and other estimation problems are 
ironed out well.  Naturally there are a few minor differences both between the above two sets of 
results and with those of ‘Report 2: Levačić’ but these may be naturally due to the nature of the 
purposive selections. The Combined Selection may be broader in character than some features 
which may be special to the West Midlands. In full scale substantive analyses the results are 
suggestive that effects of region and interaction with other covariates might be worthy of 
detailed exploration. That the results are again broadly comparable is again a pointer to designed 
sampling of the full data as a reasonable prospect. We take this matter up in the final section of 
the report. Since the point of this report is not one of substantive investigation we refrain from 
commenting much on the results per se. That would necessitate more in the way of an iterative 
model fitting strategy and full model development. In passing though we can observe that both 
in these models and in ‘Report 2: Levačić’ we can identify a few obvious variables which seem 
to have large effects relative to their standard errors:  proportion in residence output area with 
NVQ Level 1, Chinese ethnicity, and dummy indicators relating to categories of statementing of 
Special Educational Needs. We might also note the large reduction in residual school variances 
over the base model which is hardly surprising since many of the explanatory covariates are 
defined at the school level. In more extensive model development with additional explanatory 
variables relating to areas of residence we might expect a larger reduction in their residual 
variances also.  
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5.2.4   MCMC estimation replacing ward by output area in the hierarchy. Variance 
 Component model on combined selection dataset  
 
The place of residence hierarchy in the structure of course contained further levels and we 
considered firstly replacing the ward level with output area in the larger Combined Selection set 
of data. The sample of 80,032 came from a large number of 26,294 output areas so this run is an 
investigation of the feasibility of a large number of random effects. The structure we investigate 
is as in Figure 2 but the output area replaces ward in the crossing with school at level 2. The 
average of about 3 children per output area is indicative of sparsity. The output area is also the 
level at which the census predictors are used and ‘Report 2: Levačić’ indicates these as proxy 
for family socio-economic characteristics. Here by having additional random effects for 
unobservable sources of small area variation we are perhaps too close to these child 
characteristics with small numbers of children to be able to separately unconfound these area 
effects from those of family. But this is part of the feasibility exercise which touches on the 
substantive interpretation of any such estimated effects. The run was quite successful. The 
results of the variance component model, Model 5, are in Table 5.4 below. 
 
Table 5.4: Results for Model 5 
 

Fixed effects Estimate Standard error 
Intercept 5.9542 0.055 
   
Random effect variances    
Lea(school) 0.0438 0.021 
Lea (area) 0.0047 0.002 
Census output area 0.0586 0.004 
School  0.3730 0.024 
Pupil  1.1371 0.007 
   
MCMC Deviance 237402.9  

 
  
5.2.5   MCMC estimation replacing ward by output area in the hierarchy. Model  with 
predictors on Combined Selection dataset  
 
After listwise deleting for missing data, the model was fitted to a reduced dataset of 75,983 
pupils on the Combined Selection data using the predictors. This run took over 5 hours, which is 
indicative that lengthy work would be involved in model development, evaluation and choice. 
Diagnostics revealed a satisfactory number of MCMC iterations. The results of fitting this 
Model 6 are in Table 5.5 
 
We note that the output area residual variance has reduced considerably in this model over the 
base model and this is hardly surprising since the census predictor variables are measured at this 
level. However, compared to the school residual variance the unobserved sources contributing to 
the area effect are still quite considerable. 
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Results for  Combined selection dataset    
Output area  as lower level area of 
residence effect  

  

Fixed effects    
   
 Estimate  Standard 

Error  
Intercept 3.056 0.165 
Expenditure per pupil (averaged) 0.0000096 0.000021 
Gender 0.051 0.004 
Age (days from Sept 1st 1989) 0.00020 0.000019 
SEN Action/Action Plus -0.294 0.007 
SEN Statement -0.312 0.018 
Eligible for FSM -0.105 0.006 
Ethnicity (base, white)   
Asian, Indian 0.080 0.016 
Asian, Pakistani/Bangladeshi -0.012 0.016 
Asian, other 0.091 0.028 
Black -0.014 0.013 
Chinese 0.227 0.031 
Mixed Ethnicity -0.016 0.013 
First language not English 0.096 0.012 
Key stage 2 maths  -0.077 0.016 
Key stage 2 maths squared 0.162 0.002 
School Variables:   
School has sixth form -0.005 0.017 
Stat lowest age 12 *  
Start lowest age 13 *  
Gender of school (base, mixed)   
Boys' school 0.035 0.029 
Girls' school 0.063 0.028 
Type of school (base, comprehensive)   
Grammar school 0.210 0.039 
Secondary modern school -0.004 0.057 
Other type of school 0.002 0.055 
Religious denomination of school (base, 
non-denominational) 

  

Roman Catholic -0.022 0.021 
Church of England 0.045 0.031 
Other Christian 0.057 0.066 
Jewish 0.093 0.114 
Per cent eligible for FSM in school -0.009 0.002 
Per cent eligible for FSM squared 0.00006 0.00003 
Per cent AEN in school 0.002 0.001 
Specialist school 0.021 0.014 
Special measures -0.084 0.040 
EIC or EAZ  0.037 0.038 
Beacon school 0.029 0.025 
Leading Edge Partnership 0.0260 0.037 
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Leadership incentive grants -0.055 0.035 
Teachers' pay ratio (averaged) 0.243 0.125 
Urban local authority district 0.001 0.021 
Capacity Utilisation (averaged) -0.025 0.051 
Census variables:   
Proportion Unemployed -0.191 0.127 
Proportion Black Ethnicity 0.101 0.059 
Proportion Chinese Ethnicity -0.134 0.159 
Proportion  Pakistani/Bangladeshi Ethnicity -0.119 0.026 
Proportion Indian Ethnicity 0.056 0.042 
Proportion Lone Parent Households  -0.168 0.022 
Proportion NVQ Level 1 or less  -0.396 0.024 
   
Random effects variance    
Lea (school) 0.0020 0.0014 
Lea (area) 0.0057 0.0022 
School 0.0194 0.0014 
Census output area  0.0098 0.0010 
Pupil  0.2931 0.0018 
   
MCMC deviance  122468  

 
Table 5.5: Results for Model 6  
 
5.2.6   Testing MLwiN’s MCMC procedure on the full available structure. Variance 
component model on Combined Selection dataset.  
 
In the final trial with MCMC we decided to test on the Combined Selection data MLwiN’s 
ability to cope with further higher classifications by including all of the potential residence 
levels outlined in the structure in the previous chapter. This structure has six higher-level 
classifications. For residence we have four levels; output area nested in ward nested in local 
authority district nested in LEA of residence. For the education hierarchy there are two; school 
and school LEA. 
 
Table 5.6: Results for Model 7 
 

Fixed effects Estimate Standard error 
Intercept 5.958 0.055 
   
Random effect variances    
Lea(school) 0.0411 0.0191 
Lea (area) 0.0035 0.0025 
Local Authority district 0.0018 0.0013 
Ward 0.0227 0.0021 
Census output area 0.0433 0.0036 
School  0.3531 0.0231 
Pupil 1.1352 0.0065 

 

 35



Model 7 is thus a variance component model with just a random intercept term. The results of 
the run are given in Table 5.6. We note again that we cannot in this implementation allow 
correlated effects for the two LEA classifications. 
 
This run took some time and it would take quite a large number of hours with added predictors. 
It is still feasible but might prove restrictive in iterative exploratory model investigation unless 
the time restriction was recognised.  It was concluded that the structure of the data was such that 
confounding of random effects does not pose serious problems.  
 
5.3 Restricted Maximum Likelihood (REML) Estimation Using GENSTAT    
     (Endogeneity Ignored) 
 
GENSTAT has REML algorithms that have been specifically designed for large crossed random 
effect models and are reputed as computationally very efficient. In experimentation, data 
preparation using Excel as an intermediary proved quite difficult due to the size of dataset,. Thus 
this trial additionally required the programming of a short piece of code from the programming 
language C to get the data into the right format for GENSTAT. There is also no simple graphical 
user interface with GENSTAT to make model development easy. We will, however, suggest a 
strategy in our conclusions which might include the use of GENSTAT in a fully developed 
project. This might make use of its computational efficiency in a final phase of the development 
of a full project using cross-classified models. 
 
Given time and resource constraints in this scoping exercise the various options cannot be fully 
explored. Thus experimentation is limited to the default methods for linear mixed models on 
intercept only variance components models.   
 
The West Midlands subset of 30910 after listwise deletion of observations that had missing 
values on one or more predictors was fitted.  The model with 4 higher-level classifications (LEA 
of school (8 possibilities), School (218), Ward (443) and LEA of residence (32)) was handled 
very easily by GENSTAT and was completed in a matter of seconds. 
 
The estimates are given in the following Table 5.7 and compared with the corresponding 
MCMC results. Estimated standard errors are in parentheses 
 
Table 5.7: Results of REML trial compared with MLwiN MCMC results 
 

Parameter Genstat REML 
 
Estimate (SE) 

MLwiN 
MCMC 
Mean estimate (SE)

MLwiN 
MCMC 
mode/median 

Fixed effects    
Intercept 5.949 (0.068) 5.949 (0.073) 5.949/5.949 
Random effects 
variance  

   

LEA (school) 0.012 (0.018) 0.018 (0.027) 0.000/0.009 
LEA (residence) 0.008 (0.006) 0.011 (0.009) 0.000/0.009 
Ward  0.023 (0.004) 0.023 (0.004) 0.023/0.023 
School  0.421 (0.042) 0.426 (0.043) 0.420/0.423 
Pupil 1.206 (0.010) 1.206 (0.010) 1.206/1.206 

 
We note that there is really good agreement with MCMC results. In the table the mode and 
median of the MCMC posterior distribution are given in addition to the mean used in the 
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previous results. The mode would correspond with the maximum likelihood estimate (Browne 
(2003)). We see that the REML estimates all lie between the MCMC mode and mean. The LEA 
school variance is based on only 8 LEAs and so is very small and hard to estimate precisely by 
all methods. This limitation might be removed on wider datasets. 
 
For further experimentation the same model was tried on the full dataset with 464,709 
observations after having removed a few with missing unit identifiers. This time we have 149 
LEAs (both for school and residence), 3083 schools and 7963 wards. Impressively, although 
GENSTAT evidently found this dataset harder to manage this variance component model was 
fitted in less than 15 minutes. The estimates are given in Table 5.8 
 
Table 5.8: REML estimates for full variance component model o full data set 
 

Parameter Genstat REML 
Fixed effects  
Intercept 5.971 (0.0197) 
Random effects 
variance 

 

LEA  (School) 0.031 (0.006) 
LEA  (Residence) 0.008 (0.002) 
Ward  0.028 (0.001) 
School 0.267 (0.007) 
Pupil 1.204 (0.003) 

 
It should be noted that in the time available testing further models with GENSTAT on this 
dataset was infeasible. Problems with fitting predictor fixed effects are not envisaged. Previous 
experience found that GENSTAT is not very good with large sets of random effects when the 
response is binomial.  Also there is no experience to draw on in order to comment on how good 
it is at fitting random coefficients or its functionality in this direction. Such extended 
specification of models might be required in a full project. GENSTAT could also not as yet 
handle multi-process models which will be required ultimately to handle the endogeneity 
problem. This situation may change. However, due to its relative speed it may have a role to 
play in a full scale project in ways we will indicate. 
 
