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Abstract 
A very general class of multilevel factor analysis and structural equation models is 
proposed which are derived from considering the concatenation of a series of building 
blocks that use sets of factor structures defined within the levels of a multilevel 
model. An MCMC estimation algorithm is proposed for this structure to produce 
parameter chains for point and interval estimates. We show how traditional models 
for binary response factor analysis can be extended to fit multiple factors within a 
multilevel data structure. It is shown how a probit link function has useful 
interpretations and in particular that this allows the joint modeling of binary, ordered 
and continuous response variables. The model is applied to the study of country 
differences in a large scale study of Mathematics achievement in schools. 
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1. Multilevel models  
The technique of multilevel modelling is now well established and has been 
incorporated into most of the standard statistical packages. It is convenient for present 
purposes to consider educational data that exhibits a hierarchical structure of students 
nested within classrooms, nested within schools; a 3-level structure. Other examples 
are repeated measures data with occasions nested within subjects or surveys with 
people nested within households, both of these being 2-level data structures. More 
complex data structures such as cross classifications and ‘multiple membership 
structures’ are extensions for which models have been developed.  Goldstein (2003) 
provides a detailed exposition with references to further application areas. 

A general model for the 3-level schooling case, assuming Normality can be written as 
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For a generalized linear model, say with a binary response, we correspondingly have 
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where g  is a suitable link function and βX  refers to the fixed coefficient (regression) 
component of the model. We shall assume that the level 1 residual matrix is diagonal, 
and this will apply to our factor models too. 

First, we review briefly the traditional approach to estimating these models based 
upon maximum likelihood. 

2. Maximum likelihood estimation 
For the Normal model the standard (twice) the log likelihood is 
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where  is the set of random parameters comprising the variances and covariances in 
(1). If we have an ML estimate of 

Ω
β  then  

)ˆ()ˆ(||log)(||log)ˆ,(2 11 βββ XYVXYVSVtrVL T −−−−=−−=Ω −−   (4) 

is the profile likelihood for the random parameters Ω . A convenient algorithm known 
as Iterative Generalised Least Squares (IGLS) alternates between maximising (4) and 
then obtaining the conditional ML (GLS) estimate of Ω until convergence. 

We can write the extended likelihood, referred to in different contexts as a penalised 
likelihood or an h-likelihood (Lee and Nelder, 2001), that includes the actual random 
effects (residuals) as parameters 
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If we maximise (5) for the random effects, given ( ),Ωβ , we obtain the usual 
estimator which can be written conveniently as 
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So that a convenient modification of the IGLS procedure is to iterate between 
calculating the fixed effects using (7) which, when R is diagonal, is just OLS, 
calculating the random effects from (6) and then the random parameters using the 
same step as is used in the standard IGLS algorithm. 

Expression (3) is known as the marginal log likelihood since it is obtained by 
integrating out the random effects regarded as ‘nuisance’ parameters. 

Since the random effects depend on the random but not the fixed parameters, more 
generally we can write 

log[ ( , , )] {log[ ( | ; )] log[ ( ; )]}L U f Y U f Uβ βΩ = + Ω∑     (8) 

The marginal likelihood is thus given by 

( , ) ( | ; ) ( ; )L f Y U f Uβ βΩ = Ω∫ dU        (9) 

where the first term on the right hand side is the distribution function for the 
responses conditional on the random effects, or residuals, U. The second term is the 
distribution function for the random effects. The first term, given U, depends only on 
the unknown parameters β  and the second only on the  unknown parameters Ω . 
Thus, for example, for a 2-level logistic binary response model where the random 
effects are assumed to be multivariate normal we have, since the random effects are 
independent across units, 
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where  is the multivariate normal density function for the juΦ and ,  areij ijn s the 
numbers of trials and successes respectively.  

where  is the multivariate Normal density and (10) can be written in the 

form .      
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Gauss-Hermite quadrature approximates an integral such as the above as  
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where the right hand side is a Gauss-Hermite polynomial evaluated at a series of 
quadrature points indexed by q.  Hedeker and Gibbons (1994) give a detailed 
discussion and also consider the multicategory (multinomial) response case. This 
function is then maximised using a suitable search procedure over the parameter 
space. Rabe-Hesketh et al., (2002) use quadrature to fit general multilevel structural 
equation models wit a variety of link functions. An alternative to quadrature is to use 
simulated maximum likelihood that is attractive for models with large numbers of 
random parameters; see Goldstein (2003, Appendix 4.2).  

We now look at multilevel factor models. We shall briefly refer to the maximum 
likelihood analysis of multilevel factor analysis models and move on to develop an 
alternative approach using Markov Chain Monte Carlo (MCMC) estimation. 

