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Some of the sections within this module have online quizzes for you 
to test your understanding.  To find the quizzes: 
 
EXAMPLE 
From within the LEMMA learning environment 

 Go down to the section for Module 5: Introduction to Multilevel Modelling 
 Click " 5.1 Comparing Groups Using Multilevel Modelling"  

to open Lesson 5.1 
 Click                to open the first question 

  
 

 
Introduction to the Scottish Youth Cohort Trends 
Dataset 
 
You will be analysing data from the Scottish School Leavers Survey (SSLS), a 
nationally representative survey of young people.  We use data from seven cohorts 
of young people collected in the first sweep of the study, carried out at the end of 
the final year of compulsory schooling (aged 16-17) when most sample members 
had taken Standard grades.2   
 
In the practical for Module 3 on multiple regression, we considered the predictors 
of attainment in Standard grades (subject-based examinations, typically taken in 
up to eight subjects).  In this practical, we extend the (previously single-level) 
multiple regression analysis to allow for dependency of exam scores within schools 
and to examine the extent of between-school variation in attainment.  We also 
consider the effects on attainment of several school-level predictors.  
 
The dependent variable is a total attainment score.  Each subject is graded on a 
scale from 1 (highest) to 7 (lowest) and, after recoding so that a high numeric 
value denotes a high grade, the total is taken across subjects.  The analysis 
dataset contains the student-level variables considered in Module 3 together with a 
school identifier and three school-level variables: 
 
Variable name Description and codes 
caseid Anonymised student identifier 
schoolid Anonymised school identifier 
score Point score calculated from awards in Standard grades taken at age 16.  

Scores range from 0 to 75, with a higher score indicating a higher 
attainment 

cohort90 The sample includes the following cohorts: 1984, 1986, 1988, 1990, 
1996 and 1998.  The cohort90 variable is calculated by subtracting 

                                          
2 We are grateful to Linda Croxford (Centre for Educational Sociology, University of Edinburgh) for 
providing us with these data.  The dataset was constructed as part of an ESRC-funded project on 
Education and Youth Transitions in England, Wales and Scotland 1984-2002.   
Further analyses of the data can be found in Croxford and Raffe (2006). 

Q 1 
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1990 from each value.  Thus values range from -6 (corresponding to 
1984) to 8 (1998), with 1990 coded as zero  

female Sex of student (1 = female, 0 = male) 
sclass Social class, defined as the higher class of mother or father  

(1 = managerial and professional, 2 = intermediate, 3 = working, 4 = 
unclassified) 

schtype School type, distinguishing independent schools from state-funded 
schools (1 = independent, 0 = state-funded) 

schurban Urban-rural classification of school (1 = urban, 0 = town or rural) 
schdenom School denomination (1 = Roman Catholic, 0 = non-denominational) 

 
There are 33,988 students in 508 schools. 
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P5.1 Comparing Groups using Multilevel Modelling 
 
Download the R dataset for this lesson: 
  
From within the LEMMA Learning Environment 
 Go to Module 5: Introduction to Multilevel Modelling, and scroll down to R 

Datasets and R files 
 Right click “5.1.txt” and select Save Link As … to save  the dataset to your 

computer 
 
 
Read the dataset into R using  the read.table command and create a dataframe 
object named mydata3: 
 

> mydata <- read.table(file = "5.1.txt", sep = ",", header = TRUE) 
 

and use the str command to produce a summary of the dataset: 
 

> str(mydata) 
'data.frame':   33988 obs. of  9 variables: 
 $ caseid  : int  18 17 19 20 21 13 16 14 15 12 ... 
 $ schoolid: int  1 1 1 1 1 1 1 1 1 1 ... 
 $ score   : int  0 10 0 40 42 4 0 0 14 27 ... 
 $ cohort90: int  -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 ... 
 $ female  : int  1 1 1 1 1 1 1 1 1 1 ... 
 $ sclass  : int  2 2 4 3 2 2 3 4 3 2 ... 
 $ schtype : int  0 0 0 0 0 0 0 0 0 0 ... 
 $ schurban: int  1 1 1 1 1 1 1 1 1 1 ... 
 $ schdenom: int  0 0 0 0 0 0 0 0 0 0 ... 

                                          
3 At the beginning of your R session, you will need to set R’s working directory to the file location 
where you saved the dataset.  This can be done using the command line and the function setwd: 
 

> setwd(“C:/userdirectory”) 
 

Or through selecting Change dir… on the File menu. 
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P5.1.1 A multilevel model of attainment with school effects 
 
We will start with the simplest multilevel model which allows for school effects on 
attainment, but without explanatory variables.  This ‘null’ model may be written: 
 

0 0ij j iju e  score  
 
where ijscore  is the attainment of student i  in school j , 0  is the overall mean 

across schools, 0 ju  is the effect of school j  on attainment, and ije  is a student-

level residual.  The school effects 0 ju , which we will also refer to as school (or 
level 2) residuals, are assumed to follow a normal distribution with mean zero and 
variance 2

0u . 
 