5.4 MCMC Estimation Using WINBUGS Allowing Correlation Of Highest Level        
Effects 
 
One constraining feature of the MCMC procedures in MLwiN mentioned above is that we 
cannot allow correlation between random effects for two classifications sharing a common set of 
units. Such a correlation may prove to be an important feature. For our structure it seems 
reasonable to investigate a possible correlation between the lea (school) and lea (area) effects. 
Intuitively these pair of random effects might be thought to be subject to similar common 
unobserved influences. WINBUGS is a general statistical modelling with random effects 
package using parallel MCMC estimation, but since it does not directly use special features of 
multilevel structures it has proved not as efficient as the MLwiN algorithm in many previous 
applications. However, it can accommodate the correlated effects that we require. Another 
example in area effects on mortality using a similar structure has been given by Leyland and 
Naess (2004). Given our resources available, trials were limited to the West Midlands dataset 
and models tried had separate use of ward and output area crossed structures with schools. The 
full set of predictors are used and the model fitted with the ward effect is   
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i i i i

using the same classification diagram as in Figure 2. This was as used in the MLwiN estimation 
above, but now correlated effects at the top level are allowed.  The vector 

(5) (4) (3) (2)
i 0,lea(school) 0,lea(area ) 0,ward 0,school 0iy X u u u u eβ += + + + + +  , 

β  is the parameter 
vector for fixed predictor effects including the intercept. Apart from variance parameters 

 and  for the highest level random effects we now allow them to have 

covariance .  We call this the ward model.  The model was also fitted replacing 
the ward effect by the output area effect and we label this second model the output area model. 
Setting up the models for WINBUGS requires quite a different characterisation for the 
specification of prior distributions of parameters. This leads to somewhat different prior 
specifications than the default MLwiN settings used in the previous experiments. For 
completeness full details of the structure of the prior distributions for the ward model are given 
in Appendix 4. A similar characterisation follows for the output area model by replacing the 
ward variance by the output variance. Results are presented in Table 5.9 and are now discussed. 

2
0,lea (school)σ 2

0,lea(area )σ

lea(school),lea(area )σ

 
For estimation two chains were used with different starting values. Following a burn-in of 10k, 
results presented are based on chains of length 25k (i.e. based on 50k draws)7. For further 
detailed methodological technicalities connected to chaining in MCMC, Browne (2003) may be 
referenced. 
 
The correlation between lea (school) and lea (area) effects was estimated to be quite positive at 
0.39 in both ward and output area models. However these were estimated very imprecisely. For 
the ward model the 95% confidence interval is  
(-0.67, 0.97). For the output area model it is (-0.71, 0.98). A main reason for the lack of 
precision is the restriction in this data set to only eight lea (school) units. There were many lea 
(area) units for which there was no matching of lea (school) units. The correlation is therefore 
based on quite a small sample of the top level units. It is also possible that running the chains for 
longer would lead to more precise estimates. We were concerned in this experiment to examine 
software feasibility for estimating this type of model so evidence on the substantive correlation 
structure may have to await full scale fitting. 

                                                 
7 These methods basically work by simulating (correlated) draws from the (posterior) distribution of the unknown 
parameters. These draws taken sequentially form a Markov chain i.e. a chain where the value of the next draw of 
each parameter is only dependent on its current value and not any past values. The chain of values can then be 
summarised as a distribution and this can be used  to calculate summary statistics for each parameter, for example 
it's mean and variance (estimate of standard error). The iterative process converges to a stationary distribution. 
Since the chain is stochastic - the current samples are conditional on the previous samples , the final values obtained 
are dependent on the starting values used. Running more than one chain facilitates the process of checking that the 
stationarity has been achieved, i.e. that the final  posterior distribution is independent of the 
starting values used 
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Table 5.9: Results on variance estimates for models estimated using WINBUGSS 
incorporating a correlation between the top level effects * 
 

 Ward model Output area model 
Random effects 
variances and 
covariances 

  

Lea(school) 0.0013 0.0013 
Lea (area) 0.0018 0.0023 
Covariance Lea(school), 
Lea(area) 

0.0005  
0.0006 

Ward 0.0039 -- 
Output area -- 0.0121 
School  0.0218 0.0228 
Pupil                               0.2942 0.2850 
Total variance {lea (school 
and lea (area) the same}** 

0.3239  
0.3248 

Total variance {lea (school 
and lea (area) different} 

0.3230  
0.3236 

VPC: % of variance due to 
higher level lea (school) 
and lea( area)-same 

1.2339  
 
1.5085 

VPC: % of variance due to 
higher level lea (school) 
and lea( area)-different 

 
 
0.9395 

 
 
1.1290 

 
Notes: *     The variances for the ward model are almost identical to the MLwiN estimation in  
                  the corresponding Model 2 above 
            ** Pupils going to school and living in same area will have a contribution of                        

 from the top levels to the variance. For        pupils living and 
going to school in different areas there will be no covariance 

2 2
0,lea (school) 0,lea (school) 0,lea (school).lea (area )2σ σ σ+ +

                  term. 
 
Although the correlation between the top level effects was estimated large, the actual size of the 
variances and covariance was small compared to the variances at other levels. Again, however, 
these estimates are very imprecise. Table 5.9 shows estimates (means of posteriors) of the 
variances and covariances of the random effects structure under the two models, together with 
some summary statistics. Fixed effects estimates which are not detailed were not out of line with 
those of previous results. Variance Partitioning Coefficients (VPC) which are the % of total 
residual variance attributed to levels are also given. Only about 1% of the total variation arises 
due to differences between lea (school) s or lea (area) s.  Therefore, despite the strong 
correlation between the two, it is possible to question the importance of either.  We initially 
questioned whether it was necessary to include a correlation parameter if the top level education 
and area effects were modelled. Further investigations possible include an examination of the 
relationship between residual estimates in both the MCMC framework of MLwiN and that of 
WINBUGS. These might have led to further insights which might govern the type of model to 
be used in full scale analyses. These have not been undertaken. However, to incorporate the 
correlation would at present require use of the more cumbersome and for our purposes time 
inefficient WINBUGS. Each of the above two models once set up took approximately 24 hours 
to run. It may also usefully noted that the machine used for this experiment had a somewhat 
higher memory specification than the one used for MLwiN. With the development of MCMC in 
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MLwiN and if such a framework was thought desirable, it could be implemented in MLwiN 
more easily in future. We return to this question in our conclusions.  
 
The model fit can be assessed using the DIC Information Criterion (see Spiegelhalter (2003) for 
a full technical discussion and how it is interpreted.). Of relevance here is the little difference 
between the values of this for the two models as in Table 5.10. This and other more detailed 
diagnostics revealed a similarity in their goodness of fit.  
 
Table 5.10:  Model fit diagnostic 
 

 DIC 
Information 
Criterion  

Ward 
model  

50251 

Output 
area 
model  

50236 

 
A model using both ward and output area (and local authority district) is feasible for this dataset 
in this type of model using WINBUGS. However, it would take even much longer to run than 
the current trials. 
 
5.5 Multiprocess Modelling Using RG Method In MLwiN 
 
So far in our trial analyses we have not considered the issue of endogeneity of resources. Our 
concern has been to evaluate the extent to which the existing methodology and software can 
handle the complex structures involved in the data. 
The methods we have considered have certain advantages in handling large complex datasets in 
ways we have outlined.  These advantages are also more apparent if we require handling the top 
level LEA feature of the structure. This requirement must remain an open question. However, in 
‘Report 2: Levačić’ the extension of estimation to handle endogeneity within a multilevel 
specification was through simultaneous equation multiprocess modelling of achievement and 
resources. This used the RG method and adapted straightforwardly the multivariate response 
features of MLwiN. However, specially written macros were required to set up the model and 
worksheet for the hierarchical education units though there is little detail of this in ‘Report 2: 
Levačić’ itself. In this section we consider adapting these macros to set up the more complex 
structures including cross-classification of schools within area units. We do not include the 
higher level units in this initial experimentation. In principle this could be done but the 
computation would be much more extensive. We will also later consider making further 
adaptations of this approach using MCMC estimation. However, in this connection we will 
outline some of the limitations of the currently developed software. 
 
The aim of the part of the scoping study in this section then was to explore the feasibility of 
estimating simultaneous equations models to assess the impact of the resource variable pupil 
expenditure, denoted by pexaav in model formulations, on KS3 maths attainment (y), while 
taking into account the cross-classification of schools by area of residence (wards or census 
output areas) in the attainment equation. We did not include the full set of control covariates 
(predictors) since this would have added to the computation burden. The resource equation is 
itself defined at school level since pupils within a school have a common value so without LEA 

 40



effects it is a simple single level equation.  Both the Combined selection and the West Midlands 
datasets are trialled 
 
We nest pupils within a cross-classification of schools and areas. Denote by  the attainment 
of pupil i in school j and area k. The multiprocess cross-classified model considered consists of 
the two equations of general form (1) and (2) below. These are estimated simultaneously. To 
emphasise the difference between the levels at which the two responses are measured it is here 
more convenient to use the older multilevel model notation (see ‘Report 3: CC Review’) 

)( jkiy

 
(y) (y)

i( jk) y i( jk ) pexaav j j k i( jk )y (X ) pexaav u v eβ β= + + + +    (1) 
 

(pexaav)
j pexaav j jpexaav (X ) uΓ= +      (2) 

 
 Here  is the data matrix of covariates to be applied in the attainment equation and 
pexaav is the endogenous resource variable. 

yX

pexaavX  contains covariates for the resource 
equation. Subject to identifiability constraints there could be overlap between  andyX pexaavX  in 

some applications. The are school random effects on achievement and 

resources. The  are area random effects; either ward or output area in the current trials. The 
usual pupil level disturbances are denoted by . 

(y) (pexaav)
j j ju (u , u= )

)( y
kv

)( jkie
 
Equations (1) and (2) define a multiprocess (simultaneous equations) model.  The equations are 
linked by allowing for correlation between the school residuals  and . This is the 
crucial way of handling the endogeneity issue. The model can also be thought of as a bivariate 
response model. MLwiN has special facilities for handling multivariate responses and it is to 
these that the MLwIN macros which need to be specially written are addressed. The MLwiN 
model allows the structure of the equations for multivariate response to be quite differently 
specified and this is a clear advantage here over some other software that might be available for 
multivariate responses. We should note that here the responses are defined at different levels. 
Attainment is at the pupil level. Expenditure is at the school level. The macro for the first trial is 
given in Appendix 3. This could readily be adapted for other specific models, different data sets 
and more complex structures.  

