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MCMC Sampling for a Multilevel Model With

Nonindependent Residuals Within and Between
Cluster Units

William Browne

Harvey Goldstein

University of Bristol

In this article, we discuss the effect of removing the independence assumptions

between the residuals in two-level random effect models. We first consider

removing the independence between the Level 2 residuals and instead assume

that the vector of all residuals at the cluster level follows a general multivariate

normal distribution. We demonstrate how this assumption can allow us to fit

higher levels of clustering and school competition effects via an example from

education. We then consider removing the assumption of independence between

Level 1 residuals within clusters. We show how this extension can allow time

series type models. Both normal and binary responses are considered.

Keywords: correlated residuals; education; MCMC; multilevel models; time series

1. Introduction

Multilevel models have been in use now for several decades and allow

statistical modeling of response variables that involve some dependence due to

clustering. Here cluster membership influences the response and hence the

responses of two units in the same cluster are generally more alike than responses

from two randomly chosen units. For example, in education, pupils from the

same school might be expected to have more correlated responses than a ran-

domly selected sample of pupils from across all schools.

In this article, we will consider only two-level random intercept models, that

is models that exhibit one level of clustering and where the correlation induced

by this clustering can be expressed by a single term. We shall show, however,

that certain three-level models can also be described within our general frame-

work and we will describe extensions to further models in the discussion. To

be precise, all our models can be written in the Form 1:

yij ¼ Xijbþ uj þ eij

EðujÞ ¼ 0; varðujÞ ¼ s2
u; EðeijÞ ¼ 0; varðeijÞ ¼ s2

e

i ¼ 1; :::; nj; j ¼ 1; :::; J :
ð1Þ

Journal of Educational and Behavioral Statistics

August 2010, Vol. 35, No. 4, pp. 453–473

DOI: 10.3102/1076998609359788

# 2010 AERA. http://jebs.aera.net

453

 at University Library on September 21, 2010http://jebs.aera.netDownloaded from 

http://jebs.aera.net


Here yij is the response of the ith Level 1 unit within the jth cluster, Xij is a vector

of p predictor variables with associated fixed effects b, uj are cluster-specific ran-

dom effects, and eij are unit-specific residual terms. In the standard modeling

framework, we would also assume that the uj and eij are independent and identi-

cally (normally) distributed, that is,

uj � Nð0;s2
uÞ; eij � Nð0;s2

eÞ:

In this article, we consider the effect of changing these assumptions by first

removing the assumption of independence of the Level 2 residuals uj and second

by removing the assumption of independence between the Level 1 residuals eij

within the same cluster. We will consider these two changes independently in the

next two sections and then show some illustrative examples and finish with some

discussion and extensions to nonnormal responses.

2. Nonindependence of the Level 2 Residuals

In this section, we will consider removing the assumption of independence

between the Level 2 random effects associated with different clusters. We may

for example believe that some pairs of clusters are more similar to each other than

to other clusters.

Such a belief is what often drives spatial modeling where the relative locations

of clusters of data are expected to influence the correlation between them. Typi-

cally, this spatial correlation would be represented either as a function of distance

between cluster centroids or by creating a lattice structure with neighbouring

clusters linked. This second form is often used in conditional autoregressive

(CAR) modeling (Besag & Kooperberg, 1995; Besag, York, & Mollie, 1991),

where individual cluster effects are dependent on their neighboring clusters

effect, and the approach is different from what we describe below. CAR models

are used extensively in epidemiology for disease mapping (Clayton & Kaldor,

1987). In fact, the normal CAR model can generally be represented in terms

of a (nonconditional) multivariate normal distribution with a corresponding

structure for the cluster correlations. These correlations, however, as in the first

form, will depend on the single set of weights used to specify the spatial proxim-

ity matrix in the CAR model, and for our proposed model, we show how a cor-

relation structure can be formulated that is allowed to depend on more than one

set of distance metrics. Our approach also models the correlation as an explicit,

rather than implicit, function of distance. In addition, we extend our approach to

modeling correlations among the Level 1 random effects, with particular appli-

cations to time series. We will therefore not deal with these earlier models

further.

Another way in which nonindependence occurs is when clusters themselves

can be clustered into further higher level clusters; for example, in education,

pupils may be clustered into classes that themselves are clustered into schools.
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This will often be fitted as an additional level of random effects but, as we show

later, the same clustering can be accounted for in a two-level modeling frame-

work by removing the independence assumptions.

We begin by describing how the independence assumption is removed from

the standard two-level model. Consider the Model 1 described in the introduction

and then let u ¼ ðu1; u2; ::::; uJ ÞT , that is all the (independent) residuals at Level 2

stacked as a vector of length J . A more general model that allows dependence

among these residuals will then have u � MVNð0;�uÞ with the earlier indepen-

dence assumption as a special case where �u is diagonal with s2
u on the diagonal.