3. A multilevel factor model 
We begin by considering a simple single level factor model for continuous responses, 
which we write as   
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where r  indexes the responses and i  indexes individuals. This can in fact be viewed 
as a 2-level model with a single level 2 random effect ( ) with variance constrained 
to 1 and R level 1 units for each level 2 unit, each with their own (unique) variance. 

iv

If we knew the values of the 'loadings' rλ  then we could fit (12) directly as a 2-level 
model with the loading vector as the explanatory variable for the level 2 variance 
which is constrained to be equal to 1; if there are any measured covariates in the 
model their coefficients can be estimated at the same time.  Conversely, if we knew 
the values of the random effects , we could estimate the loadings; this would now 
be a single level model with each response variate having it’s own variance.  These 
considerations suggest that an EM algorithm can be used in the estimation where the 
random effects are regarded as missing data (see Rubin and Thayer, 1982).  They also 
motivate the use of MCMC estimation that we will discuss below. 

iv

We now add a second level with its own factor structure and write 
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where the 'uniquenesses' u  are mutually independent and there 
are p response measures.  The 

 (level 2) , (level 1)e

1 2, Λ Λ

1 2,  v
 are the loading matrices for the level 1 and 

level 2 factors and the v are the, independent, factor vectors at level 1 and level 2. 
Note that we can have different numbers of factors at each level. We adopt the 

 4 4/3/03 



convention of regarding the measurements themselves as constituting the lowest level 
of the hierarchy so that equation (13) is regarded as a 3-level model.  Extensions to 
more levels are straightforward.  

We can write the Normal log-likelihood for (12) as 
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with corresponding expressions for other link functions. A general approach to 
estimation is to form the marginal likelihood as described above. McDonald and 
Goldstein (1989) provide an explicit computational algorithm for the Normal response 
model (13). Longford and Muthen (1992) develop this approach. The latter authors, 
together with Goldstein (1995, Chapter 11) and Rowe and Hill (1997, 1998) also 
point out that consistent estimators can be obtained from a 2-stage process as follows. 
A 2-level multivariate response linear model is fitted using an efficient procedure 
such as maximum likelihood. This can be accomplished, for example as pointed out 
earlier by defining a 3-level model where the lowest level is that of the response 
variables (see Goldstein, 1995, Chapter 8 and model (15) below). This analysis will 
produce estimates for the (residual) covariance matrices at each level and each of 
these can then be structured according to an underlying latent variable model in the 
usual way. By considering the two matrices as two ‘populations’ we can also impose 
constraints on, say, the loadings using an algorithm for simultaneously fitting 
structural equations across several populations. 

The present chapter describes a general approach to the estimation of such multilevel 
factor analysis models using Markov Chain Monte Carlo (MCMC). In the standard 
multilevel model (1) described above, MCMC treats the random effects at higher 
levels as parameters alongside the fixed coefficients, variances and covariances. The 
algorithm proceeds in steps where at each step a parameter or set of parameters is 
updated by sampling from the distribution for those parameters conditional on the 
current values for all the other parameters, the data and the prior distributions. For 
each parameter this results in a chain of correlated values that, after the chain has 
become stationary, can be used for inference. Thus, the mean and standard deviation 
provide estimates corresponding to the traditional maximum likelihood estimate and 
its standard error. An advantage of MCMC is that, given a long enough chain, we can 
obtain exact interval estimates based upon quantiles rather than relying on large 
sample approximations.  

We now describe the details of an MCMC algorithm for the factor analysis model. 

4. MCMC estimation for the factor analysis model 
We first develop our MCMC algorithm for the multivariate Normal model. This is 
followed by an extension to the binary and mixed response case, where we also give a 
detailed example. Further discussion of the multivariate Normal model can be found 
in Goldstein and Browne (2002). 
To show the steps of the MCMC algorithm we write (13) in the more detailed form 
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Again we have R responses for N individuals split between J level 2 units. We have F 
sets of factors, defined at level 2 and G sets of factors,  defined at level 1. We 
also introduce the fixed part of the model but for simplicity restrict our algorithm to a 
single intercept term

)2(
fjν )1(

gijν

rβ  for each response although it is easy to extend the algorithm 
to arbitrary fixed terms. The residuals at levels 1 and 2, erij and urj are assumed to be 
independent. 

Although this allows a very flexible set of factor models it should be noted that in 
order for such models to be identifiable suitable constraints must be put on the 
parameters. See Everitt (1984) for further discussion of identifiability. These will 
consist of fixing the values of some of the elements of the factor variance matrices, Ω1 
and Ω2 and/or some of the factor loadings,  and . )2(

frλ )1(
grλ

The algorithms presented will give steps for all parameters and so any parameter that 
is constrained will simply maintain its chosen value and will not be updated. We will 
initially assume that the factor variance matrices, Ω1 and Ω2 are known (completely 
constrained) and then discuss how the algorithm can be extended to encompass 
partially constrained variance matrices. The parameters in the following steps are 
those available at the current iteration of the algorithm. 