)( y
ju (pexaav )

ju

 
For the purposes of this part of the scoping study    contains an intercept and linear and 
squared terms for the prior ability variable; KS2 attainment in mathematics. Including the full 
set of predictor variables as in previous trials would present little difficulty but time to try these 
models would be more extensive.  The variables in

yX

pexaavX  used are the same set of instruments 
used in ‘Report 2: Levačić’: dummies for party political control of the local authority in 2002 
with reference category Labour control,  Average Standard Spending Assessment  per pupil, and 
Full Time equivalent (FTE) number of  pupils in 1999 8. In future work it might be appropriate 
to consider more extended specifications of the resource equations with additional predictors, 
random effects for LEAs and possibly interactions and differential LEA effects.  
 

                                                 
8  In  ‘Report 2: Levačić’ and in the edited data sets these variables are labelled : yrlab02 (Labour) yrcon02 
(Conservative), yrlib02 (Liberal) and yrnoc02 (No overall control);  SCPAAV (Average Standard Spending 
Assessment  per pupil); FTEPUP99 Full Time equivalent (FTE) number of  pupils in 1999.  
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Given the computation times required to fit these models, only wards were considered.  Due to 
the very large number of census output areas, models using this definition of area will take much 
longer to fit.  As such, it may be impractical to use the RG method using output areas and more 
complex structural features that we have previously entertained. 
 
LEA effects were not considered in these trials.  One approach for these data sets due to their 
limited number might have been to use fixed effects for lea(school) but  this approach would 
confound with LEA-level variables (see Fielding (2004)).   This would be a particular problem 
here as some of the instruments used to identify the resource equation are at the LEA-level. This 
problem does not arise if the top level effects are specified as random which might be the case in 
future analyses. 
 
To fit the multiprocess model in MLwiN, the data must first be restructured into bivariate 
response format . This is the first step in the detail of the macros.  Because the 
expenditure variable  is at the school level, only one response per school is needed. In 

preparation here,  is attached to the first pupil in each school.  Dummy variables (  

and  indicating the two different responses are then defined and these are interacted 
with covariates. 

i( jk) j(y ,pexaav )

jpexaav

jpexaav )( yw
(pexaav)w )

 
All estimation in these trials was carried out using the RG method based on IGLS, which is 
extremely computationally intensive given the large number of schools and areas, even for the 
restricted data subsets and using the larger wards rather than output areas. Estimation times can 
be reduced by using the XOMIT command to search for groupings and to omit cells in the 
school-ward cross-classification with few pupils.  In this analysis, cells with fewer than certain 
numbers pupils were dropped in the experimentation. Whilst this enhances the feasibility and 
was done for the purposes of this trial of the method, future questions might arise as to the 
advisability of this. Many of dropped cells are likely to arise because of the ‘out of area’ 
children who travel across LEA boundaries to go to school. These pupils may have entirely 
different characteristics and substantive interpretations of results may be somewhat distorted. 
 
The multiprocess cross-classified model is specified as a 3-level model. After searching for 
groupings in the cross-classification, the ‘group’ variable becomes the level 3 identifier.  
Schools are at level 2 and pupils at level 1.  Note that although it is usually more 
computationally efficient to put the classification with the largest number of units at level 2 
(ward, here), in this case we must put schools at level 2 since this is the classification is common 
to both responses.  Having specified this hierarchical structure, the SETX command is used to 
set  to have a random coefficient across wards.  The coefficients for both  and  
are random at the school level, and the coefficient for  is random at the pupil level. These 
are all essential details in the macro set up. 

)( yw )( yw (pexaav)w
)( yw

 
After dropping missing values, the Combined Selection data contains 75049 pupils, nested 
within 502 schools and 1969 wards.  We then fitted cross-classified models after dropping cells 
in the cross-classification of school and ward with 9 or fewer pupils, and then searching for 
groupings.  This led to 55 groups. The maximum number of wards per group was 117 wards. It 
is this latter quantity on which storage, memory requirements and hence feasibility and speed of 
execution of the RG method depend. The analysis dataset contains 55353 pupils, nested within 
488 schools and 1001 wards, so a fair amount of data was dropped to make the operation less 
time consuming. 
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Results from this analysis are given in Table 5.11 and are also compared with a single process 
achievement model which ignored the endogeneity issue. We may note the expected change in 
the resource coefficient in the attainment equation although other parameter estimates are 
broadly comparable. We note that here and in some other tables of results the resource 
coefficient is negative. This should not worry us unduly since we are only trailing the method 
and have not included all the necessary control variables. Without controlling for the many other 
observable factors which are associated with expenditure we are probably picking up the 
attraction of resources to schools in circumstances associated with lower levels of attainment. 
Apart from the endogeneity issue the full set of predictors will control for these and better 
specify the direct effect of resources. Evidence of the likely impact of endogeneity which has 
now been controlled is shown by the relatively large 0.32 correlation between school effects. 
Although the multiprocess model took about an hour and a half to run this is still quite lengthy 
given all the computing efficiency savings that have been considered. 
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Table 5.11:  Results from single and multiprocess cross-classified models (schools with 
wards) on Combined Selection data after omitting cells with ≤ 9 pupils. 
 

 Single process model Multiprocess model 
 Estimate St. Error Estimate St. Error 
KS3 maths attainment equation 
Fixed effects 

    

Intercept  2.747 0.069  2.753 0.073 
Expenditure per pupil (pexaav) -0.085 0.008 -0.129 0.005 
Key stage 2 maths -0.051 0.030 -0.051 0.031 
Key stage 2 maths squared   0.167 0.004  0.167 0.004 
     
Random effects variances     
Ward  0.0095 0.0009  0.009 0.0009 
School  0.040 0.0027  0.043 0.0025 
Pupil  0.316 0.0091  0.316 0.009 
     
Expenditure equation     
Fixed effects     
Constant - - -6.985 1.453 
Conservative in 2002 - - -0.054 0.043 
Liberal in 2002 - -  0.392 0.043 
No Overall control in 2002 - -  0.100 0.060 
Average Standard Spending 
Assessment  per pupil 

- -  0.003 0.0005 

Full Time equivalent (FTE) 
number of  pupils in 1999 

- - -0.001 0.0002 

     
Random effects variances      
School - - 0.800 0.110 
     
Covariance between school 
residuals for attainment and 
expenditure 

- - 0.060 0.009 

Correlation  between school 
residuals for attainment and 
expenditure 

  0.323  

Estimation time* 24 mins, 7 sec 1 hour, 12 mins, 33 sec 
*Estimation times are for a 2.80 GHz Pentium IV PC with 2GB RAM running Windows 2000.  
 
 
The next set of results in  Table 5.12 are from fitting the same  cross-classified model to the 
Combined Selection data  with less restrictive dropping of small cells. Cells in the cross-
classification of school and ward with 5 or fewer pupils were dropped followed by the usual 
search for block groups. This led to 23 groups with now a larger maximum of up to 421 wards 
in each. The analysis dataset contains 62394 pupils, nested within 497 schools and 1116 wards. 
Some of the coefficients and parameter estimates are sufficiently different from Table 5.11 to 
suggest that care should be exercised in routinely dropping certain cells for computational 
feasibility. The advisability of doing this must be balanced in any future fuller analysis. 
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However, we note that the less restrictive dropping of cells has more than doubled the time 
taken to fit the model 
 
Table 5.12: Results from single and multiprocess cross-classified models (schools with wards) 
on Combined Selection dataset after omitting cells with ≤ 5 pupils. 
 

 Single process model Multiprocess model 
 Estimate St. Error Estimate St. Error 
KS3 maths attainment equation 
 

    

Fixed effects     
Intercept  2.736 0.039  2.743 0.039 
Expenditure per pupil (pexaav) -0.089 0.008 -0.130 0.008 
Key stage 2 maths -0.032 0.018 -0.033 0.018 
Key stage 2 maths squared   0.164 0.002  0.164 0.002 
     
     
Ward  0.009 0.0007  0.009 0.0007 
School  0.041 0.003  0.044 0.003 
Pupil  0.314 0.002  0.314 0.002 
     
Expenditure equation     
Constant - - -7.071 0.717 
Conservative in 2002 - - -0.055 0.031 
Liberal in 2002 - -  0.391 0.120 
No Overall control in 2002 - -  0.101 0.035 
Average Standard Spending 
Assessment  per pupil 

- -  0.003 0.0002 

Full Time equivalent (FTE) 
number of  pupils in 1999 

- - -0.001 0.0001 

     
Random effects variances      
School - -  0.811 0.051 
     
Covariance between school 
residuals for attainment and 
expenditure 

- -  0.057 0.009 

Correlation  between school 
residuals for attainment and 
expenditure 

  0.302  

Estimation time 1 hour, 20 min, 46 sec 4 hours, 3 mins, 30 sec 
 
 
The model procedure was then tried on the West Midlands dataset. After listwise dropping of 
missing values this had 30910 pupils, nested within 217 schools and 443 wards. We analysed a 
cross-classified model after dropping cells in the cross-classification of school and ward but now 
can try a  looser criterion of  3 or fewer pupils, The search for non-overlapping groups of ward 
and school cells  led to 2 groups with 287 wards in one and 2 wards in the other. Thus the block 
grouping was not quite so useful here but this might be expected since the West Midlands set 
was based on contiguous areas and we might expect a more diverse crossing with less blocking 
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of groups of wards and schools. The analysis dataset contains 27641 pupils, nested within 215 
schools and 289 wards. Results are given in Table 5.13 below.   
 
Table 5.13: Results from single and multiprocess cross-classified models (schools with wards) 
on West Midlands dataset after omitting cells with ≤ 3 pupils. 
 

 Single process model Multiprocess model 
 Estimate St. Error Estimate St. Error 
KS3 maths attainment equation     
Fixed effects      
Intercept  2.777 0.053  2.773 0.053 
Expenditure per pupil (pexaav) -0.077 0.013 -0.060 0.013 
Key stage 2 maths -0.053 0.025 -0.052 0.025 
Key stage 2 maths squared   0.166 0.003  0.166 0.003 
     
Random effects variances     
Ward  0.009 0.001  0.009 0.001 
School  0.045 0.005  0.045 0.005 
Pupil  0.310 0.003  0.310 0.003 
     
Expenditure equation     
Fixed effects     
Intercept - - -9.284 1.188 
Conservative in 2002 - -  0.279 0.121 
Liberal in 2002 - - - - 
No Overall control in 2002 - -  0.043 0.045 
Average Standard Spending 
Assessment  per pupil 

- -  0.003 0.0003 

Full Time equivalent (FTE) 
number of  pupils in 1999 

- - -0.0016 0.0002 

     
Random effects variances     
School - -  0.606 0.058 
     
Covariance between school 
residuals for attainment and 
expenditure 

- - -0.024 0.012 

Correlation between school 
residuals for attainment and 
expenditure 

  -0.145  

     
Estimation time 21 mins, 2 sec 41 mins, 24 sec 

 
Even with this smaller data set with a smaller total number of random effects the run time is still 
quite considerable. The results also indicate that there is now negative correlation between the 
two school effects. There may be a regional dimension to some of this work which has not 
previously been uncovered. This will be handled to some extent if higher level LEA random 
effects to represent unobserved LEA factors were included in models. However, this is a 
dimension worthy of more investigation in future fuller analyses. 
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The macros used and the results above have embedded within them the RG adaptation of IGLS 
estimation. Indications are that computing requirements even if models are feasible on fuller 
data sets are likely to be quite extensive.  In many ways the multiprocess modelling is our 
preferred approach to handling endogenous variables in the complex random effect models. But 
it is clear that the RG method may require large amounts of resources and may indeed run into 
difficulties for larger datasets. 
 