We now have flexibility in how we parameterize the covariance matrix �u. We

could consider an unconstrained representation and estimate all parameters in the

covariance matrix �u but this will result in J � ðJ þ 1)/2 parameters.

There may also be identifiability issues, for example, if we assume we have

just a random intercept for each cluster and a different variance for each cluster

intercept, then we do not have the data to identify these different variances with-

out making some further assumptions about the variances, for example, by

expressing an informative prior for the variances or by modeling the individual

variances as functions of cluster level covariates. In practice, however, analysts

will often assume a common variance for each cluster intercept, as we do in this

article, and then focus on modeling the correlations between the cluster inter-

cepts. We shall return to this issue in the Discussion.

We thus write �u ¼ s2
uDu where Du is the correlation matrix of the u’s and

s2
u is the common variance term. Let us also write rj1 j2 to represent the correla-

tion between the intercepts for clusters j1 and j2. We will then model the corre-

sponding correlations using a functional form f �1ðj1; j2; aÞ, which involves a set

of distance measures for the Level 2 units j1 and j2 and a set of parameters a. We

shall assume here a generalized linear function of the form:

f ðrj1 j2
Þ ¼ a1g1ðj1; j2Þ þ a2g2ðj1; j2Þ þ � � � ð2Þ

We can choose the inverse hyperbolic function

fj1 j2 ¼ f ðrj1j2
Þ ¼ 2 tan h�1ðrj1 j2

Þ ¼ log
1þrj1 j2

1�rj1 j2

� �
rj1j2
¼ ðefj1 j2 � 1Þ=ðefj1 j2 þ 1Þ

;

which is effectively the Fisher z transformation for a correlation coefficient and

where the gh; h ¼ 1 . . . p are known. This function ensures that each correlation

lies in the interval (�1, 1) (although of itself this does not guarantee that the cov-

ariance matrix is positive definite).

Where we have independence between two random effects, these functions

can be given values of zero. This can be achieved by introducing an indicator

vector dj1j2 to produce a final correlation structure defined by dj1j2rj1j2
.

An alternative link function, if we wish to restrict the correlations to be pos-

itive is the logit given by
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rj1j2
¼ efj1 j2 =ðefj1 j2 þ 1Þ

or the log link function given by

rj1j2
¼ efj1 j2 :

In this case, the correlations are positive and f is restricted to be negative to

ensure the resulting correlations are less than 1.

These three functions are illustrated in Figure 1. We now will describe a

Markov chain Monte Carlo (MCMC) algorithm for these models.

3. MCMC Algorithm for a Two-Level Variance Components Model With

Correlated Level 2 Residuals

We are interested in fitting the following model:

yij ¼ Xijbþ uj þ eij

u � MVNð0;�uÞ where u ¼ ðu1; u2; ::::; uJ ÞT
EðeijÞ ¼ 0; varðeijÞ ¼ s2

e

i ¼ 1; :::; nj; j ¼ 1; :::; J :

ð3Þ

To fit this model in a Bayesian framework, we need to include prior distributions

for the unknown parameters, in this case b; �u, and s2
e . In situations where we

do not have additional information about these parameters, we would like to use

prior distributions that correspond to our lack of information and therefore we

use ‘‘diffuse’’ priors. Here we use (improper) uniform priors for b and the com-

monly used ��1ð10�3; 10�3Þ prior for s2
e (approximately equivalent to a uniform

prior for the log of the variance). �u will be parameterized by a restricted set of

parameters and we will describe the priors used for these parameters in the sub-

section that follows.

Apart from the different prior for �u, this model is identical to a standard

variance components model. This change of prior has no effect on the full

conditional distributions for b and s2
e , which are multivariate normal and inverse

gamma, respectively, and so these parameters will be updated using Gibbs sam-

pling in the usual way.

We next consider sampling the Level 2 covariance matrix and the Level 2 ran-

dom effects.

3.1. Sampling the Level 2 Covariance Matrix

The Level 2 covariance matrix �u ¼ s2
uDu and we are then parameterising

Du in terms of parameters a and functions g of the pairs of Level 2 units as

detailed earlier. Thus, to specify a prior for �u, we need simply specify priors

for s2
u and for a, and we will use the following shorthand pð�uÞ ¼ pðs2

uÞpðaÞ.
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In practice, we will use either an improper uniform or ��1ð10�3; 10�3Þ for s2
u and

uniform priors for a.

Updating the matrix �u then consists of two steps, first updating s2
u and sec-

ond a.

At iteration t, we generate s2
uð�Þ � Nðs2

uðt � 1Þ;s2
pÞ where s2

p is a proposal

distribution variance that has to be set. If we generate a negative s2
uð�Þ, then we

set s2
uðtÞ ¼ s2

uðt � 1Þ, otherwise we form a proposed new matrix ��u by calculat-

ing ��u ¼ s2
uð�ÞDuðt� 1Þ.