4.1 Prior Distributions 
For the algorithm we will assume the following general priors 
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4.2 Known factor variance matrices 
We assume that the factor variance matrices are known so that we can use a Gibbs 
sampling algorithm which will involve updating parameters in turn by generating new 
values from the following 8 sets of conditional posterior distributions. 

 

Step 1: Update current value of (r=1,…,R) from the following distribution: rβ

*

2 2( ) ~ ,
rijij r

r br
er br

d
brp N D D

β
ββ

σ σ

  
  +

    

∑
 where  

1

2 2

1
br

er br

ND
σ σ

−
 

= + 
 

and . rrijrij ed ββ +=

 6 4/3/03 



 

Step 2: Update  (r=1,…,R, f =1,…,F where not constrained) from the following 
distribution :  
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Step 3: Update  (r=1,…,R, g =1,…,G where not constrained) from the following 
distribution : 
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Step 6: Update (r=1,…,R, j=1,…,J) from the following distribution :  rju
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Step 7: Update from the following distribution:  where 
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Note that the level 1 residuals,  can be calculated by subtraction at every step of 
the algorithm.  

rije

4.3 Unconstrained factor covariances 
In the general algorithm we have assumed that the factor variances are all constrained. 
Typically we will fix the variances to equal 1 and the covariances to equal 0 and have 
independent factors. This form will allow us to simplify steps 4 and 5 of the algorithm 
to univariate Normal updates for each factor separately. We may however wish to 
consider correlations between the factors. Here we will modify our algorithm to allow 
another special case where the variances are constrained to be 1 but the covariances 
can be freely estimated. Where the resulting correlations obtained are estimated to be 
close to 1 or –1 then we may be fitting too many factors at that particular level. As the 
variances are constrained to equal 1 the covariances between factors equal the 
correlations between the factors. This means that each covariance is constrained to lie 
between –1 and 1. We will consider here only the factor variance matrix at level 2 as 
the step for the level 1 variance matrix simply involves changing subscripts. We will 
use the following priors: 

2,( ) ~ ( 1,1)lmp Uniform l mΩ − ∀ ≠  

Here is the l,m-th element of the level 2 factor variance matrix. We will update 
these covariance parameters using a Metropolis step and a Normal random walk 
proposal (see Browne (2003) for more details on using Metropolis Hastings methods 
for constrained variance matrices). 

lm,2Ω

 

Step 9: At iteration t generate Ω ~ N(Ω ) where   is a proposal 
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< -1 set Ω =  as the proposed covariance is not valid else form a proposed new 

matrix  by replacing the l,m th element of by this proposed value. We then 
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This procedure is repeated for each covariance that is not constrained. 

4.4 Missing Data 
Where some of the responses are missing this poses no problem for the MCMC 
methods if we are prepared to assume missingness is at random or effectively so by 
design. This is equivalent to giving the missing data a uniform prior. We then have to 
simply add an extra Gibbs sampling step to the algorithm to sample the missing 
values at each iteration. As an illustration we will consider an individual who is 
missing response r. In a factor model the correlation between responses is explained 
in the factor terms and conditional on these terms the responses for an individual are 
independent and so the conditional distributions of the missing responses have simple 
forms. 

Step 10: Update  (r=1,…,R, i=1,…,nj, j=1,…,J ∀ that are missing) from the 

following distribution, given the current values, where = 

. 

rijy

rijy ),ˆ(~ 2
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F

f
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Goldstein and Browne (2002) discuss the extension of this model to the general 
structural equation case. 

5. Binary response factor models 
Modelling of data that consist of binary or ordered responses to questions in an 
achievement or similar test instrument has a long history. Goldstein and Wood (1988) 
describe the history of mental testing from the early work of Lawley (1942) and the 
work of Lord and Novick (1968) on item response models to more recent 
developments of general factor analysis modelling (Bock et al, 1988). Rod McDonald 
has made important contributions to this area through his discussions of test item 
dimensionality and models for nonlinear factor analysis (McDonald, 1981, 1985). 

The early work was characterised by ‘fixed effect’ models of the kind 

rif π )(       (16) 

relating the probability of a correct response to the r-th  item for the i-th respondent, 
where typically a logit link function is used for the probability. The most common 
link function f is a logit or probit. The response, y, is typically (0,1) and we have the 
local, or conditional, independence assumption 
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(1, )~iidij ijy Bin π  

This is often referred to, somewhat inaccurately, as a 2-parameter model where in 
(16) each response is characterised by an intercept, r0β and factor coefficient r1β , and 
each respondent has a factor value iθ . This gives rise to a model with N+2p 
parameters where N is the number of respondents and p is the number of items or 
questions. Extensions to the case where responses are on an ordered scale (a graded 
response or partial credit model (Baker, 1992)) relate the cumulative proportion of 
success to a linear function via a suitable link function, for example the cumulative 
odds model for category h of item r 

∑ ∑
= +=

−=+=
h

g
rirrh

t

hg
grigri thf

r

1
10

1
1,...,1  ,)/( θββππ    (17) 

where t  indexes the final category of item r. r

Such fixed effect models have more recently been superseded by ‘random effects’ 
models (Bartholomew and Knott, 1999) where the individual parameter iθ  is assumed 
to have a distribution, typically Normal, across individuals. This provides both more 
efficient estimates and straightforward ways of handling missing responses. More 
importantly, it allows for the fitting of more than one parameter for individuals so that 
we can write down a general multidimensional binary (or ordered) extension of (16) 
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which is simply a single level binary response factor model.  