The way forward as indicated by our previous trials may be to use more efficient MCMC 
methods once the bivariate models have been set up. MCMC in MLwiN can handle the 
multivariate responses though the extra feature may mean models take much longer to run than 
the previous trials indicate. There is, however one further problem in advocating this way 
forward which may not be restrictive in the longer term. At present using MCMC  it not possible 
to estimate bivariate response models (i.e. equations (1) and (2) jointly) where the responses are 
at different levels as we can using RG. Work in this direction is currently planned at the Centre 
for Multilevel Modelling as part of a current ESRC project. How long before this reaches 
fruition is an open question but any additional resource input to this development would 
obviously hasten the process. An alternative approach which uses a strict hierarchical modelling 
framework by iterating between the two hierarchies, here education and residences is suggested 
by Clayton and Rasbash (1999) and known as data augmentation. This approach has an element 
of both IGLS and Monte-Carlo simulation. It is shown to reduce estimation times for many 
cross –classified models with complex features. In principle the approach could be extended to 
multiprocess models. We have not trialled this since it would require very lengthy detailed work 
on writing of special macros for MLwIN but is an element of programme development that 
might be considered in any future full scale project. 
 
5.6   Multilevel Instrumental Variable (IV) Estimation Using MLwiN Macros 
 
‘Report 2: Levačić’ used IV estimation with the instruments for the endogenous variable as 
outlined previously. However this estimation did not explicitly consider a multilevel model 
specification but incorporated a refinement to adjust standard errors known as sandwich 
estimation. The latter produce robust standard errors allowing for clustering of pupils in schools. 
We have rehearsed some of the difficulties with IV estimation previously and in ‘Report 3: CC 
Review’. In principle this type of estimation is possible with tighter definitions of clusters to 
incorporate the cross-classes envisaged and we tried these in STATA. Implementation is fairly 
straightforward. However, the fitting of multilevel cross-classified models is the main objective 
of our scoping. To add to our trialling experience we considered the potential of IV estimation 
within an explicitly specified multilevel random effects framework. Spencer and Fielding (2000, 
2002) gave details of an MLwiN macro for such estimation of strictly hierarchical models 
within an IGLS approach and further considered its joint use with WINBUGS in model fitting 
strategies.  These approaches use a two-stage idea similar to the single level approaches used in 
‘Report 2: Levačić’ but extend to multilevel equations. Our original intention was to scope these 
various approaches to investigate their ease using  eight trials formed from three dichotomies of 
two datasets, two forms of cross class (using wards or output areas) and two strategies, MLwIN 
macro and joint use with WINBUGS. We did not consider the higher level LEA classifications 
for these trials.  All the trials considered require the adaptation of the macros to use the RG 
method for cross-classified effects. We also considered how the macros might be used in 
association with MCMC estimation of the instrumented achievement equation in order to 
improve efficiency. Most of these potential trials ran into severe difficulties for a variety of 
technical and computational reasons. The main ones were: 
• The larger data sets ran into difficulties and crashed using the IV macro due to space issues 

because of large number of random effects even when only the smaller number of ward units 
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was used. Even with the smaller West Midlands dataset these problems arose when output 
areas were tried as the area classification. 

• During the operation of IGLS procedure on occasion certain variances go negative during 
the iterative process. This would create difficulties for the matrix inversions required.  In 
straightforward applications this is handled effectively by the automatic routine stepping in 
to make necessary adaptations to the iterative process by inverting a full matrix.  In the 
special IV macro this often created insurmountable problems as MLwIN diagnostics 
indicated, mainly because the required matrix then became too large to cope with. This 
could be handled with by detailed re-writing of macros but was not possible to perform at 
this stage.  

• In the only reasonably successful trial, that of the West Midlands data set using wards as the 
area classification, parameter estimates could be found. However, there was difficulty in 
estimating their standard errors. The technical reason for this is that the current macros 
struggle to cope with the lack of more than one block created at the top level by the cross-
class. This is in turn due to the structure of the data with many ‘out of area’ pupils. Omission 
of certain cells with few level 1 units might aid this as with the experimental multiprocess 
models. However, this could not be tried with consultancy resources available. More 
detailed programming of the macros was also suggested as the outcome of this trial and may 
be possible in future. 

• In the successful trial for technical reasons connected with their prevalence in certain units it 
proved difficult to fit the full set of predictors. This was mainly due to the constancy of their 
values in the limited data set used. 

• The use of MCMC estimation of main instrumented equations in MLwiN, which might have 
overcome some of the above problems proved a non starter with the current macros. They 
were specifically designed for IGLS and it seems would have to be extensively re-written to 
handle MCMC. 

• Since the joint use of the macros with WINBUGS is predicated upon successful operation of 
the MLwiN macros, it proved infeasible to attempt this strategy.  

 
The results for the one trial referred to are given in Table 5.14 below along with a straight non 
IV estimation which did not take endogeneity into account. Where estimates are comparable 
results are broadly in agreement with estimates in other type of trials considered previously. We 
emphasise again that no standard error estimates are available for the IV estimation 
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Estimation using the IV macro in MLwiN for 
the West Midlands dataset 

Non IV estimation  
(ignores endogeneity 
of expenditure) 

Instrumental 
Variable 
estimates 

Fixed effects  (St error in 
parentheses) 

 

 Estimate Estimate 
Intercept 3.0740 (0.4765) 1.752 
Expenditure per pupil (pexaav) 0.0000387 (0.000048) 0.000394 
Female 0.0469 (0.0069) 0.0724 
Age (days from Sept 1st 1989) 0.0001878 (0.000030) 0.0001691 
SEN Action/Action Plus -0.2909 (0.0105) -0.2706 
SEN Statement -0.3326 (0.0344) -0.3499 
Eligible for FSM -0.1050 (0.0020) -0.1077 
Ethnicity (base, white)   
Asian, Indian 0.0967 (0.0198) 0.0803 
Asian, Pakistani/Bangladeshi 0.0276 (0.0229) 0.0351 
Asian, other 0.0364 (0.0423) 0.0223 
Black -0.0177 (0.0179) -0.0163 
Chinese 0.2957 (0.0559) 0.2705 
Mixed Ethnicity -0.0128 (0.0168) -0.0217 
First language not English 0.0396 (0.0185) 0.0703 
Key stage 2 maths adjusted -0.1270 (0.0234) -0.1281 
Key stage 2 maths adjusted squared 0.1663 (0.0028) 0.1663 
School has sixth form 0.0044 (0.0231) -0.0062 
Grammar school 0.2454 (0.0545) 0.1934 
Secondary modern school 0.0675 (0,0634) 0.0752 
Roman Catholic -0.0222 (0.0379) 0.0077 
Per cent eligible for FSM in school -0.0111 (0.0031) -0.0138 
Per cent eligible for FSM squared 0.0000835 (0.000050) 0.0000584 
Per cent AEN in school 0.000953 (0.000938) 0.000602 
Specialist school 0.0220 (0.0218) 0.0182 
EIC or EAZ  0.0402 (0.0541) 0.0270 
Leadership incentive grants -0.0686 (0.0556) -0.1174 
Teachers' pay ratio (averaged) 0.3310 (0.4376) 0.5775 
Urban local authority district -0.0617 (0.0492) -0.0574 
Capacity Utilisation (averaged) -0.0319 (0.0988) 0.1932 
Proportion Unemployed -0.1538 (0.1670) -0.2247 
Proportion Black Ethnicity -0.1025 (0.0886) -0.2180 
Proportion Chinese Ethnicity -0.2498 (0.2809) -0.3298 
Proportion  Pakistani/Bangladeshi Ethnicity -0.1851 (0.0373) -02124 
Proportion Indian Ethnicity 0.0883 (0.0446) 0.2086 
Proportion Lone Parent Households  -0.1054 (0.0327) -0.1582 
Proportion NVQ Level 1 or less  -0.4398 (0.0368) -0.3546 
Random  effects variances   
Ward 0.0038 (0.0026) 0.0040 
School  0.0243 (0.0025) 0.0277 
Pupil  0.2933 (0.0034) 0.2937 

 
Table 5.14: Estimation results using the IV macro in MLwiN for the West Midlands dataset 
 
The Instrumental Variable estimation considered in this section is nearest in idea to that used in 
‘Report 2: Levačić’. It may be considered as a possible approach for those familiar with this 
type of estimation. It is seen to be not very practical at the moment for broader studies. 
However, with more advanced programming of the macro,  which as indicated may be required 
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it, could possibly be implemented for further study. This approach might appeal for those more 
comfortable with this type of approach to handling endogeneity.  
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6  Conclusions and Recommendations 
 
6.1 General  
 
The above discussion of our scoping exercise suggests some optimism about possibilities of 
undertaking a full scale exercise using cross classified models to incorporate structural area of 
residence effects into models of pupil attainment. However there are some limitations to these 
possibilities which would need to be initially addressed. Also certain questions, particular those 
concerning computational possibilities, could possibly only be answered by a fuller iterative 
model development approach to the exercise. 
 
We are also cognisant of the broader research framework and the need for analytical models to 
be developed in response to sharper questions in policy contexts about the purpose of the 
approaches considered. Thus one caveat we might express is to what extent the identification of 
area differences might assist resource allocation issues when these are determined at LEA and 
school levels. Above all we suggest that any analytical  exercise needs be very detailed and will 
require much more in the way of time and resources than might have originally been envisaged.  
 
We discuss our conclusions and recommendations under a number of discrete headings, though 
they are inter-related. We will refer to aspects of this inter-relatedness as we outline the 
arguments. 
 
6.2 Data   
 
It will be evident from section 2 that the provided secondary dataset with which it is proposed to 
work may require considerable prior attention. We have outlined in some detail certain problems 
we uncovered and some ways of addressing them. There may also be difficulties in preparing 
data for use on other specialist software, which though not insurmountable, may require careful 
attention. In our scoping exercise we have concentrated our attention on the experimental 
subsets of data. The full STATA dataset must be subject to more detailed scrutiny. The 
preparation of a fully documented codebook of variables included and their source would be of 
beneficial. More generally preparation of databases and their detailed documentation must be 
viewed as a crucial part of any analytical process.    
 
