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Introduction

Several papers have addressed the issue of the parameter biases which can
occur when fitting multilevel models with non Normal responses. Breslow
and Clayton (1993) discuss various fitting procedures including those based
upon linearising transformations, maximum likelihood and Bayesian
estimation using MCMC. Direct maximum likelihood or restricted maximum
likelihood, while feasible for simple models, becomes quickly intractable as
the number of random effects increases: MCMC via Gibbs sampling is an
attractive alternative, but the choice of prior distribution for the random
parameters is important and there are difficulties in choosing ’diffuse’ or
uninformative priors (Browne, 1998?). Approximate methods based upon
linearising transformations and applying quasilikelihood estimation are
attractive since they pose no serious computational problems and can be
fitted using modifications to existing multilevel software packages.

Rodriguez and Goldman (1995) illustrate how severe underestimation can
occur in a simple variance components model with binary responses,
especially for the level 2 variance. They use a ‘first order MQL’ method
(Goldstein, 1991). Goldstein (1995) and Goldstein and Rasbash (1996)
develop improved linearising approximations and show that for models
where there are adequate numbers of level 1 units per level 2 unit these give
satisfactory results. Nevertheless, where the numbers of level 1 units per
level 2 unit is small and for binary responses as in the Rodriguez-Goldman
data sets, there is still some underestimation. In this paper we set out a
procedure (Kuk, 1995) which yields asymptotically unbiased and consistent
estimates for such models and which can be applied in general to any kind of
non-linear multilevel model.

Iterative bootstrap (IB) bias correction

We shall illustrate the procedure with a simple 2-level variance components
model, as follows
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Given a set of initial estimates, obtained using for example the first order
MQL approximation,
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we generate a set of bootstrap samples, from the model using the estimates
(1) and averaging over these we obtain the set of bootstrap estimates
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We now obtain the bootstrap estimate of the bias by subtracting (2) from (1).
These bias estimates are added to the initial parameter estimates (1) as a first
adjustment to give new bias-corrected estimates
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We generate a new set of  bootstrap samples from the model based upon the
estimates given by (3), subtract the new mean bootstrap parameter estimates
from (3) to obtain updated bias estimates and add these to the initial
estimates (1) to obtain a new set of bias corrected estimates. When it
converges, Kuk (1995) demonstrates that this procedure gives asymptotically
consistent and unbiased parameter estimates.

In the present case the bootstrap samples have been generated parametrically
by sampling from the distributions with estimated parameters: in the present
case from a Normal distribution for the level 2 residuals and a binomial
distribution (with denominator one) for the level 1 residuals. It relies upon
the assumed model structure correctly representing the data hierarchy. In
some cases this may not be the case, for example if an important level is
omitted. Thus, the procedure does not protect against such forms of model
misspecification. An important case is with discrete response models where
we may have, say, extra binomial variation. In such cases the procedure can
give different solutions depending on which estimation method is used.

Care needs to be taken with small variance estimates. To estimate the bias
we need to allow negative estimates of variances. If an initial estimate is
zero, then clearly, resetting negative bootstrap sample means to zero implies
that the bias estimate will never be negative, so the new updated estimate will
remain at zero. Moreover, as confirmed by simulations, all the estimates will
exhibit a downward bias if negative bootstrap means are reset to zero. We
also note that where an unbiased variance estimate is close to zero, the value
of the bias is anyway small, so that full bias correction is less important and,
for example, a second order PQL estimate may be adequate (see below).

The bootstrap replicates from the final bootstrap set generally will have too
small a variance and so cannot directly be used for inference. If we knew the
functional relationship between the bias-corrected value and the biased value
this could be used to transform each of the bootstrap replicate estimates and
the transformed values then used for inference. We shall discuss a procedure
for doing this below. In MLwiN  version 1.0 the procedure is to use scaling
factors for each parameter calculated as follows.

For each parameter in turn, using the final bias-corrected estimate and the
final bootstrap replicate mean, we take the ratio of these and multiply all the
final replicate parameter values by this ratio. These scaled values are used to
construct approximately correct standard errors and quantile estimates.



A simulation

We simulate 100 replications of the model (1) for a binary (0,1) response
with all three parameters equal to 1., with 50 level 2 units and 2 level 1 units
per level 2 unit. This is a rather extreme case where we would expect serious
underestimation of parameters.

To decide how many bootstrap samples we need for each iteration of the
procedure we keep a running mean such that when, at the t-th bootstrap
sample, for the running means θ θ θt t t, ,− −1 2
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then we accept convergence. We have chosen the value of ε  as 0.001 and
set a minimum number of samples as 10. We note, in passing, that the device
of maintaining a suitable running statistic to judge convergence is applicable
for bootstrap sampling when attention is focused on other functions of
parameters, for example the standard deviation or a percentile estimate. We
then need a criterion for judging convergence of the bootstrap bias corrected
estimates. In an application convergence needs to be monitored closely,
especially for small values of random parameters. We finally adopted the
following criteria for the simulations

We compute the average of the current and previous two estimates, say θ t

and the average of the three estimates prior to these, say θ t−1 , and judge

convergence as follows
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For small estimated values convergence is often slow and an absolute rather
than relative criterion seems appropriate. The mean number of iterations
required was 13.8 and the mean number of bootstrap samples per iteration
was  80.5.