Having fitted such a model we can obtain estimates of factor values, or scores, for 
each individual on each factor. In practice models with more than one factor 
dimension have been used rarely nor, typically, are covariates incorporated, for 
example for gender or other predictors. We shall explore some of the consequences of 
this below in the analysis of a large-scale data set. 

We now introduce a multilevel model, as with the Normal response case, that 
recognises that groups such as schools, may differ in their response probabilities. We 
write 

),1(~

),0(~  ),,0(~

)(

2
)2(

1
)1(

1 1

)2()2()1()1(
0

1 2

rjk

iid

rjk

jij

q

h

q

h
rjhjhrhijhrrrij

Biny

MVNMVN

uf

π

θθ

θβθββπ

ΩΩ

+++= ∑ ∑
= =

  (19) 

We have now added a second set of factors, indexed by the superscript  (2) varying at 
the group level 2, independently of the individual level factors, indexed by the 
superscript (1). In contrast to the Normal response factor model the level 1 variance is 
constrained by the assumption of binomial variation and the factor structure has a 
nonlinear link with the responses. We shall retain the notational conventions for 
binary response models, generalized from (17), where we have the following 
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equivalences for the factor structure between (18) and (15): 
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The level 2 residuals,  are assumed independent .  rju ),0( 2
urN σ

We will show how to specify and fit such a model and use it with a large scale survey 
of student achievement.  

6. Data 
The data are taken from the Programme for International Student Assessment (PISA) 
carried out under the auspices of OECD in 2000 in 32 industrialised countries 
(OECD, 1999). The data sets, together with full descriptions are available on line 
(www.pisa.oecd.org). The full data set included a student and school questionnaire 
together with tests of reading, mathematics and science. A sample of 14-15 year old 
school students was selected in each country with a 70% response rate as a minimum 
requirement for inclusion. The OECD programme plans further surveys every 3 years. 
The major aim of the survey was to develop a ‘literacy scale’ for each of the three 
areas tested and to compare countries in terms of their average performance on these. 
The resulting continuous scales had distributions approximately Normal with a mean 
of 500 and standard deviation 100. Each scale was divided into six ‘proficiency’ 
categories each of which is exemplified in terms of responses to chosen sample test 
items. The scores were also analysed by background factors such as gender, and 
parental education and a multilevel analysis was also carried out to study variation 
between schools. 

The three OECD literacy scales were constructed using model (18) with a single 
factor. Each scale used only those items designated as Reading, Mathematics or 
Science. Factor scores were computed for use in subsequent analyses. For these 
analyses a multiple imputation procedure was used as follows. 

Each student has a factor score based on a linear predictor using their individual 
responses and the estimated model parameters. Under the model assumptions, these 
scores have an approximate Normal distribution, the accuracy of the approximation 
being a function of the number of item responses for an individual. Using an estimate 
of  the standard error, multiple imputation is used; that is, a set of (typically 5) random 
draws from this estimated Normal distribution is made and these are then used for 
subsequent modelling (Rubin, 1996). 

We shall refer to some of the limitations of this as a general procedure later, but for 
now note that a key feature is the use of a 1-dimensional factor model and we shall 
discuss below the incorporation of further dimensions. 

For present purposes we have chosen the Mathematics test items for two countries, 
France and England. In total there are 31 Maths questions. In fact several questions 
are grouped in that they all relate to the same problem. For example, one problem 
described a pattern of trees planted as a set of squares of different sizes, and 
associated with this problem there were three separate questions. For a model such as 
(18) it is dubious whether for such questions the local independence assumption will 
hold, although this was assumed in the OECD analysis. A more satisfactory treatment 
would be to combine the three separate questions into an ordered scale, for example 
by forming an a priori suitably weighted combination of the responses, and treating 
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this as an ordered categorical response as described above. For present purposes  we 
have selected 15 items, each of which is a response to a different problem and 
dichotomised into correct/incorrect, treating part-correct answers as correct. 

7. Estimation for the binary response factor model 
The OECD analyses use the logit link function. The probit function generally 
produces similar results and has certain advantages in terms of computational 
convenience. One important advantage of the probit is that we can think of the 
response as a threshold from an underlying (unknown) continuous response, which is 
Normally distributed (Albert and Chib, 1993). We use the Gibbs sampling algorithm 
for Normally distributed responses described above and adapted for a probit model as 
follows. 