Although the dataset contains more of less the full set of available PLASC variables on children 
and schools, other potential covariates for inclusion in the achievement model are more limited. 
In particular the census information relates to output areas only and the variables available are 
restricted to those found useful in ‘Report 2: Levačić’. We are aware that originally wider 
information on output areas was used in that report. There is no guarantee in advanced model 
development that the same variables might emerge as useful or indeed that the same set of fixed 
effect predictors will suffice. Thus access to broader sets of data on output and other areas might 
be beneficial. 
 
We have considered a range of different areal units in our exercise and discuss how these enter 
into model frameworks below. One aim of model development might be to seek to explain how 
different variation in the hierarchies is explained by covariates at the appropriate levels. Thus 
there may be a need for data to be augmented by available measures at these levels and merged 
to the existing data. The rapidly developing neighbourhood statistics facility of the Office for 
National Statistics at www /neighbourhood.statistics.gov.uk/ is an obvious source of potential 
information but there may be others that investigation may uncover. 
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In further discussion of model frameworks we have suggested that for many purposes additional 
area identifiers of  one or more layers of Super Output units might be useful. In principle this 
could be merged into the dataset in similar ways as those we have used to merge the Local 
Education Authority of residence. Covariate information might also be available at this level 
from sources we have discussed. 
 
6.3 Models And Structure  
 
It will be evident from all of our discussion that our preferred way of conceptualising the 
situation is through multiprocess cross-classified multilevel models. The multilevel aspect of 
this was also considered briefly in ‘Report 2: Levačić’ for the education hierarchy. These types 
of models with more than one response in multilevel structures are also often called multilevel 
structural equation models. Here we have two such equations in the model, one for achievement 
and one for resources. We suggest that joint modelling of these be seen as the culmination of 
exploratory iterative model development and not as one-off exercises with pre-determined sets 
of effects.  
 
For each equation there are two aspects to this which may need further consideration: which 
fixed predictors effects to try and which structural random effects.  
 
We take the achievement equation first. In the experiments in this report we have gone with the 
fixed predictors used in ‘Report 1: Vignoles’ to trial the methodology. However, for reasons we 
have seen in commenting on the data there are others which may be fruitful and which could and 
should be tried. Which random effects to incorporate and reflecting different levels of the 
detailed structure discussed in Section 4 is a matter of trial and judgement in the process of 
model development. The less complex the structure to be fitted the less problematic are the 
statistical and computational criteria that we have considered. Balanced against this is the desire 
to get a full picture of areal variation at various levels. This in turn is conditioned by research 
questions to be addressed; caveats about which were raised above. There is, for instance, an 
open question of whether we need to consider the highest level of LEA variation for both the 
education and area hierarchies. The evidence on this is limited since the number of LEAs in our 
experimental data sets has been relatively few and results have inevitable low precision. 
However, we feel that if they are to be included, the equation should allow them to be correlated 
in developing the models. We feel that postcodes are of limited relevance except as a necessary 
identifier of other areal units. Our investigation of the data has also revealed some question of 
whether output areas are at all useful as a random effect given their large number and closeness 
to the pupil level units. Their inclusion also creates considerable computational burdens for 
many estimation methods. Again given their size we might question whether identification of 
census output area effects would be at all useful for such things as area initiatives in adding 
much to what we already know about the few children in each. Such initiatives may just as well 
be directed at individual children.  However, super output areas and wards are perhaps more 
meaningful units to consider. They are also easier to manage analytically. The data would need 
to be augmented to handle them both in ways suggested in the previous section. Our general 
predisposition is to recommend that in model development super output areas, wards, and LEA 
of residence correlated with LEA of school might initially be used. This would ease any burden 
of computation, whilst at the same time being substantively relevant. At a later stage other 
effects in the area hierarchy might be explored if they were thought to be relevant for certain 
questions. 
 
In some ways it is easier to make suggestions about modelling the random effects in the 
resource response equation. The variables in the data to be used are observed at the school level 
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and although applied to each pupil in the data is in fact constant for pupils in the same school. 
Thus, apart from school disturbances, this equation will have a simpler random effects structure 
including only an LEA effect if that is incorporated. Which covariates (or instruments) to 
include is somewhat more of an issue and can only be fully answered in the process of model 
development. The predictors used in ‘Report 2: Levačić’ were conditioned and limited to some 
extent by the requirements of the instrumental variable estimation used and the focus was really 
on improved estimation of the achievement equation. In our experimentation we have also only 
considered this set of instrumental predictors. However, in a simultaneous equation framework 
we might get a better view of the interplay of resources and achievement with a more detailed 
specification of predictors in the resource equation. Since the multiprocess characterisation 
recognises the linking of the two there is nothing to constrain resource equation specification 
except technicalities of whether their coefficients can be identified. It may also include many of 
the same variables used in the achievement equation. This is a matter of further necessary 
econometric investigation which could be quite detailed and somewhat outside our remit. In 
principle also achievement could be included in the resource equation. This might recognise the 
mutual dependence of resources and achievement raised as an issue in ‘Report 2: Levačić’. We 
would recommend that such matters are fully investigated in future research.  
 
6.4 Estimation Methodology  
 
We have considered extensions to IV estimation in a multilevel setting in our experimentation to 
parallel the IV estimation in ‘Report 2: Levačić’ using robust standard error estimation. There 
are some statistical inefficiency issues arising from such estimation frameworks which in 
general lead us to prefer other alternatives. Apart from this our IV estimation macro would 
require considerable programme development were it to be considered. We leave this possibility 
open for further consideration if it were thought that such an approach had a more familiar 
appeal. 
 
Our preference is for some way of estimating fully specified multiprocess cross classified model 
using the available multilevel estimation methodology. The experimentation has had some 
success using the RG method based on the maximum likelihood IGLS approach. However, we 
have noted computational limitations using this method for more complex structures and also 
for larger datasets. It is recognised that MCMC estimation is computationally more efficiently 
for cross-classified models though paradoxically not so for strictly hierarchical random effects. 
We have had some success in using the MCMC procedures in MLwiN which shows how they 
can handle quite complex random effects structures quite reasonably. Philosophic debates about 
the appropriateness of Bayesian procedures apart,  there are also certain statistical attractions of 
MCMC. We get fuller information on uncertainty about parameter estimates. However, we have 
not as yet been able to incorporate MCMC into the multiprocess macros due to current 
limitations we outline below. Nonetheless, subject to these limitations being resolved we 
recommend MCMC estimation within the framework of MLwiN be the preferred estimation 
approach to model development.  
 
6.5 Software    
 
We have recognised that there is now a plethora of software that can now handle multilevel 
structures. Rather fewer are adept at cross-classified structures. The software with which we 
have experimented has been used to explore more fully certain model features from a statistical 
and computational view to enable us to judge certain feasibilities. These software items are ones 
with which we are familiar and are most likely to be familiar to the UK research community. 
This is not to suggest that other ranges of software are not capable of handling some of the 
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issues. We discuss this in ‘Report 3: CC Review’. The programme MPLUS (Muthen and 
Muthen (1998)) specifically designed for multilevel simultaneous equation structures is one 
which might be worthy of further investigation. However, we are unable to scope all software 
and we believe that which we have used is likely to be most appropriate for the issues under 
investigation. Our preference would be to recommend handling future research using MLwiN. 
This software has a number of advantages apart from its facility in handling the type of model 
and estimation envisaged. Its windows and graphical interface enable the easy study of results 
and diagnostics making model investigation and development clearer and more organised. Its 
macro facilities also make its use adaptable to a variety of features which may not be routine in 
most software. In full scale model development we also envisage a greater role for random 
coefficients in both achievement and resource models. This would be particularly fruitful for 
examining differential effects for distinct subgroups of pupils, schools and/or areas. MLwiN is 
particularly useful for such modelling. Some limitations of MLwiN for the current exercise 
have, however, been uncovered, but are capable of resolution as discussed below. We can also 
see a place for REML estimation in GENSTAT at a late stage in any research when it is desired 
to fit just a particular pre-specified model quickly and efficiently.  It is not software, however, 
with which we have a great deal of familiarity. It is also subject to some limitations as we will 
outline. 
 
6.6 Software Limitations  
 
MLwiN currently has two limitations which have informed our scoping, but which we believe 
can be addressed: 
 
(i)  To handle the computational constraints which our experimentation with the RG methods 
has shown, MCMC estimation using a multiprocess framework has been suggested. However, 
this estimation method in MLwiN cannot at present handle multivariate responses observed at 
different levels in the structure which we require. 
 
(ii) The MCMC algorithm in MLwiN cannot at present handle correlated random effects when 
two classifications in the structure are the same sets of units. Thus if we desire to incorporate the 
LEA effects in our model development we are presently constrained. This was a main reason for 
experimenting with the less user friendly and slower facilities of WINBUGS. 
 
The MLwiN programme is under further continuous development with ESRC funding and these 
two issues are on the agenda. How quickly they will be resolved is subject to prioritisation in 
this development. If future research is to follow up this scoping we recommend that part of the 
resources be apportioned to this development and the extension of the multiprocess macros. We 
make this recommendation for obvious reasons. 
 
GENSTAT currently has limitations for simultaneous response but our consultants indicate that 
it may be possible to adapt it as a further aspect of programme development to which resources 
may be devoted. We spell out below a possible role for GENSTAT. 
 
6.7 Full Dataset Versus Sampling  
 
Using the full data set, even when cleaned and augmented in the ways suggested above, might 
present some challenges to analysis. It was used successfully in ‘Report 2: Levačić’. However, 
in the context of more complex structures it is not so much the number of level 1 records that 
stretch computing feasibility as the sheer number of complex random effects generated by the 
full data for any suggested model. This would still be the case even if the levels are constrained 
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somewhat. We believe MCMC estimation could handle the full data set feasibly but the main 
problem would be the sheer computation time involved. This would make the process of model 
development quite a cumbersome business.   
 
However the whole of statistical experience suggests that with careful attention to sample design 
there is no necessity to contemplate full census operations. The only difference here is that we 
have the full data available but would like to economise on our stretched analytical resources 
whilst at the same time achieving parameter estimate results which would be in broad agreement 
with what might emerge from a full data analysis. Thus one further recommendation we might 
make is that the dataset can itself be sampled according to scientific principles. One broad 
suggestion might be three stage epsem design of children within schools within LEAs. 
Stratification factors might also be introduced at each stage. We make no specific 
recommendation about a sampling plan but a suitable design could emerge from further 
investigation. The sizes of the subsets of data with which we have successfully resolved 
computing constraints are indicative of the sorts of final sample sizes we might expect to be 
more manageable. Since data gathering is not an issue here there could also be an element of 
cross-validation by drawing several samples using the same design. Some recent work by the 
PLASC user group is also considering the practical use of sampling the data. An attractive 
feature is that even if attention is restricted to a sample, the full data set may be drawn on for 
ancillary information such as that of all schools attended by sampled  pupils apart from their 
current ones..  
 