We then perform a Metropolis update step by setting s2
uðtÞ ¼ s2

uð�Þ with prob-

ability min½1; pð��ujuÞ=pð�ðt�1Þ
u juÞ� and setting s2

uðtÞ ¼ s2
uðt � 1Þ otherwise.

The components of the likelihood ratio are

pð��ujuÞ ¼ j�
�
uj
�1=2

exp� ðuTð��uÞ
�1

u=2Þpð��uÞ

and pð�ðt�1Þ
u juÞ ¼ j�ðt�1Þ

u j�1=2
exp� ðuTð�ðt�1Þ

u Þ�1
u=2Þpð�ðt�1Þ

u Þ

with current estimates substituted.

For each element l of fag at iteration t we then generate a�l � Nðaðt�1Þ
l ;s2

a;lÞ
where s2

a;l is a proposal distribution variance that has to be set for each element.

FIGURE 1. Link function f(s). From left to right; hyperbolic, logit, log.
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We then form a new correlation matrix D�u by substituting the value a�l in place of

aðt�1Þ
l and check that the matrix formed is positive definite. If the matrix is not

positive definite, we reject the proposal and set aðtÞl ¼ aðt�1Þ
l and proceed to the

next element of the a vector.

Assuming D�u is positive definite, we then form ��u ¼ s2
uðtÞD�u and again per-

form a Metropolis step by setting aðtÞl ¼ a�l with probability min½1; pð��ujuÞ=
pð�ðt�1Þ

u juÞ� and setting aðtÞl ¼ aðt�1Þ
l otherwise, where the components of the

likelihood ratio are as for the step updating s2
u.

This procedure is repeated for each of the elements of a in turn. The proposal

distribution variances can be chosen by an adaptive sampling procedure (see

below).

3.2. Sampling the Level 2 Residuals

The conditional posterior distribution for the Level 2 residuals u for a general

two-level model is as follows:

pðujy;�u;s2
eÞ /

1
s2

e

� �N=2

exp½� 1
2s2

e
ðy� ðXbÞ � ðZuÞÞT ðy� ðXbÞ � ðZuÞÞ þ s2

euT ��1
u u�

so that we now sample from

u � Nðbu; bDÞ
; ð4Þ

where specifically for the variance components case, we have

bD ¼ s2
e

P
ZT

ij Zij þ s2
e��1

u

h i�1

¼ s2
e diagðnjÞ þ s2

e��1
u

� ��1

bu ¼ P
ZT

ij Zij þ s2
e��1

u

h i�1 P
ZT

ij ðyij � ðXbÞijÞ
h i

¼ bDs�2
e ey

ey ¼ feyjg; eyj ¼
Pnj

i¼1

ðyij � ðXbÞijÞ:

: ð5Þ

3.3. Adaptive Proposal Distributions

The proposal distributions are determined adaptively (Browne & Draper,

2000). We choose a desirable acceptance rate r, in the present case .5, and we

choose a batch size B ¼ 100, as used by Browne and Draper (2000). For each

batch of iterations during the burn-in period, we compute the acceptance rate

r� for each parameter. We update the proposal distribution, for each parameter,

according to the following rule, from suitable starting values supplied by the

user.
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If r� � r; yt ¼ yt�1½2�
1� r�

1� r

� �
�; otherwise yt ¼ yt�1ð2�

r�

r
Þ�1 ð6Þ

where r is the desired acceptance rate and yt is the normal proposal distribution

standard deviation for the parameter under consideration at iteration t. Unlike in

Browne and Draper (2000), here we simply adapt for the whole of the burn-in

period.

3.4. The Deviance Information Criterion (DIC) Diagnostic

To compare the models in later sections, we use the DIC diagnostic

(Spiegelhalter, Best, Carlin, & van der Linde, 2002). While the use of the DIC

has been criticized for certain classes of model, it has found widespread use in

random effects models. It allows us to assess any improvements in model fit for

different assumed distributions for the u vector.

4. An Example

We have simulated data to mimic the educational ‘‘tutorial’’ data set

(Rasbash, Steele, Browne, & Prosser, 2004). The data set consists of examination

scores measured at the age of 16 years on 4,059 students in 65 schools in London.

The examination score is the response with a reading test score taken at the age of

11 years as a covariate. In the original data set, both the response and covariate

were transformed to normality using the normal equivalent deviates computed

from the sample data. We use the maximum likelihood estimates for the model

yij ¼ b0 þ b1xij þ uj þ eij; uj � Nð0;s2
uÞ; eij � Nð0;s2

eÞ

where we use the values

b0 ¼ :002; b1 ¼ :563; s2
u ¼ :092; and s2

e ¼ :566:

The Level 2 residuals are then generated as follows:

g1ðuj; ukÞ ¼ jj� kj�1; a1 ¼ 1 ð7Þ

The Equation 7 says that the correlation is a monotonically decreasing function

of the difference between the two Level 2 identifier numbers. Note that here the

correlations are all positive and where we wish to constrain correlations to be

positive we might wish to choose a different link function such as the logit.