Assume that we have a binary variable yi collected for several individuals i, that is a 
threshold version of an (unknown) continuous normally distributed variable yi

*. Now, 
if we knew the value of yi

* then we could fit the standard Gibbs sampling algorithm 
for normal response models. So we add an extra step into the Gibbs sampling 
algorithm and generate yi

* at each iteration from its conditional posterior distribution 
which is a truncated Normal distribution with mean (in the standard single-level 
probit model) Xβ and variance 1. The truncation point is zero and if yi is 0, yi

* has to 
be negative and if yi is 1, yi

* has to be positive. This step is inserted into the existing 
algorithm for the Normal response factor model. It should be noted that this model 
can also be updated using Metropolis sampling but the Gibbs sampling algorithm is 
faster and produces less correlated chains. Consider the standard 2-level model 

~ (0,1)
Y X ZU
e N

eβ= + +
        (20) 

Given current estimates of parameters and residuals, we have Y N XB ZU~ ( ,+ 1)

e

 and 
for the probit model the observation of a positive value (>0) on the scale of Y 
corresponds to the observation of a 'success' on the probability scale and the 
observation of a negative (<0) value corresponds to a 'failure'. The probit function that 
determines the underlying chance of a correct response is the cumulative probability 
given by  

0

( ) ,    ( ) is pdf of ( ,1)t dt t N X ZUφ φ β
∞

+∫  

or equivalently 

( )

( ) ,   ( ) is pdf of (0,1)
X ZU

t dt t N
β

φ φ
∞

− +
∫       (21) 

Alternatively if we write the value of the ij-th response as 
y X ZUij ij ij ij= + +( ) ( )β  

a positive value occurs when . We then have yij > 0

]))()[(Pr()0Pr( ijijijij ZUXey +−>=> β      (22) 

which leads to (21) 
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Thus, given current values of β , U and the observation for a level 1 unit (0 or 1) we 
take a random draw e*. If we observe a 1 then we draw from the truncated Normal 
distribution, [ *, ],   * )(X X X ZUβ− ∞ += and if we observe a 0 we sample from 

. This is then applied to (20) to give a new value Y*. This procedure is 
applied as an extra step in the factor analysis model, for example before step 1, with 
the remaining steps as before. 

[ , *−∞ −X ]

This approach is readily extended to the case of ordered categories, which can be 
applied to ‘partial credit’ models. We assume that there is an underlying Normally 
distributed response and that for p-category observed responses there are p-1 
thresholds. Assume a proportional odds model, where for the s-th cumulative 
probability we have (Goldstein, 2003) 

UZXss ++= )()(probit )()( βαγ  

so that corresponding to (21) this gives 

( )( )

( )   
s X ZU

t dt
α β

φ
∞

− + +
∫  

and sampling is conditional, as before, including the current values of the threshold 
parameters . )(sα

8. Results 
The analyses reported below were carried out using MLwiN Beta version 1.2 
(Browne, 2003, Rasbash et al., 2000). Table 1 shows a basic model in which a simple 
single level probit model is fitted for each item allowing for different country means.  

(Table 1 here) 

We see that, of the 10 statistically significant items, France does better on 4 (all free 
response items and worse on 6 (3 free response and 3 multiple choice items) than 
England. The interpretation of the probit function is that it predicts a value from an 
underlying standard Normal distribution with mean zero and standard deviation 1. 
This can be turned into a probability using the CDF of the standard Normal 
distribution. Thus, for example, the French students are, on average, 0.7 standard 
deviations ahead of the English for item 136Q01 (a free response Geometry item) but 
0.7 standard deviations behind on item 161Q01 (a multiple choice Geometry item) 

(Table 2 here) 

We now fit a single factor at each level (the student and the school) with results in 
column A of Table 2. For convenience we present only the estimated factor loadings. 
At both levels we have a common factor with comparable loadings on each item, 
although at student level the multiple choice items tend to have smaller loadings. The 
next model fits a different mean for each item for France and England, namely 
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   (23) 

Note that in (23) g identifies country and takes values 1 for England and 2 for France, 
and we actually fit a global mean vector plus a difference term, dr that captures the 
difference between French and English scores. The factor loadings are virtually 
unchanged. The means for the two countries, however, do differ somewhat for certain 
items. Thus, given the factor values, the French are somewhat further ahead than 
before on item 136Q01. This suggests that there may be different factor structures in 
the two countries, and we shall return to this below. 