Although we have not explicitly discussed it in our scoping, one output from analysis to which 
attention might be drawn is the estimates of the residual effects at various levels in the twin 
hierarchies. Educational researchers are of course used to interpreting school effects in ‘value 
added’ terms and much the same interpretations might be accorded to different area effects.  We 
might like to have these available for schools and areas in the full national dataset but which 
samples from the data might not fully provide. This is where we see a potential role for a 
suitably redeveloped GENSTAT approach where we might consider final model specifications 
being run quickly and efficiently as one-offs on the full set of data. However, we are unsure as 
yet of the capabilities of GENSTAT for handling random coefficients which may be required. 
 
6.8 Handling and Imputation Of Missing Data 
 
In section 2 and elsewhere we commented on handling missing data in the provided data and the 
potential impact of its extent. We also believe that the data set provided to us may have also had 
a prior deletion of many cases from the full PLASC database because of unavailable information 
on key variables used.  In our trials we have had to perforce listwise delete of many cases when 
sometimes maybe only one variable used in a model was missing on a case. Such deletion of 
cases to handle missing information is possibly acceptable if we could regard the data as missing 
at random. However, there are serious caveats about whether this is so. In particular whole 
schools are often deleted since they have missing information on many key variables including 
the responses. It is becoming recognised that a cavalier treatment of missing data by deleting 
offending cases may lead to distortions and bias. This is particular important when reasons for 
missingness are often connected to the analytical purposes of the model. For instance, it may be 
that whole school cases missing may be in those schools with entirely different patterns of 
relationship of achievement to resources. Method for handling missing data in statistical 
modelling have been available for some time for single level models. Imputation of  values 
using information in the data set is one approach  A recent ESRC project has extended some 
useable imputation methods for implementation for multilevel models and in particular for use 
with MLwiN. The work undertaken by James Carpenter (London School of Hygiene and 
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Tropical Medicine) and directed by Professors Kenward, Goldstein and Molenbergs has led to 
the development of a web site www.missingdata.org.com. This amongst much else contains 
information on the methodology and implementable software macros.We believe that these 
ways of handling missing data alongside model development will vastly improve the statistical 
and substantive quality of any future work. 
 
The conclusions and recommendations we make above imply a fairly large full scale exercise if 
the issues are all to be satisfactorily addressed.  
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Appendix 1: 

Detail on the appropriateness of the database for secondary analysis 
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A1.1 Problems with case and level identifiers 
 
(i) Schools: 
The  summative introduction to  ‘Report 2: Levačić’ talks of  ‘over 3000’ secondary schools and  
descriptive statistics  reported in Table 6 of that report  seem to imply that  there are  3011 
establishments in the dataset. However, the unique identifier in the available dataset for such 
establishments, leaestab (labelled school id), has 3082 values, excluding a missing value for 
school for 17 students coded rather curiously at 0.  Another variable in the dataset k3_estab 
appeared to be a code for establishments within LEAs. For this a particular code may apply to 
several schools across different LEAs. The code 6900 for example was applied to schools in 12 
different LEAs. In principle this poses no difficulty if it is known and can be taken in 
conjunction with an LEA identifier.  However, this was not transparent either from the report or 
the database itself and was only discovered by noting from tabulation that certain code values 
seemed to have abnormally large frequencies.  If the combination with LEA information is 
undertaken, taking missing values on both variables into account, another derived school 
identifier was created by us which also has establishment values. It was then discovered, though 
this was not immediately transparent from documentation that such a variable, k3-schid (and 
also labelled school id) which agreed with ours had also been created in the dataset with a 
similar 3082 non-missing distinct codes. For this variable 16 missing code values of 0 were 
applied. For  the most part values of leaestab and k3-schid agreed except for 9  cases where a 
missing value zero was applied to just one of them but not the other. Further investigation 
revealed that the use of missing value codes was inconsistent.  Only 12 cases had common 
missing value codes of zero. For leaestab, 5 missing values were given, and for k3_schid 4 
cases, where the value of the other variable was non-missing. The reasons for this discrepancy 
are not apparent.   The mismatch between 3082 values of the dataset and 3011 of the report   
may have a simple explanation but this is neither transparent nor immediately explicable to us.  
 
Another school identifier in the dataset is schname, the name of the school, which may be 
required for some purposes although it is strictly not necessary for modelling work. There were 
6841 missing values as spaces (including the 17 for which most information was missing) and 
these were all a subset of those cases with missing local education authority name, leaname (see 
below), and presumably left out for the similar inscrutable reasons which will be outlined. 
Amongst the non missing cases, 2944 distinct school names were identified. The missing cases 
corresponded to 69 distinct codes for leaestab. Allowing for some small overlap of these two 
groups the sum of 3013 is suspiciously similar to the 3011 schools quoted in ‘Report 2: 
Levačić’.  In any event it is different from the 3082 distinct school code numbers and there is a 
possibility of name duplication across authorities. These anomalies would need to be subject to 
detailed investigation in any full analysis of the data set. We have restricted our attention to 
ironing out problems for the subsets of the data with which we later experiment. 
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(ii) Local Education Authorities:  
Similar problems as with schools surround the Local Education Authority identifier. Two 
variables are available in the dataset pertinent to this k3_lea and leaname. k3_lea is apparently 
the DfES three digit code of LEAs. Again 17 cases were recorded as 0 (missing) and 149 
distinct value codes. Comparison with DfES sources shows the absence of the code 201, City of 
London.  Buried at the end of Appendix 1 of ‘Report 2: Levačić’ is a statement ‘As there were 
only 2-3 schools in each year in this category (the LEAs with other political control were Isles 
of Scilly, Rutland, City of London) these LEAs have been omitted’ Apart from the inscrutability 
of this statement which is possibly the reason for exclusion of the City of London, it is 
inconsistent with the inclusion of cases for Isles of Scilly and Rutland.  
 
A tabulation of leaname showed 7663 cases with missing values left as empty spaces and 146 
other distinct values. Further comparisons with k3_lea revealed that 374 and 22 missing values 
were respectively the whole subsets of cases for Rutland and Isles of Scilly respectively. Apart 
from 17 common missing values, the other 2250 missing names were distributed amongst 50 
other LEAs which had been coded in k3_lea. We are not sure why these values were recorded as 
missing but the hint for Rutland and Scilly implies that they might be cases which were 
excluded from some analyses. However, for reasons explained above these reasons are not 
entirely transparent. For identification and later interpretation it might be advisable to have these 
names recorded and in updating the database we have edited them in. Apart from Isles of Scilly 
and Rutland,  the other explanation for the number of values being 3  fewer in leaname was the 
labelling of both Hull and  Kingston (Surrey) as ‘Kingston Upon’. An obscure  filter for this 
discrepancy was later discovered at the end of the data. However in an updated edit we have 
labelled them distinctly. 
 
(iii)  Student: 
The case (level 1) identifier k3_pmr, pupil matching reference number, appears to be 
satisfactorily unique with 464766 distinct codes plus the usual 17 missing spaces. However, its 
18 digit alphanumeric code is cumbersome for transfer to other specialist programmes. A 
STATA encoding command to transfer the code to sequential integers proved infeasible due to 
large number of unique values so EXCEL was used as an intermediary to generate this unique 
code af_case_id in an edited STATA file. SPSS was also used for some data manipulation 
facilities since it has more flexible features for some purposes. Transfer of files between STATA 
and SPSS is relatively easy using the STATtransfer programme. 
 
A1.2 Some other missing value issues 
(i)   Some difficulty was created for us initially in the conventions for missing values since 
nowhere are these explicitly identified. Tabulation of specific variables one by one was required 
to identify the nature of how they were coded. The conventions were inconsistent. Variously 
used were spaces, the STATA system missing value ‘.’ and sometimes rather curiously the digit 
0.  The latter may not be instantly recognised as missing particularly where it is used in scaled 
variables such as dobdays (date of birth with Sept 1 1988=1) and all the KS2 and KS3 scores. 
The latter issue is further confounded by the statement in ‘Report 2: Levačić’ Appendix II that 0 
also means students disapplied from the test or working towards the level. It is not clear from 
the commentary whether such cases had been included in the dataset, though we presume not.  
None of these variable values are identified as missing by the STATA data description facilities 
and could easily be overlooked without care and deep knowledge of this particular file 
construction. In STATA itself, missing values for categorised variables are not always 
recognised as missing values and assigned a separate category.  This was one of the problems in 
transferring the data files to system files for specialist software which until we identified the 
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issue proved somewhat troublesome. We resolved this matter for the most part by recoding all 
missing values, once they were recognised, to something obvious like -999. These could then be 
reconverted to recognisable system missing values on input into other software. Many of these 
issues may not have proved so troublesome had an explicit codebook been available. We have 
not edited the full data set in these ways, being content to do it for our experimental subsets. We 
have also attended to the issue only  for those variables and identifiers used in the trial analyses. 
A good deal of further cleaning and editing work on this matter may be required if the full data 
set is to be exploited further by other users.  
  
(ii)  The data set had 17 cases on file for which most identifying information including a 
pupil reference number was missing.  For many specific variables used in our trial analyses the 
code 0 was entered unanimously into the data file. Due to unanimity (e.g. all such cases for 
gender were coded 0) we believe these may be missing values. Certainly no other missing value 
codes could be identified. The problem here is that in many cases 0 is also a code used for a 
specific category of a variable (e.g. for gender, male =0, female =1). We speculate that there 
may be many other cases for which information on the gender variable may be missing and yet 
coded as male. Without reference back to the original PLASC database it is difficult to say. Yet 
it is known from educational considerations that missing information often relates to children 
with specific characteristics which may distort analyses if there are quite a number of them and 
their presence not accounted for. 
 
Similar problems arise for some other variables we have identified and wanted to use in our trial 
analyses such as the eligibility for free school meals indicator (fsmpup), and the special 
educational needs variable sen (none=0, school action or action plus=1, statement =2), where 
again we believe 0 has also been used as missing. Of course the likely impact of such problems 
in analysis will also depend to some degree on the extent of missingness. Without further 
information this is difficult to assess.  However, some other variables, such as First Language 
not English indicator (engornot), are quite satisfactory, as they use the explicit STATA system 
missing value ‘.’.  
 