The basic results are given in Table 1. We have used the standard deviation
rather than the variance for reporting means since the distribution of the
latter is more skew.



 Table 1. Simulation results for MQL , Iterated bootstrap (IB)+ PQL  estimates (s.e.)

Level 2 s.d. Intercept Slope

Initial IB Initial IB Initial IB

1st order MQL
(IGLS)

0.49 (0.03) 0.98 (0.06) 0.89 (0.03) 1.05 (0.04) 0.91 (0.03) 1.07 (0.04)

1st order PQL
(RIGLS)

0.49 (0.04) 0.88 (0.03) 0.88 (0.03)

2nd order PQL
(IGLS)

0.84 (0.06) 1.03 (0.04) 1.02 (0.03)

2nd order PQL
(RIGLS)

0.93 (0.07) 1.07 (0.04) 1.10 (0.04)

The standard errors are computed over simulation replications.

It is clear that the serious underestimation for all the parameters has been
eliminated, and the final estimates are unbiased within the limits of sampling
error. The initial second order PQL estimates using Iterative Generalised
Least Squares (IGLS, which is maximum likelihood in the multivariate
Normal case) of the fixed parameters in fact  show no bias, but there is
underestimation of the standard deviation. With Restricted Iterative
Generalised Least Squares (RIGLS) which is restricted maximum likelihood
in the multivariate Normal case) the variance estimate is less biased, although
there appears to be a slight overestimation of the slope parameter.
Interstingly, the first order PQL (RIGLS) estimates are no better than the
first order MQL (IGLS)  estimates, which suggests that second order PQL
estimates should be used where possible for exploratory purposes. We also
notice that the ratios of standard errors for the IB and MQL 1 estimates is
approximately the same as the ratios of the parameter estimates, lending
support to the scaling procedure suggested above.

It would of course be possible to start with the second order PQL estimates
and use this estimation procedure for the bootstrapping. A difficulty with this
is that each estimation takes rather longer and this will usually be an
important consideration. Secondly, in some cases (5% in the present case)
the second order procedure fails to converge whereas the first order one
almost always does. We note, however, that discarding those replicates
where convergence fails does not invalidate the IB procedure.

At convergence we generate a final sequence of bootstrap samples to provide
estimates of precision, confidence intervals etc. The number of samples
required for such purposes will generally be larger than used to in the
updating, but as pointed out above we can use a running statistic for judging
convergence at any prespecified accuracy.

Figure 1 shows the relationship between the final and initial estimates and
illustrates how substantial adjustments can be made when the initial estimates
are moderately large.



Figure 1. Final iterative bootstrap estimate of level 2 standard deviation
by initial estimate. The value for the initial estimate of zero is the mean
over the 22 such values.

Interval estimation

Once convergence has been achieved a final group of replicates can be
produced as the basis for inference. As pointed out above, however, these
generally will have too small variation. One solution would be to take every
replicate set and use the IB to produce bias-corrected estimates; these could
then directly be used for inference. This procedure, however, is too
computationally intensive to be practical in most circumstances. Note that we
cannot just bias correct for selected percentiles since the rank orders will
differ among the prarameters.

An alternative procedure is as follows, but it applies just to the random
parameters. For each replicate in the final group we will have simulated a set
of residuals from the assumed underlying multivariate normal distribution.
Using the generated residuals we can obtain the empirical covariance matrix
at each level of the model. Each element of this matrix (termed a generated
parameter) corresponds to a random parameter estimate for the replicate and



we use the relationship between these two sets for our functional
transformation. We note that this also allows us to establish functional
relationships for any function of the random parameters. A suitable
smoothing curve, such as a cubic spline, for relating the generated
parameters to the estimated parameters is then required. By making the
replicate set large enough we can obtain any required accuracy. This
procedure does not deal with the fixed parameters. Here, however, the
simple scaling procedure may be adequate, and the PQL2 estimates are
typically almost unbiased.

This procedure can also be used to speed up the iterations - an accelerated
iterated bootstrap. Consider the first replicate set. For a given parameter, if

the distribution of the estimates covers the initial sample estimate ( $
( )θ 0 ) then

the relationship between the generated parameter as response and the
estimate obtained at that replicate allows us to obtain a predicted unbiased
estimate. If this is not the case at the first iteration then we continue until it
occurs. Using this estimate of the parameter we then iterate for a few further
replicate sets to obtain an accurate unbiased estimate. From the final replicate
set we then obtain the relationship to be used for inference.

Conclusions

The procedure outlined is quite general, and can be applied to any non-linear
multilevel model. As mentioned above, it will usually not be necessary where
there are sufficient level 1 units per level 2 unit. In practice, where the
number of such units is small, a useful strategy is to base model exploration
on the second order (RIGLS) PQL estimates and then compute final bias
corrected estimates using the first order MQL as here. In many cases,
however, the second order (RIGLS) PQL estimates will be perfectly
adequate.

Criteria are required for judging convergence and the number of bootstrap
samples and the optimum criteria will generally depend on the data
themselves and further work on this would be useful. For the bias corrected
estimates the procedure may not always converge or convergence may be
extremely slow. For MQL estimation neither of these problems has been
encountered but they seem more likely to occur with  PQL estimation and is
a further reason for preferring the former to the latter.
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