If we ignore the interaction between country and item it is then possible (but not 
otherwise) to use these models for purposes of comparing countries. There are two 
natural extensions where we allow the factor means to vary between countries but 
where the factor structures are the same in each country. Thus we can extend (23), for 
country g, as follows 
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Typically we would be interested in modelling the same overall shift at each level (l) 
so that we have ( )l

g gµ µ= . In this case for a single factor model (24) can be written in 
the alternative form 
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  (25) 

Clearly we can extend such a model to other explanatory variables such as gender, in 
effect a structural equation model for the factor mean structures. We note that the 
OECD procedure for country and group comparisons will not in general produce the 
same inferences since the model that is fitted assumes no differences. Likewise, the 
OECD model assumes only a single (student) level with school level variation 
estimated in the second stage analysis. In the case of factor models the OECD 
approach to group comparisons leads to interpretational difficulties since the factor 
structure that is fitted, in the presence of real group differences under a model such as 
(23), is incorrect. We also note that for those with at least one valid mathematics item 
response (55%) the average number of mathematics items responded to by students is 
12.6 with a range from 1 to 16, so that the Normal approximation implicit in the use 
of plausible values may not be very accurate for some of the students. 

The OECD country comparisons for Mathematics show a small difference between 
the England and France and this is borne out by our own results, although we have 
used a reduced set of items. 
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An alternative formulation for country and group differences is to write (25) as 

),1(~

),0(~  ),,0(~

)(probit
2

)2(
)2(

1
2

)1(
)1(

1

)2(
1

)2(
1

)1(
1

)1(
10

rjkrjk

jij

rjjrijrgrrij

Biny

MVNN

ud

π

σθσθ

θβθβδβπ ++++=

   (26) 

This model additionally constrains the item differences  for each country to be 
constant. If we estimate the parameter  in (26) we obtain the value 0.02 with 
standard error 0.05 so that we would conclude that the French/English difference is 
small and non significant. In Table 2, however, we have shown considerable 
individual differences. Thus, if we had only fitted (26) representing a simple overall 
country effect, as in the PISA analysis, we would be missing potentially important 
differential (interaction) effects. 

d

(Table 3 here) 

The next model fits 2 orthogonal factors at student level and 1 at school level. In the 
present set of analyses we do not report fitting more than one factor at school level. In 
Table 3 the first factor at student level is again a general common factor, and the 
second factor tends to distinguish the free response from the multiple-choice items. 
We have also studied 3 factors at student level, but the results are not easy to interpret, 
perhaps unsurprisingly given only 15 binary response variables. 

(Table 4 here) 

We now fit separate factors for the two countries. Table 4 shows the results for a 
single factor at each level. We see that there are different patterns of loadings at both 
levels and those for France are much closer to the factor loadings estimated from the 
combined country dataset, perhaps unsurprisingly since there are almost twice as 
many French students in the combined sample. We have computed the factor scores 
for the English students from the combined and separate analyses and these show a 
high correlation (0.98). This reflects the fact that the factor score is effectively a 
weighted mean of the item responses, and the two sets of loadings are all positive and 
comparable in size. It is also inflated because the factor scores are ‘shrunken’ 
estimates with shrinkage a function of the number of items responded to. A simple 
comparison of the mean factor scores from the joint analysis with a single factor at 
each level gives a non-significant difference. Thus, while a joint analysis will lead to 
comparable rankings for individuals, as indeed will a simple scoring system using just 
the average percent correct (the correlation is 0.84), the interpretation of factor 
loadings in the context of group differences will not be the same.  

At the school level for France the factor loadings are approximately proportional to 
those at school level for the combined analysis, but this is not the case for the UK, 
which has different orderings for the loadings. In the pooled analysis the comparison 
between student and school loadings is more like that for France.  

9. Conclusions from the analysis 
We have not attempted to study reasons for country differences in any detail in these 
analyses. Our intention has been to show how multilevel binary factor models can be 
specified with covariates and group differences. We show that for the purposes of 
comparing countries it is important to fit a model, which explicitly includes country 
effects. In the present case we show that, in the simple case where one general factor 
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is fitted at each level, student and school, the factor structures are somewhat different 
for each country. Thus, a single ‘pooled’ set of factor loadings used for purposes of 
country comparisons leads to considerable difficulty in interpreting results, since, as 
in the present case, the pooled factors will be influenced by the weightings implicit in 
the numbers of students in each country. Where several countries are pooled as in the 
OECD PISA analyses, the factors are even more difficult to interpret as are resulting 
country differences. Furthermore, and perhaps more importantly, we have shown that, 
after fitting a single factor model there are still differences between countries in item 
response probabilities (Table 2). This implies that the choice of items to use will 
determine the factor loadings in that if we choose a majority of items that all load 
highly on a factor then that factor will tend to dominate the structure. If those items 
also happen to ‘favour’ a particular country then that country will tend to have higher 
factor scores, but this could only be ascertained by carrying out a multidimensional 
analysis.  

10. Discussion 
The issues that surround the specification and interpretation of single level factor and 
structural equation models are also present in our multilevel versions. Parameter 
identification has already been mentioned; with the ability to include prior 
distributions we can often treat identification problems with more flexibility. In the 
traditional model over-parameterisation requires setting one or more parameters or 
functions of parameters to known values. In our case we can obtain estimates by 
imposing informative prior distributions on each of the parameters which when 
combined with the data will provide the joint posterior distribution. An example is in 
the estimation of factor correlations where the assumption of a prior in the interval 
(0,1) can allow the joint posterior of all the parameters in an ‘over-identified’ model 
to be estimated.    