Generating data from the above model and then using the MCMC algorithm in

the last section and a standard algorithm for a model with assumed independence

between the uj, we obtain the results in Table 1.

Here, we see that the posterior mean estimates from the fit of the nonindepen-

dence model (which is the generating model for the data) for the variances are

positively biased. This is in part due to the right-skew of the distribution and
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hence the mean being larger than the mode for this parameter. The alternative

model that assumes fitting independent Level 2 residuals results in an underesti-

mate of the Level 2 variance. We next move on to looking at incorporating a cor-

related residual structure within Level 2 units.

5. Level 1 Nonindependent Residuals

In the previous sections, we have investigated models where the independence

assumption between the cluster level random effects is relaxed. By introducing

cluster level random effects in a multilevel model, we have removed the depen-

dence among the observation level residuals by effectively splitting them into a

shared cluster level residual and an (adjusted) observation level residual. These

latter residuals are then assumed independent and this section relaxes that

assumption. Our focus is on the structure of residuals within clusters rather than

all residuals in the model, and we add some (structured) correlations between

these residuals.

The types of models that such a generalization is useful for include repeated

measures at Level 1. In the traditional approach to modeling repeated measures

on individuals over time, we capture the nonindependence due to repeated mea-

sures coming from the same individual via a cluster (individual) level random

effect, while still assuming that the Level 1 residuals are independent, condi-

tional on the Level 2 random effects. In some applications, however, especially

where measures are close together in time, this independence assumption may be

violated and we will therefore need to model the correlation between residuals,

typically as a function of the time differences. A detailed discussion of this model

and its applications is given by Goldstein, Healy, and Rasbash (1994).

TABLE 1

Simulated Data Estimates for the Model 7

Nonindependence Model

Estimates

Independence Model

Estimates

Generating Model

Values

Intercept �0.006 (0.078) �0.010 (0.077) 0.002

Slope 0.567 (0.013) 0.562 (0.012) 0.563

Level 2

variance

0.098 (0.036) 0.089 (0.036) 0.092

Level 1

variance

0.573 (0.022) 0.566 (0.014) 0.566

a1 1.01 (0.39) — 1.0

Note: Markov chain Monte Carlo (MCMC) was run for 2,500 iterations following a 500 iteration

burn-in. The results are based on 50 simulations with standard errors over simulations given in

brackets.
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Our model now becomes

yij ¼ Xijbþ uj þ eij; ej � MVNð0;�ejÞ; u � MVNð0;�uÞ; ej ¼ feijg ð8Þ

where we assume that there is just a single residual term per observation at

Level 1.

We again assume the following form for the correlations although this time we

are considering correlations at Level 1:

f ðrð1Þjk Þ ¼ að1Þ1 g
ð1Þ
1 ðtj; tkÞ þ að1Þ2 g

ð1Þ
2 ðtj; tkÞ . . .

and

f ðsÞ ¼ 2tanh�1ðsÞ ¼ log 1þs
1�s

� 	 ð9Þ

where the superscript (1) denotes Level 1.

The sampling for the Level 1 covariance matrix involves essentially the same

steps as for the Level 2 matrix described in the earlier algorithm and we omit the

details. For sampling the variance and correlation parameters, the components of

the likelihood ratio become

pð��e jeÞ ¼
Y

j

j��ejj
�1=2

exp� ðeT
j ð�

�
ejÞ
�1

ej=2Þ

and

pð�ðt�1Þ
e jeÞ ¼

Y
j

j�ðt�1Þ
ej j�1=2

exp� ðeT
j ð�

ðt�1Þ
ej Þ�1

ej=2Þ:

In this case, the explanatory variables g
ð1Þ
k ðk ¼ 1; :::Þ must be specified for each

Level 2 unit. The Level 1 residuals are obtained by subtraction given the current

fixed effects and Level 2 residual estimates.

When sampling the fixed effects, because the Level 1 residuals are no longer

independent, the standard MCMC step is modified as follows. We assume a ‘‘dif-

fuse’’ prior pðbÞ / 1 so that

pðbjy;�e; uÞ /
Y

j

j�ejj�1=2
exp½�eyT

j ��1
ej eyj=2�

where

eyj ¼ feyijg; eyij ¼ yij � ðXbÞij � uj

so that we sample from

b � MVNðbb; bDbÞ

bDb ¼
P

j

XT
j ��1

ej Xj

" #�1

bb ¼ bDb
P

j

XT
j ��1

ej ðyj � ðZuÞjÞ
" #

:

ð10Þ
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Note here that for the variance components case Zj simply links the correct Level

2 unit to each Level 1 unit. Likewise when sampling the Level 2 random effects,

Equation 5 becomes

bDu ¼ diagðZT
j ��1

ej ZjÞ þ ��1
u

h i�1

bu ¼ bDu fZT
j ��1

ej ðyj � ðXbÞjÞg
h i

:
ð11Þ

We note that the form of these sampling steps is the same as those in Section

4.2.1 of Browne (2006) for a multivariate multilevel model.

