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children wineing outl those points whieh 'avpuarad to deviate marikedly from
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the generazl trend'!

In direct constrast to the approach of the curve fitters is that of
the event estimators; among the best kneown of whom are Tanner and Marshall
and more recentvly Frisch and Revelle, If we can judge by results in terms
of the increase in knowledgs and understznding, lhese workers win hands downl.
Ingeed, the work of Frisch and Revelle in particular T would argue, is a
standard against which the models cf

Their quantification of the relaticnships bhetwoen well defined events of growth

imposes constraints on any theoretical models which are developed,

o8

Let me now, having declared my prejudice, attempt to outline the backproun
to the fitting of growth curves.

)

The fitting of growth curves is generally motivated in one of two ways.

Either from biological considerations of the growth processes, leading to a
mathematical equation, or as an attempt to 'graduate' (i.e. to follow) observed
growth in a mathematically convenient way. In this paper I shall not deal with
relative growtn (allometry) but only with growth in a single measurement.
Examples of biologically motivated growth curves ares rare, and often
as in Kohn (1948) it is not possible to identify the parameters of the curve
with meaningful biological entities. However, Weiss and Kavanu (1957) do attempt
to make their parameters meaningful and derive a 14 parameter equztion based
in part on feedback mechanisms, to exnlain the growth of chickens, although
there seems to have been little attempt to exploit their approach for human
growth data. It is also a little difficult to see that it would have any
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real meaning, especially since the number of parameters is rnot very much less
than the number ¢f neasurenment points whicn are usually availatle.
i iy

The seccnd motivaticn for growth curve fitting has followed two paths,

One of these has attempted to incorporate mathematically identifiable events
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There are three basic reguiremcnts for a curve which | as’to describe the

period of growth from the beginning of adoles

which 1s

have an upper asymptote

Secondly it should have a single point of inflexion, namely

the growth rate is a maxirumn,

cenca to maturity., First it should

as the child rezches maturity.
a single time when

And thirdly there has to be a differcnt time



origin for each individeal child, which Tor convenisnce wo y thinic of as
being the age at which peak veleocity cccurs. Thooe reguircuents imply that
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this is indced the case.
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A sludy of the history of such curves indicates {
In studies of rat and mice growth data, J3-paraneler curves have often been
claired to give good fits (see e.g. Fidwell et al (1969)), and the Gonpertz
equation in p rticular has been discureed extencively (Laird et al (196%5)).
Any attempt, however, to apply the same technigues to human grovih is
not necessarily Eound 10 succezd, ‘As an illustraticn, consider the relations
betﬁeen size at time of peax velocity and final aqult size. ~For the most
commonly used jJ-parameter curves, this is fixed by the naturs of the curves
at between 0,1 and 0.6, the Gonpertz, for cxample, giving a vaslue of 0.37.
Fpr human growth data, however, the actual value is ahout 0.9 (Frisch and
R%velle (1969)) and Hence we cannot expect such curves to estimate accurately
both the point of peak velocity and the upper asymptote. This does not imply
that we canuot find a 3= ponarﬂter curve wnich works. One method of searching
for such a curve is to look at riore general curves with 4 parameters and then
1o see whether it is possitle to find = conétant value for cone of them so that
conditions such as that above,'are satisfied. One such type of curve is the

general logistic sometimes known as Robertson's curve. The equation of this

curve may be written

The time of maximum velocity is given by é"vﬂb and the value c¢f the

‘
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measurement y at this point is Qﬂiﬂd * re & is the upper asymptote. If we

use the value of 0.9 for the proporticn ¢f finzl growth attainsd at this time

ve need a growth curve containing at Jezst thres unlmown perametors.
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to this in cguation (1) gives

neals veloclity. ents rowth
adeguately in olher respects, and thic underlines o more general noint, namely
that if we have growtn curve
meets certain spacified criteris - this be solved by the application

of special technicues or, in other words, the derivation of & particular curve
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the estimates arn less zccurate and less
meaningiul evenis, particulerly with the typically srall number of points

|
available in human growih curves. vrihermore since by simply increasing the

‘urﬁer of paramciers a closer fit is bound to occur, it is reascnable to ask
whethér a simple cubic polynomial, alsc a 4-parancter curve, might not also

fit the data adequately., This curve dces not have a strict upper asymplote,
but it does have & point of inflexion, and if it can be made to fit the points
closely enough we might well consider using it routinely, especially since it
is very -casy to fit by ordinary least sguares. e have recently been compafing
the fit of such a cubic with that of a four parameter logistic curve and a {four
parameter Gompertz (heving an extra varsmeter for a lower asymptote and also

an edditional 'part parametsr'! since a celection of the points tc be included
must be made), and have noi yet been able tc chocse between them for adeguacy
of fit., (slide) whether, and for what, any of ithese curves is useful will

devend on further analysis ¢f ocur data. 1t is interesting that a very similar

conclusion is reached by Kidwell and Howard (1670)-for the growth of nice,




where a quadrallic and Gomperiz weve comnarad and no clear superiority of either
was found,
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