Another potential advantage of our approach, common to all MCMC procedures, is 
that we can make exact inferences based upon the Markov chain values. This will be a 
particular advantage for small data sets where we may be unwilling to rely upon 
likelihood-based approximations.  

Another issue is the boundary ‘Heywood’ case. We have observed such solutions 
occurring where sets of loading parameters tend towards zero or a correlation tends 
towards 1.0. A final important issue that only affects stochastic procedures is the 
problem of ‘flipping states’. This means that there is not a unique solution even in a 1-
factor problem as the loadings and factor values may all flip their sign to give an 
equivalent solution. When the number of factors increases there are greater problems 
as factors may swap over as the chains progress. This means that identifiability is an 
important consideration when using stochastic techniques.  

We can extend the models considered here to mixtures of binary, ordered and 
continuous responses. We have separately discussed all three types of responses. They 
are linked via the threshold probit model so that at level 1 we have a set of 
independent Normal variables (uniquenesses), each one arising from a continuous 
response, a binary response or an ordered response. At higher levels the random 
effects are assumed to have a multivariate Normal distribution and the MCMC 
estimation proceeds in a straightforward fashion.   

Such an example might arise in a health application where individuals respond to a 
health questionnaire at the same time as a set of continuous measurements of health 
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status are made. It might also arise in an educational examination where, for example, 
some responses are multiple-choice binary questions and some are free responses 
marked on a continuous scale. Another important application is to questionnaires that 
contain mixtures of ordered rating scales and binary responses. 

A major drawback of current implementations of binary factor (item response) models 
that attempt to account for multilevel data structures, is that fit a multilevel model in 
two stages: first by estimating a single level model and then fitting a multilevel model 
using the estimated factor scores, typically using multiple imputation via plausible 
values. Such a procedure does not allow the exploration of any factor structure at 
higher levels. We have shown in our example that this may be important, especially 
when comparing groups or countries.  

Finally, we note that all of our models can be extended straightforwardly to more 
complex data structures involving cross-classifications and multiple membership 
structures (Browne et al., 2001).  
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Tables 

Table 1.  Separate country analyses with probit response model 
for each item. Columns show UK mean and French – English 
difference between means. Standard errors in brackets. 10,000 
MCMC iterations with default priors. The type of item is shown 
by each item name (MC = multiple choice; FR = free response) 
Item England France-England 

Student level   

33q01 (MC) 0.80 -0.06 (0.05) 

34q01 (FR) -0.25 0.03 (0.06) 

37q01 (FR) 0.65  -0.11 (0.07) 

124q01 (FR) 0.01 -0.18 (0.07) 

136q01 (FR) -0.23 0.69 (0.05) 

144q01 (FR) 0.16 0.40 (0.05) 

145q01 (FR) 0.65 -0.13 (0.06) 

150q01 (FR) 0.78 -0.35 (0.06) 

155q01 (FR) 0.54 0.27 (0.06) 

159q01 (MC) 0.89 -0.24 (0.06) 

161q01 (MC) 0.96 -0.70 (0.06) 

179q01 (FR) -0.11 0.64 (0.06) 

192q01 (MC) -0.28 0.07 (0.06) 

266q01 (MC) -0.75 -0.26 (0.06) 

273q01 (MC) -0.04 0.03 (0.06) 
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Table 2. Factor loadings  with a single factor at each level. Analysis A ignores country 
differences; analysis B fits model (23) and shows the loadings together with French – English 
difference. Factor variances are set equal to 1. 

 A B 
  Loadings France -England 
Item    

Student level    

33q01 0.46 (0.04) 0.46 (0.04) -0.08 (0.04) 

34q01 0.70 (0.04) 0.71 (0.05) 0.01 (0.07) 

37q01 0.96 (0.09) 0.92 (0.07) -0.16 (0.10) 

124q01 0.69 (0.07) 0.72 (0.07) -0.20 (0.10) 

136q01 0.69 (0.05) 0.70 (0.06) 0.96 (0.08) 

144q01 0.55 (0.05) 0.54 (0.05) 0.46 (0.07) 

145q01 0.63 (0.05) 0.62 (0.05) -0.21 (0.08) 

150q01 0.59 (0.05) 0.59 (0.04) -0.41 (0.07) 

155q01 0.51 (0.05) 0.52 (0.04) 0.33 (0.07) 

159q01 0.46 (0.04) 0.47 (0.05) -0.31 (0.07) 

161q01 0.30 (0.04) 0.33 (0.04) -0.78 (0.07) 

179q01 0.54 (0.06) 0.52 (0.06) 0.79 (0.08) 

192q01 0.68 (0.04) 0.68 (0.05) 0.09 (0.07) 