Consider the fitted tutorial data model with estimates for the parameters given

yij ¼ b0 þ b1xij þ uj þ eij

b0 ¼ :035ð0:040Þ
b1 ¼ :567ð0:012Þ
s2

u ¼ :088ð0:018Þ
s2

e ¼ :566ð0:013Þ
DIC ¼ 9265:7
PD ¼ 59:4

; ð12Þ

where these are the MCMC estimates using inverse gamma priors for the

variances. We now fit the model where we assume an equal (non zero) cor-

relation structure at Level 1, that is g
ð1Þ
1 ¼ 1 with an inverse tanh link. We

obtain estimates for the following parameters, with a burn-in of 500 and 1,000

samples.

b0 ¼ 0:032 ð:040Þ
b1 ¼ 0:567 ð:013Þ
s2

u ¼ :0000005 ð:00000001Þ
s2

e ¼ :657 ð:023Þ
að1Þ1 ¼ :277 ð:050Þ
r ¼ :138

DIC ¼ 9356:5
PD ¼ 3:8:

ð13Þ

For a two-level variance components model, the full covariance matrix among

the Level 1 units in a Level 2 unit can be written in the form

s2
e þ s2

u

s2
u s2

e þ s2
u

s2
u s2

u s2
e þ s2

u

s2
u s2

u s2
u s2

e þ s2
u

0BB@
1CCA; ð14Þ

where in this case, there are four Level 1 units (Goldstein, 2003, chap. 2). For the

model with an equal correlation structure at Level 1 and no Level 2 variation, the

corresponding covariance matrix is
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s2
e�

rs2
e� s2

e�
rs2

e� rs2
e� s2

e�
rs2

e� rs2
e� rs2

e� s2
e�

0BB@
1CCA; ð15Þ

which has an equivalent structure with rs2
e� ¼ s2

u; s2
e� ¼ s2

u þ s2
e , and r can be

interpreted in the usual way as the intraunit correlation.

Thus, the parameters of Model 13 are not separately identified but we do see

that this provides essentially the same parameter estimates as Equation 12

because rs2
e in Equation 13 is .090 which is close to s2

u in Equation 12, and

s2
e þ s2

u in Equation 12 is .654, which is close to the value .657 for s2
e in Equa-

tion 13. The same results are obtained using the logit and the log link functions. If

we constrain s2
u ¼ 0 and fit the model with equal correlations among Level 1

units within each Level 2 unit, we obtain a value of .091 compared to .088 in

Equation 12 for the Level 2 variance and .567 for the Level 1 variance compared

to .566 in Equation 12. We also notice that the DIC statistics are different because

we are actually fitting different models. Model 12 includes random effects

whereas Model 13 does not, and this can be seen in the values for the estimated

effective number of parameters (PD) which is just under 4 in Equation 13,

reflecting the number of actual parameters in that model as opposed to just over

59 in Equation 1, reflecting the inclusion of the random effects as parameters.

Special cases of models with correlated Level 1 residuals have been studied

elsewhere. For example, Goldstein et al. (1994) present a maximum likelihood

estimation procedure for Equation 7 with a log link function. Several software

packages such as SAS (www.sas.com), MPLUS (www.statmodel.com), and

GLLAMM (www.gllamm.org) implement maximum likelihood estimation for

the case of discrete time models with a finite number of time points and allow

a variety of patterns including autoregressive and unstructured correlation

matrices.

6. Applications

6.1. An Educational Data Set

We illustrate our procedure with an example of educational examination

results where we have a three-level model consisting of schools at Level 3,

cohorts or year groups at Level 2, and students at Level 1. We shall show how

such a three-level structure, where typically independent residuals are assumed,

can be modeled as a two-level structure with a particular correlation pattern

among the Level 2 residuals. The data are taken from the Pupil Level Annual

Schools Census (PLASC) and the National Pupil Database (NPD), which have

been set up for all students in the English state education system (Goldstein,

Burgess, & McConnell, 2007). These contain longitudinal records of test results

for individuals, together with a limited amount of contextual data. For our
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purposes, we use 16-year-old General Cerificate of Secondary Examinartion

(GCSE) data that constitutes the annual end of compulsory school leaving exam-

ination. It consists of papers taken in different curriculum subjects and students

can take as many papers as they wish, subject to timetabling constraints. In the

current analysis, we have used the best eight results for each student and this

is converted into a total score for each student (Goldstein et al., 2007). There

is also a composite test score at the age of 11 (Year 6) for each student prior

to entering secondary school and we use the data from three cohorts of students,

where each student has both age 11 and GCSE scores, where the latter are for the

years 2004–2006. The data are restricted geographically to one local authority

containing 54 secondary schools with a total of 29,506 students. Students are

allocated to the school they are attending at the time of the GCSE examination.