(iii)  A related problem occurs for many variables which are dummies created from a 
compound categorised variable with several categories and where missing value information is 
not carried through to the dummies. In some cases such as sen this is due to possible 
missingness being confounded with the category coded zero as indicated above. In other cases 
where an explicit missing value is recognised in the original categorised variable this is not 
recognised in certain indicators. For instance, the dummies ethasianpakbang (Asian, 
Pakistani/Bangladeshi), ethasianind (Asian Indian), and ethasianoth (Asian, other) are formed 
from the categories of the ethnic group variable eth_03 which contains a 21,592 case 
unclassified category. For some purposes these are treated as missing values but this 
missingness is not recognised in the indicators. Curiously it is recognised for other ethnic 
indicators such as ethblack (Black), ethchine (Chinese), ethmixed (Mixed ethnicity). This 
inconsistency is a source of some confusion. The point is not trivial either. It is possible that 
inability to classify may be more prevalent in Asian groups and since the misclassified is a 
relatively substantial 5% of all cases, distortions in analyses may occur. The important ethwhite 
(White) does recognise unclassified as missing but again has an extended definition to include 
white British, Irish, traveller of Irish origin, gypsy romas, other whites. In some analyses White 
is declared as a base category but in fact the base also includes the ‘any other ethnic group’ 
category. This designation may  be due to the use of  0 as a code for this combined category in 
an alternative broader  grouped ethnicity variable ethnic_5 (major ethnic group: not white)  
Fortunately the  ‘any other ethnic’  group is not large but if not recognised may  lead to some 
misinterpretations.  
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(iv)  One indicator used in ‘Report 2: Levačić’ and our trial analyses (although generally 
statistically insignificant) was urban_lad (urban/rural local authority district).  This indicator 
was declared to have STATA system missing values for 6824 pupils in 71 schools. Examination 
revealed that the many of these were in local authority districts which had been assigned a value 
for urban_lad for other cases in the set. To take just two examples, out of 1867 cases in district 
00CH there are 145 declared missing and out of 584 cases in 43UG, 13 are missing. Thus their 
declaration is rather curious unless it is due to the fact of these cases being excluded from most 
analyses for other undeclared reasons. A clue that this may be the reason is that the same set of 
cases are declared missing on schage18 (school has pupils aged 18 or 19), taken as proxy for 
presence of a sixth form. Such information appeared unavailable for 71 schools in the dataset 
and presumably pupils and schools were dropped for analyses involving schage18. However, 
these matters are not transparent and initially led us to some perplexity in understanding until 
investigations were undertaken. The variable urban_lad is also an indication of small 
misclassification error in the data set. To take the two examples above, 6 of the cases in OOCH 
are misclassified as rural, as are 21 cases in 43UG. Such small measurement or coding errors are 
probably inevitable in most large data sets and this is a recognised methodological problem 
which may not be serious unless the impact is large. However, in this case there is a consistency 
check available in the data set and any thorough cleaning of the data should handle it. It may 
also arise for a number of other variables in the data which we have not investigated.   
  
(v)  We also find it rather curious that many schools have missing information on key 
variables used in analyses. The same set of 71 schools and 6824 cases are also missing 
information on type of governance, school gender, numbers of schools within a certain distance, 
and all of the wide range of special designations such as educational action zones, special 
classes, special measures and beacon school. This is also the case for statutory lowest age of 
pupils and school denomination but additionally 4 other schools and 529 cases also have 
missing values. A different additional set of 16 schools and 2114 cases are missing data on type 
of school indicators (grammar, secondary modern or comprehensive). The time series measures 
of school GCSE performance indicators, school size, aggregates such as percentage of pupils 
eligible for free school meals, staffing and expenditure are also missing on most of these schools 
and quite a few others. These cases have possibly been dropped from original analyses and 
presumably are due to deficiencies in central schools database. But this gives us some concern 
since there is no indication of why this should be so. 
 
It is likely that the schools with missing information are unique and special and for reasons 
directly connected with the objects of the analysis and so cannot be treated as missing at 
random. If this is so the possibility of distortion in analyses is evident although its likely impact 
is difficult to assess. However, we feel that some method of imputation might ultimately be 
beneficial and we return to this issue later.  
 
(vi)   We have mainly concentrated on cleaning variables likely to be used in our analyses 
and for our data subsets both by direct checking and intuition. However, although unable to do a 
complete investigation we have spotted in passing a number of other anomalies.  We mention 
three. First the variable a5_ag_02, the 2002 school aggregate for 5+ grade A*-G at GCSE, has 
been designated a percentage measure in labelling and possibly analyses; but it is in fact a 
proportion in the data. There may be others. The effects of such variables in analysis may be 
misinterpreted unless ironed out. Second, there are also some seemingly absurd outlier values in 
one variable we have noted. The ratio of fte pupils to fte unqualified teachers 02/03 in one 
school is recorded as 39,907. Indeed 24 schools covering less than 1% of cases have figures for 
this ratio of over 10,000. Although there are no data in the file on absolute numbers of fte 
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unqualified with which to compare, a clue may be found in the data for uqtr0203, the ratio of 
unqualified to qualified teachers. For example, this is 0.00061, or 6 in 10,000, in the extreme 
school. The only explanation for this apart from data errors is the presence of unqualified 
teachers working a tiny proportion of the teaching week. The only check on this would be with 
the original schools database but we flag such matters as of some concern. The presence of such 
extreme outliers leads to highly skewed distributions. These may lead to distortions particularly 
if used   in linear models unless recognised and handled. Third there is also another problem 
with the use of such ratios where the denominator can be zero as it often is in this data set. The 
result of trying to divide by zero in routine programmed derived variable calculations usually 
leads to a system missing value result. Thus over 12% of schools and over 11% of cases have 
missing values on   uqtr0203. Apart from some genuine missing values most of these are 
schools with zero unqualified staff. We are not aware that this particular variable or similar has 
been used in any published analyses but this is worth a flag if any such analyses were 
contemplated. Zero unqualified staff is after all a real proxy indicator of some concept of 
maximum quality and may be important. The usual way of handling this is to take the reciprocal 
or some other transformation which avoids the mathematically impossible division by zero.  
 
(vii)  A final anomaly with the data set is that values for string variables have occasionally 
been entered misspelled or with excess leading spaces so that the same value is often recognised 
as distinct values. With careful attention tabulation of the data variable by variable can uncover 
such difficulties and in previous analyses this has probably been the case. This problem also 
makes matching and transfer of data to other software more difficult. 
 
 
A1.3 Issues connected to area units and their identifiers 
  

• Postcode: 
  The variable pl_post is the familiar six or seven digit alphanumeric code and is given for 

all but 15 of the usual cases. Some specialist software has difficulty with the input of 
such codes so we have converted to sequential numeric code by switching between 
programmes and using devices similar to the above treatment of student identifiers. 
There are 321583 distinct postcodes in the data set yielding an average of only 1.45 KS3 
children per postcode. 

   
• Output area: This variable, oacode, is a ten character alphanumeric code which for 

similar reasons to the above has been converted similarly to sequential numbered 
identification. Apart from the 14 of the usual missing cases, there are 142598 unique 
output areas in the data set, an average of 3.26 KS3 children per output area. For some 
purposes it may be possible to separate out such small area higher level effects but the 
sparsity of the clustering and the necessity for large numbers of output area random 
effects may render the exercise somewhat infeasible for the full data set. 

 
• Ward: This is a  six figure alphanumeric coded with 14 missing values and 7963 distinct 

codes, an average of 58.4 KS3 children per ward. Conversion to numeric codes in the 
edited data set has also been undertaken. Ward random effects in a multilevel model and 
a crossed model due to its larger size are possibly computationally easier to handle. 
Ward is also represented by its name, the variable ward_desc with 15 missing values and 
7213 different values. The discrepancy from the number of ward codes suggests a 
duplication of names across different districts. If ward name were to be used as a 
meaningful identifier some way needs to be found to edit and re-label duplicates in 
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further data cleaning. We have concentrated for now on resolving anomalies for our 
experimental subsets used later. 

 
• Local authority districts: This is the highest level of area of residence present in the 

data set  and labelled lad_ua (local authority district unitary authority).As indicated 
above this is leading four alphanumeric characters of  ward and output area codes. There 
are 14 missing values and 360 unique codes. Some modelling may trial such higher level 
authority residential area if it seems there is a possibility of an effect at this level. The 
local authority district is also represented by the name variable lad_uade. This has 73 
missing values and now 356 unique names. The discrepancy of 4 distinct values has not 
been investigated since it would require careful matching of names to codes. Also it may 
be due to the larger number of missing values. This discrepancy would need to be 
resolved if names were to be used in any fuller set of analyses. 
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Appendix 2: 
Further examples of structural features of the data 
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A.2.1   Birmingham  
 
Table A1: Local authority district of residence of 9763 KS3 children in Birmingham schools 
 

Birmingham  9206 
Sandwell  216 
Solihull  101 
Walsall  76 
Bromsgrove  66 
Dudley  29 
Lichfield  26 
North Warwickshire  16 
Tamworth  6 
Redditch  4 
Wolverhampton  3 
Cannock Chase  2 
Derby  2 
Worcester  2 
Basingstoke and Deane  1 
Bexley  1 
Hackney  1 
Medway  1 
Northampton  1 
Swale  1 
West Dorset  1 
Wyre Forest  1 
Total  9763 

 
Table A.1 presents the local authority district of the 9763 children attending Birmingham 
achools. Of  these 5.7% lived outside Birmingham. Most of theme are contained in areas 
adjacent to Birmingham and their wards and output area will also be represented by children in 
larger numbers in the West Midlands data. However, in forming cross-classes with Birmingham 
schools these will form sparse cells and increase the number of discrete non-overlapping blocks 
of schools in this data set. The numbers of random effects for areas will be increased by the 
areas out of this data set often with only one pupil. These will affect the computation time in 
many procedures and also affect precision of estimates. Some of the areas  in the table also seem 
on the surface to be absurd, e.g. Bexley or West Dorset. This may be due to inaccuracies in the 
PLASC database, or some other inscrutable reason. This investigation was undertaken before 
LEA of residence was merged with the dataset. Hence local authority districts were used for this 
exercise. 
 
A2.2: Some features of the West Midlands data set  
 
We also investigated the ‘out of area’ issue for the West Midlands data-set as a whole where we 
now regard this in terms of areas of residence of pupils in this dataset whose area of residence 
was outside the total boundary of the  LEAs included. Out of 32579 pupils there were only 625 
(1.9%) such pupils and 588 were in nearby districts in the broader area just outside the West 
Midlands LEA boundaries. Thus for experimentation with the West Midlands dataset ‘floating 
areas’ are  not likely to present as severe a problem as it might be  for the Combined Selection 
set. We conducted similar exercises for the whole West Midlands dataset as for Cambridgeshire 
in the main body of the report and Oldham below. Details are too elaborate to present here but 
are held on file. We satisfied ourselves that the West Midlands dataset might be very suitable for 
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experimentation, though we anticipated with large number of output area effects some 
computational difficulties for some methods. This turned out to be the case to some extent. 
  