266q01 0.36 (0.05) 0.38 (0.05) -0.28 (0.07) 

273q01 0.47 (0.04) 0.46 (0.05) 0.03 (0.06) 

School level    

33q01 0.26 (0.03) 0.26 (0.03)  

34q01 0.39 (0.03) 0.39 (0.03)  

37q01 0.77 (0.06) 0.74 (0.06)  

124q01 0.71 (0.05) 0.71 (0.05)  

136q01 0.49 (0.04) 0.54 (0.04)  

144q01 0.31 (0.04) 0.31 (0.03)  

145q01 0.47 (0.04) 0.48 (0.04)  

150q01 0.41 (0.04) 0.42 (0.04)  

155q01 0.29 (0.04) 0.31 (0.03)  

159q01 0.35 (0.04) 0.36 (0.04)  

161q01 0.23 (0.04) 0.24 (0.03)  

179q01 0.42 (0.05) 0.46 (0.04)  

192q01 0.43 (0.03) 0.43 (0.04)  

266q01 0.33 (0.04) 0.33 (0.04)  

273q01 0.35 (0.03) 0.35 (0.03)  
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Table 3.  Loadings for two orthogonal factors at level 1 and one 
factor at level 2.  First loading of factor 2 constrained to zero. 
Variances constrained to one. 
Item Factor 1 Factor 2 

Student level   

33q01 0.51 (0.06) 0 

34q01 0.67 (0.05) 0.22 (0.09) 

37q01 0.81 (0.10) 0.42 (0.14) 

124q01 0.56 (0.11) 0.80 (0.21) 

136q01 0.60 (0.09) 0.47 (0.12) 

144q01 0.58 (0.10) 0.08 (0.10) 

145q01 0.57 (0.06) 0.19 (0.12) 

150q01 0.72 (0.10) -0.07 (0.18) 

155q01 0.44 (0.06) 0.28 (0.10) 

159q01 0.50 (0.06) -0.04 (0.12) 

161q01 0.43 (0.07) -0.27 (0.14) 

179q01 0.46 (0.08) 0.46 (0.17) 

192q01 0.62 (0.06) 0.28 (0.10) 

266q01 0.41 (0.06) -0.10 (0.09) 

273q01 0.42 (0.06) 0.21 (0.12) 
School level   

33q01 0.27 (0.03)  

34q01 0.39 (0.04)  

37q01 0.76 (0.06)  

124q01 0.82 (0.10)  

136q01 0.52 (0.05)  

144q01 0.32 (0.04)  

145q01 0.47 (0.04)  

150q01 0.45 (0.05)  

155q01 0.31 (0.04)  

159q01 0.36 (0.04)  

161q01 0.25 (0.04)  

179q01 0.46 (0.05)  

192q01 0.44 (0.04)  

266q01 0.34 (0.04)  

273q01 0.36 (0.03)  

 

 22 4/3/03 



 23 4/3/03 

 

Table 4.  Loadings for single factor models separately for each 
country.  
Item England France 

Student level   

33q01 0.49 (0.08) 0.46 (0.04) 

34q01 0.56 (0.10) 0.75 (0.05) 

37q01 0.69 (0.12) 1.09 (0.11) 

124q01 0.50 (0.10) 0.82 (0.09) 

136q01 0.75 (0.14) 0.71 (0.06) 

144q01 0.48 (0.09) 0.58 (0.06) 

145q01 0.38 (0.09) 0.68 (0.05) 

150q01 0.50 (0.11) 0.62 (0.06 

155q01 0.31 (0.08) 0.59 (0.05) 

159q01 0.34 (0.09) 0.51 (0.06) 

161q01 0.32 (0.09) 0.33 (0.05) 

179q01 0.34 (0.09) 0.62 (0.07) 

192q01 0.75 (0.14) 0.68 (0.05) 

266q01 0.33 (0.09) 0.41 (0.06) 

273q01 0.44 (0.09) 0.48 (0.05) 
School level   

33q01 0.36 (0.06) 0.22 (0.04) 

34q01 0.46 (0.07) 0.36 (0.04) 

37q01 0.73 (0.09) 0.79 (0.08) 

124q01 0.80 (0.10) 0.68 (0.06) 

136q01 0.75 (0.08) 0.44 (0.04) 

144q01 0.41 (0.06) 0.25 (0.04) 

145q01 0.72 (0.08) 0.39 (0.04) 

150q01 0.44 (0.06) 0.43 (0.04) 

155q01 0.23 (0.06) 0.35 (0.04) 

159q01 0.47 (0.07) 0.31 (0.04) 

161q01 0.27 (0.06) 0.24 (0.04) 

179q01 0.50 (0.07) 0.45 (0.05) 

192q01 0.42 (0.08) 0.44 (0.04) 

266q01 0.38 (0.07) 0.30 (0.05) 

273q01 0.41 (0.06) 0.32 (0.04) 
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