This is not strictly appropriate because it ignores the contributions from previous

schools that may have been attended and this issue is discussed by Goldstein et al.

(2007) who show how multiple membership models can be used. For current pur-

poses, and in order to illustrate our methodology without undue complications,

we shall ignore this issue.

A standard procedure for fitting such data where there are repeated measure-

ments for cohorts attending the same set of schools is to specify a three-level

model with students (i) at Level 1, year group/cohort (j) at Level 2, and school

(k) at Level 3. We can write this model as

yijk ¼ b0 þ b1xijk þ
P3
h¼2

bhch;jk þ v0k þ u0jk þ e0ijk

v0k � Nð0;s2
v0Þ; ; u0jk � Nð0;s2

u0Þ; e0ijk � Nð0;s2
e0Þ

ð16Þ

where x is the prior test score and ch is a dummy variable for the year and h

denotes the cohorts coded 1, . . . , 3. Table 2 shows the results of fitting the

three-level variance components Model 16. We use MLwiN (Rasbash, Browne,

Healy, Cameron, & Charlton, 2000) using MCMC with standard default prior

distributions.

We note that the standard three-level model in effect makes some simplifying

assumptions, and the saturated model is given by Equation 17, which fits a 3 � 3

full covariance matrix at the school level, that is the three cohorts in each school

are given separate random effects that are correlated. The results are given in

Table 3.

yik ¼ b0 þ b1xik þ
P3
h¼2

bhch;k þ
P3
h¼1

uhkch;k þ e0ik

uk � MVNð0;�uÞ; e0ij � Nð0;s2
e0Þ

; ð17Þ

where as before i indexes pupils, k indexes school, and h indexes the year the

pupil takes the exam.
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We note that the variance components structure in Table 2 corresponds to a

covariance matrix in the two-level formulation, as in Table 3, with a common

diagonal variance of .034 and a common covariance of .029.

We now illustrate our methodology by fitting a further series of two-level

models with the covariances across years defined in different ways. Our first

model is specified as in Equation 17 but with a common variance for the three

cohorts and the correlation structure at Level 2 defined as follows:

fh1h2
¼ a1g1ðuh1

uh2
Þ ¼ a1jh1 � h2j�1; rh1h2

¼ ðefh1h2 � 1Þ=ðefh1h2 þ 1Þ : ð18Þ

TABLE 2

A Three-Level Variance Components Model for Examination Data

Parameter Estimate Standard Error

Intercept 0.018 0.025

Year 2 �0.041 0.017

Year 3 �0.003 0.017

Pretest 0.719 0.004

Level 1 variance 0.467 0.004

Level 2 variance 0.005 0.001

Level 3 variance 0.029 0.006

DIC (PD) 61,398.0 (127.0)

Note: Burn-in ¼ 500, sample ¼ 5,000. Year Group 1 (2004) chosen as base category. Uniform priors

for variances.

TABLE 3

A Two-Level Random Coefficient Model for Examination Data

Parameter Estimate Standard Error

Intercept 0.015 0.027

Year 2 �0.043 0.020

Year 3 �0.004 0.019

Pretest 0.719 0.004

Pupil level variance 0.467 0.004

School level covariance

matrix
0:036

0:032 0:043

0:028 0:034 0:033

24 35 0:008

0:008 0:010

0:007 0:008 0:008

24 35
DIC (PD) 61,399.8 (128.2)

Note: Burn-in ¼ 500, sample ¼ 5,000. Year 1 (2004) chosen as base category. Uniform priors for

variances.
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This is similar to a first-order autoregressive model and the results are given in

Table 4. The structure of the explanatory variable vector for the Level 2 correla-

tions for three schools, written in matrix form for the off diagonal elements of the

9 � 9 covariance matrix for the three cohorts in the three schools is given by

Equation 19. The variance term is the sum of the between-school variance and

the between-cohort variance after fitting the correlation structure.

1

0:5 1

0 0 0

0 0 0 1

0 0 0 0:5 1

0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0:5 1

0 0 0 0 0 0 0 0 0

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
ð19Þ

Because there are 54 schools, this vector has length (162 � 161)/2 ¼ 13,041.

Choosing the inverse tanh link allows us to model a covariance structure with

decreasing correlations as we move away from the diagonal. We note that this

model may be more conveniently fitted using a three-level formulation with

no variation at Level 3 and with the correlation structure specified at Level 2. The

current analysis serves to illustrate the connection between a two-level and a

three-level formulation.

We can see that this model tends to underestimate the variance and covar-

iances. If, however, we fit the same model using a logit link function we obtain

the following results in Table 5.