A2.3: Crossing of areas by school for Oldham LEA: Summary Statistics  
 
Oldham had 2545 KS3 pupils in 15 secondary schools. There were 304  
(11.9%)  ‘out of area‘ pupils who came from 211 different output areas , within 44 wards in 8 
different local authority districts. These would potentially create similar problems in terms of 
number of sparse cells, blocks etc as in A1.. It is of interest to know that 138 of the 304  went to 
just two schools , Crompton House and Bluecoat. Nearly 50% of Crompton House pupils were 
out of area and over  35% of Bluecoats. It is just for such schools that the area effects are likely 
to be important and why the out of area pupils are often a different minority of pupils. They 
might considered as an important influence and cannot often justifiably be dropped to make 
analytical computation of model estimates easier. 
 
For the 2241  pupils who went to school and also lived in  Oldham Table A2 gives for each 
school the numbers of children and some indication of the spread of their pupils area of 
residence over the 643 output areas and 20 wards. 
 
Table A2: Summary statistics on area structure for Oldham schools and for pupils who also 
lived in Oldham 
 

School  No of  
pupils  

No of 
output 
areas 

Average no of 
pupils per 
output area 

No of 
Wards 

Average number of 
pupils per ward  

1 190 91 2.1 9 21.1 
2 102 33 3.1 7 14.6 
3 138 71 1.9 10 13.8 
4 116 38 3.1 6 19.3 
5 81 50 1,6 12 6.8 
6 100 72 1.4 18 5.5 
7 194 96 2.0 9 21.6 
8 175 87 2.0 11 15.9 
9 232 114 2.0 7 33.1 
10 231 99 2.3 10 23,1 
11 186 120 1.6 18 10.3 
12 107 85 1.2 17 6.3 
13 106 67 1.6 12 8.8 
14 121 95 1.3 16 7.6 
15  162 131 1.2 17 9.5 
Total  2241     

 
There was an average of 3.5 pupils per output area and 102 per ward. Inevitably there was a thin 
spreading of each output area pupils amongst schools. Amongst the output areas 251 (37%) sent 
children to just one school. Together with the data on schools in Table A2  we initially thought 
that the issues of confounding of schools and output areas and their separate identification, when 
repeated elsewhere, relatively unproblematic. Of course as elsewhere, large numbers of output 
area random effects and the low precision with which such specific effects might be estimated is 
likely to raise further statistical and computational issues. Wards as a random effect in a cross-
classification would appear to pose no real problems. Each school is represented by a fair 
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number of wards as exemplified in table A2.. Also the minimum number of schools attended by 
pupils for particular wards was 4. Of course the structure is quite radically unbalanced for both 
output area and wards as evidenced in the sparsity of Tables A3 and A4 below. However, 
certainly for wards,   even though they are larger aggregates, their diffusion over schools is such 
as to potentially make their effects sufficiently easily separable from schools and identifiable.  
 
Table A3:  Sparsity: Frequencies of pupils over the 12810 school by output area cells for 
Oldham schools and for pupils who also lived in Oldham 
 

Number of pupils in 
cell 

*0 1 2 3 4 5 6 7 8 9 10 11 

Frequency 8393 749 260 127 56 29 12 12 2 1 3 1 
* 66% of cells are empty 
 
Table A4:  Sparsity: Frequencies of pupils over the 300 school by ward   area cells for 
Oldham schools and for pupils who also lived in Oldham 
 

Number of pupils in 
cell 

*0 1 2 3 4 5 6 7 8 9 10 11 >11

Frequency 121 44 25 16 11 9 6 2 5 3 6 3 49 
* 40% of cells are empty 
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Appendix 3: 
MLwiN Macro for multiprocess cross-classified model on Combined Selection data set 
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MLwiN Macro for multiprocess cross-classified model on Combined Selection data set  
 
NOTE: Maths expenditure analysis, treating expenditure (PEXAAV) as endogenous 
NOTE: Combined selection dataset 
NOTE: 2-level cross-classified model (pupils within cross of school and ward) 
NOTE: stlow_12 removed as always equals zero in this subsample 
 
NOTE: retr c:\fiona\consultancy\KS3 resource project\Tony scoping study\combined selection 
fiona.ws 
 
erase c69-c295 
 
missing -100 
 
NOTE: omit school with missing ID 
omit missing 'af_cs_schname_code' c1-c63 c65-c68 'af_cs_schname_code' c1-c63 c65-c68 
 
note: remove missing values on response and explanatory variables 
list missing c1 c2 c3 c6 c9-c68 c1 c2 c3 c6 c9-c68 
 
coun c1 b1 
put b1 1 c69 
name c69 'cons' 
 
NOTE: sort by ward ID and code wards consecutively from 1 
sort 'af_ward_csid' c1-c3 c6 c9-c66 c68 'af_ward_csid' c1-c3 c6 c9-c66 c68 
name c70 'new_ward_csid' 
mlre 'cons' 'af_ward_csid' 'new_ward_csid' 
 
NOTE: sort by school ID, then ward 
sort 2 'af_cs_schname_code' c70 c1-c3 c6 c9-c63 c65-c69 'af_cs_schname_code' c70 c1-c3 c6 
c9-c63 c65-c69 
 
NOTE: search for small cells in cross-class of school and ward, and omit from dataset 
xomit 9 c64 c70 c1-c63 c65-c69 c64 c70 c1-c63 c65-c69 
xsearch c64 c70 c90 c91 
 
note: excluding cells with <=5 leads to groups with max of 421 wards within groups 
NOTE: excluding cells with <=9 leads to 82 groups with max of 117 wards within groups 
NOTE: excluding cells with <=20 leads to 318 groups with max of 27 wards within groups 
 
note: recreate pupil ID, starting from 1 in each school 
mlre 'af_cs_schname_code' 'af_csidno' c71 
name c71 'pupil2' 
 
NOTE: Standardise PEXAAV, DOBDAYS, PELFSMAV (and square to get PELFSMAVSQ), 
PCAENAV 
aver 'pexaav' b1 b2 b3 
calc 'pexaav'=('pexaav'-b2)/b3 
aver 'dobdays' b1 b2 b3 
calc 'dobdays'=('dobdays'-b2)/b3 
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aver 'pelfsmav' b1 b2 b3 
calc 'pelfsmav'=('pelfsmav'-b2)/b3 
calc 'pelfsmavsq'='pelfsmav'*'pelfsmav' 
aver 'pcaenav' b1 b2 b3 
calc 'pcaenav'=('pcaenav'-b2)/b3 
 
NOTE: sort by group, then school 
sort 2 c90 c64 c1-c3 c6 c9-c63 c65-c71 c91 c90 c64 c1-c3 c6 c9-c63 c65-c71 c91 
 
NOTE: Create data for MATHS EXPENDITURE analysis 
vect 2 'k3matscr' 'pexaav' c72 c73 
name c72 'resp' c73 'index' 
 
repe 2 'pupil2' c74 
repe 2 'af_cs_schname_code' c75 
repe 2 'new_ward_csid' c76 
repe 2 'af_csidno' c77 
name c74 'pupil2_long' c75 'school_long' c76 'ward_long' c77 'csidno_long' 
 
NOTE: covariates 
repe 2 'pexaav' c78 
repe 2 'k2matadj' c79 
repe 2 'k2matadjsq' c80 
 
NOTE: instruments 
repe 2 'yrcon02' c81 
repe 2 'yrlib02' c82  
repe 2 'yrnoc02' c83 
repe 2 'scpaav' c84 
repe 2 'ftepup99' c85 
 
NOTE: cross-classification variables 
repe 2 c90 c90 
repe 2 c91 c91 
 
calc c86=('index'==1) 
name c86 'c1' 
calc c87=('index'==2)*('pupil2_long'==1) 
name c87 'c2' 
 
calc c88='c1'+'c2' 
NOTE: As PEXAAV is at school level, keep only 1 response per school  
NOTE: Here, select record corresponding to 1st pupil in each school 
omit 0 c88 c72-c87 c90 c91 c88 c72-c87 c90 c91 
 
NOTE: Create explanatory variables for each response, including only school-level variables for 
PEXAAV 
calc c200='c1'*c78 
calc c201='c1'*c79 
calc c202='c1'*c80 
name c200 'c1_pexaav' 
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name c201 'c1_k2matadj'  
name c202 'c1_k2matadjsq' 
 
calc c203='c2'*c81 
calc c204='c2'*c82 
calc c205='c2'*c83 
calc c206='c2'*c84 
calc c207='c2'*c85 
name c203 'c2_yrcon02' 
name c204 'c2_yrlib02' 
name c205 'c2_yrnoc02' 
name c206 'c2_scpaav' 
name c207 'c2_ftepup99' 
 
resp 'resp' 
 
NOTE: Explanatory variables for response 1 (KS3 score) 
expl 1 c86 c200-c202 
 
NOTE: Explanatory variables for response 2 (school-level resources) 
expl 1 c87 c203-c207 
 
NOTE: set up 2-level model with school at level 2 
iden 1 'csidno_long' 2 'school_long'  
setv 1 'c1' 
setv 2 'c1' 'c2' 
 
note: sort 2 c90 'school_long' c76 c72-c74 c77 c86 c87 c91 c200-c207 c90 'school_long' c76 
c72-c74 c77 c86 c87 c91 c200-c207 
iden 3 c90 
setx 'c1' 3 c91 c300-c416 c417 
rcon c417 
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Appendix 4 

Structure of Prior distributions for the WINBUGS experiments 
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Structure of Prior distributions for the WINBUGS experiments 
 
 

( )~βk U    Each fixed parameter has a flat prior 
 

( )0 ~ 0,10σ U    Uniform prior on 0σ , the square root of total high level  

   variance  2 2 2 2 2
0 0, ( ) 0, ( ) 0, 0,σ σ σ σ σ= + + +lea school lea area school ward

  
(0, ~ 0,10σ e U )   Uniform prior on square root of pupil variance 

 
 
Priors are set on the ratios of school and ward variance to the summed variance at the top level 
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σ σ
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+
ward

ward
lea school lea area

p  . These are 

 
 

( ) (log ~ 0,10schoolp N )  Vague prior on log of schoolp  

 
( ) (log ~ 0,10wardp N )   Vague prior on log of wardp  

 
Similarly a prior is set on the proportion of lea (school variance) to the summed variance at the 
top level  
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( ) 2 2
0, ( ) 0, (

σ
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=
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lea school
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p
)

)

. This is  

 
(( ) ~ 0,1lea schoolp U   Uniform prior on  ( )lea schoolp

 
 
The correlation between the lea(school) and lea(ward) effects is also the parameterisation used 
to define a prior. Defining  

0, ( ), ( )

2 2
0, ( ) 0, ( )

σ
ρ

σ σ
= lea school lea ward

lea school lea ward

  We set  

 
~ ( 1,1)ρ −U    Uniform prior on ρ  

 
 
 
We note the following relationships to the original parameters 
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 Proportion of high level variance at school level 
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σ
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ward ward

school ward
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 Proportion of high level variance at ward 
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