TABLE 4

A Two-Level Model for Examination Data With Correlation Structure at Level 2 Specified

by Equation 18

Parameter Estimate Standard Error

Intercept 0.017 0.024

Year 2 �0.040 0.018

Year 3 �0.003 0.025

Pretest 0.719 0.004

Alpha 2.063 0.183

Level 1 variance 0.467 0.004

Level 2 covariance matrix 0:028

0:021 0:028

0:013 0:021 0:028

24 35
DIC (PD) 61,402.3 (129.6)

Note: Inverse tanh link function. Burn-in ¼ 500, sample ¼ 5,000. Year 1 (2004) chosen as base

category. Uniform priors for variances.
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We see now that this is a rather better fit to the data and effectively makes use

of the fact that the correlations are positive, which is a constraint imposed by the

logit link function. Finally, we fit a model where the correlation structure is

modeled by two a parameters as follows:

fh1h2
¼ a1g1ðuh1

uh2
Þ þ a2g2ðuh1

uh2
Þ ¼ a1jh1 � h2j�1 þ a2:1;

rh1h2
¼ ðefh1h2 � 1Þ=ðefh1h2 þ 1Þ ð20Þ

Here, we have added a constant term a2 to the correlation function. The results

are given in Table 6.

This provides a slightly better fit than the model in Table 4 but the second

parameter a2 is not significant.

6.2. A Growth Data Set

We reanalyze a data set of longitudinal measurements at nine occasions on a

sample of 21 boys, discussed by Goldstein (2003, Chapter 5). There, a two-level

polynomial growth model was fitted with terms up to the fourth order and with

Level 2 random coefficients for the intercept, linear, and quadratic terms. In

Goldstein (2003), the following log link function was used at Level 1 to describe

the correlation structure:

ft1 t2 ¼ ajt1 � t2j; rt1t2
¼ eft1 t2 : ð21Þ

The nine target occasions were nominally 3 months apart, but there was variation

around this interval and we therefore fit our model in continuous time. In discrete

time, it becomes a first-order autoregressive model.

TABLE 5

A Two-Level Model for Examination Data With Correlation Structure at Level 2 Specified

by Equation 18

Parameter Estimate Standard Error

Intercept 0.015 0.024

Year 2 �0.041 0.017

Year 3 �0.004 0.017

Pretest 0.719 0.004

Alpha 1.693 0.342

Level 1 variance 0.467 0.004

Level 2 covariance matrix 0:034

0:029 0:034

0:024 0:029 0:034

24 35
DIC (PD) 61,398.5 (125.8)

Note: Logit link function. Burn-in ¼ 500, sample ¼ 5,000. Year 1 (2004) chosen as base category.

Uniform priors for variances.
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Table 7 shows the results from fitting the model from Goldstein (2003) but

here using the inverse tanh link.

The estimate of a is close to zero suggesting little evidence for any autocor-

relation structure. Figure 2 shows the chain for a using the inverse tanh link. The

chain shows reasonably good mixing with no discernible trend.

The analysis was also carried out using the log and logit links (details

omitted). For these, a was estimated with large negative values and poorly mix-

ing chains, and this compares with the MLE in Goldstein (2003) of�6.9 with SE

of 2.0.

7. Discrete Responses

Our procedures can be extended to handle discrete responses. Here, we con-

sider the binary response case in detail, using a probit link function.

We consider first the case where the Level 1 residuals are independent. We

write

z � Nðm; 1Þ; m ¼ Xbþ Zu;

where we observe a positive (¼1) response for our binary response y if z is pos-

itive, that is

zij ¼ mþ eij > 0 or

eij > �m:

TABLE 6

A Two-Level Model for Examination Data With Correlation Structure at Level 2 Specified

by Equation 19

Parameter Estimate Standard Error

Intercept 0.017 0.026

Year 2 �0.041 0.017

Year 3 �0.002 0.018

Pretest 0.719 0.004

a1 2.144 0.612

a2 0.389 0.680

Level 1 variance 0.467 0.004

Level 2 covariance matrix 0:033

0:028 0:033

0:021 0:028 0:033

24 35
DIC (PD) 61,401.0 (126.4)

Note: Inverse tanh link function. Burn-in ¼ 500, sample ¼ 5,000. Year 1 (2004) chosen as base

category. Uniform priors for variances.

Browne and Goldstein

468

 at University Library on September 21, 2010http://jebs.aera.netDownloaded from 

http://jebs.aera.net


We have

Probðy ¼ 1Þ ¼ Probðeij > �mÞ ¼
Z1
�m

fðtÞdt ¼
Zm
�1

fðtÞdt ð22Þ

where fðtÞ is the density function of the standard normal distribution. This is the

standard probit model. This leads to the MCMC sampling step whereby when a 1

is observed, we sample z from
Rm
�1

fðtÞdt and when a 0 is observed we sample z

from
R1
m
fðtÞdt ¼

R�m
�1

fðtÞdt .

Using the above, we can sample the z latent variables, and our model and

hence our algorithm is as before but with the inclusion of the extra sampling step

for z. For the case of nonindependence at Level 1, we modify this step as follows.

For Level 2 unit j, suppose that the values at the start of the current iteration of

the latent normal Level 1 random effects (residuals) are given by ej ¼ feijg. We

sample each random effect, eij, conditioning on the remaining random effects in

the Level 2 unit. That is, for the conditional sampling, the distribution Nðm; 1Þ is

replaced by

TABLE 7

Height as a Fourth-Degree Polynomial on Age, Measured About 13.0 Years

Fixed

Intercept 148.9 (1.3)

Age 6.16 (0.35)

Age2 2.16 (0.47)

Age3 0.39 (0.16)

Age4 �1.55 (0.46)

Cos (time) �0.24 (0.07)

Random

Level 2 covariance matrix

Intercept Age Age squared

Intercept 65.9 (19.7)

Age 8.5 (3.5) 3.0 (0.9)

Age squared 1.5 (1.6) 0.9 (0.4) 0.64 (0.25)

Level 1 variance

s2
e 0.21 (0.03)

a (mean) �0.020 (0.20)

a (median þ 95%
interval)

�0.064 (�0.28 0.42)

DIC (PD) 344.0 (58.1)

Note: Standard errors in brackets. Markov chain Monte Carlo (MCMC) estimates. Burn-in ¼ 5,000,

sample ¼ 50,000. After adapting, proposal distribution SD ¼ 0.08. Inverse tanh link.
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N ½mkj þ eT
k;j�12��1

1 ;s2
k � ; s2

k ¼ 1� �T
12��1

1 �12; ek;j ¼ ejðj6¼kÞ ; ð23Þ

where we partition �ej ¼
�1

�12 1

� �
. This sequence will produce a multivariate

normal distribution for the latent variables within each Level 2 unit.

When sampling conditionally on correlated random effects, it is possible for

the conditional mean to become relatively large and the corresponding residual

variance to become relatively small so that for some data points we may be sam-

pling from the extreme tail of the normal distribution. Given machine accuracy,

this may lead to the associated tail probability being returned as 1.0 leading to a

latent variable value that is coded as infinite. To avoid this problem, a cutoff

should be chosen, for example, a value equivalent to 5 on the standard normal

scale.

8. Discussion

We have shown how a wide class of nonindependence structures for

random effects at different levels can be specified and fitted. There are several

extensions to our models including higher levels of the data hierarchy and

FIGURE 2. Chain for alpha in Table 7.
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cross-classifications where independence across classifications is assumed and

also to multiple membership models. In addition, we can consider a fully multi-

variate version with a set joint responses, and this is under investigation. The

above estimation steps could be applied to each relevant classification condi-

tional on current estimates. We can also extend the binary response model to

ordered classifications using a probit link function together with a set of

‘‘threshold’’ parameters defining the category boundaries. For further details,

see Goldstein, Carpenter, Kenward, and Levin (2009).

As the number of Level 2 units becomes large or the number of Level 1 units

within a Level 2 unit becomes large for nonindependent Level 1 models, we will

need to handle very large covariance matrices and efficient procedures for this

will need to be developed so that we can sample from these efficiently. We also

need to take care that our parameters are identified. For example choosing

g1ðj1; j2Þ ¼ jj1 � j2j�1; g2ðj1; j2Þ ¼ jj1 � j2j�2
leads to nonidentifiability if the

inverse tanh, logit, or log link functions are used. The choice of prior distribution

for the elements of the covariance matrix could be further studied. Thus, for

example, we could choose an inverse gamma prior for the variance parameters,

although in our examination scores example this makes little difference to the

estimates.

A number of models can be viewed as special cases. Time series models such

as autoregressive structures (Goldstein et al., 1994) are one example and within-

family sibling relationship models are another. In the latter case, the correlation

between sibling characteristics will typically depend on whether they are twins or

singletons or on whether they are half or full siblings. In the former case, an

important feature of our model is that we can model complex time series struc-

tures where the repeated measures do not occur at the same set of regular time

intervals for each individual. This distinguishes it from existing approaches that

treat the set of common occasions as a special kind of multivariate structure.

Another important application of our models is in the modeling of educational

and other data where institutions do not behave independently. Thus, for exam-

ple, in the case of schooling effects, actions taken by one school when competing

for limited resources can be expected to affect the actions of nearby schools and

partnerships and collaborations will also invalidate assumptions about the

independence of school effects on pupil progress or performance. In our first

example, we assumed a simple model using an inverse distance function for the

correlation between schools. In practice, the choice of one or more such functions

will need to be guided by both theory and data.

In our exposition, we have assumed a common variance for the Level 2 resi-

duals and for the Level 1 residuals. A natural generalization is to allow these var-

iances to depend on Level 2 or Level 1 covariates. For example, in a time series

model, the variance may be a function of time, for example a seasonal function.

To incorporate this at either level, we would simply insert another Metropolis
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step into the algorithm that sampled the parameters of such a function to provide

a current value for the variance. Browne (2006) describes a procedure for this.

A set of MATLAB (Mathworks, 2004) macros was written to implement these

models.
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