R’s main command for fitting multilevel models is part of the additional lme44 
library which can be installed through the R Packages menu; select Install 
Package(s) and then select the correct Mirror and package from the scroll-down 
menus.  As you will see, there is a variety of additional packages that can be 
installed with R.  You only need to install a package once to your own computer.  
If you then want to use the package, you simply need to call it from within R prior 
to using the command for the first time in each R session.  This can be done with 
the library() function and in this case library(lme4).  
 

> library(lme4) 
Loading required package: Matrix 
Loading required package: lattice 
 
Attaching package: 'lme4' 
 
 
        The following object(s) are masked from package:stats : 
 
         AIC  

 
The output informs us that R has loaded two additional packages Matrix and 
lattice which are required for the lme4 package to work.  We are also told that 
the AIC object is masked from a third package stats.  This means that when you 
call these commands you need to specify from which packages you are calling 
them from.  This is done by using the name of the package followed by two ‘:’ and 
then the name of the command; for instance in this case stats::AIC. 
 
We will use the lmer() function from the lme4 library to fit the above model. 
The syntax for this function is very similar to the syntax used for the lm() 
function for multiple regression which we introduced in Module 3.5  Below we 
choose to store the model as a new object called nullmodel: 

 
> nullmodel <- lmer(score ~ (1 | schoolid), data = mydata, REML = FALSE) 

                                          
4 lme4 is a package developed by Douglas Bates and Martin Maechler for fitting linear and 
generalized linear mixed-effect models. 
5 To obtain details of the different options available for the lmer() function, just type 
help(“lmer”) 
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The response variable (score) follows the command which is then followed by a ~ 
and then by a list of fixed part explanatory variables (excluding the constant as 
this is included by default)6.  The above model contains only an intercept and so 
no fixed part explanatory variables are specified.  The level 2 random part of the 
model is specified in brackets by the list of random part explanatory variables (the 
constant has to be explicitly specified by 1, followed by a single vertical bar | and 
then by the level 2 identifier (schoolid).  The data option specifies the dataframe 
being used to fit the model.  The REML = FALSE option is used to request 
maximum likelihood estimation (as opposed to the default of restricted maximum 
likelihood estimation).   

                                          
6 Note, to omit the constant you need to add -1 to the right-hand side of the “~” sign. 
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We then display the results using the summary command, which gives the 
following output: 
 

> summary(nullmodel) 
Linear mixed model fit by maximum likelihood  
 
Formula: score ~ (1 | schoolid)  
   Data: mydata  
    AIC    BIC  logLik deviance REMLdev 
 286545 286570 -143270   286539  286539 
 
Random effects: 
 Groups   Name        Variance Std.Dev. 
 schoolid (Intercept)  61.024   7.8118  
 Residual             258.357  16.0735  
Number of obs: 33988, groups: schoolid, 508 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)  30.6006     0.3693   82.85 

 
Before interpreting the model, we will discuss the estimation procedure that lmer 
uses.7  The estimation procedure used by both MLE and REML is based on 
optimizing a function of the log likelihood using penalized iteratively re-weighted 
least squares.  The log-likelihood is evaluated using an adaptive Gauss-Hermite 
approximation, which, when using the default value of one, reduces to the 
Laplacian approximation.  This default approximation can be changed by using the 
nAGQ = n option, where n is an integer greater than one, representing the 
number of points used for evaluating the adaptive Gauss-Hermite approximation.  
The greater the value of n, the more accurate the evaluation of the log-likelihood, 
but the longer it takes to fit the model. 
 
The output of lmer consists of three parts.  The first part under Formula: and 
Data: reports a range of summary statistics (AIC, BIC, LogLik,…).  The second 
part under Random effects: summarises the variance and standard deviation of 
each random effect (including the level 1 model residuals).  Underneath the 
random effects table, the total number of observations is provided along with the 
number of units (or groups) for each higher level in the model.  Here, schools are 
our only higher level and the output reports that we have 508 different schools.  
The final part of the output is the Fixed effects: table which reports the 
parameter estimate (Estimate) standard error (Std. Error) and t-value (t 
value), for each parameter in the model.  For models with more than one fixed 
part explanatory variable (including the intercept), a correlation table between 
these variables is also provided underneath the table of parameter estimates (see 
later examples). 
 
The overall mean attainment (across schools) is estimated as 30.60.  The mean for 
school j  is estimated as 30.60 + 0ˆ ju , where 0ˆ ju  is the school residual which we 

will estimate in a moment.  A school with 0ˆ ju >0 has a mean that is higher than 

                                          
7 For further details see the PDF vignettes available on the lme4 website http://cran.r-
project.org/web/packages/lme4, in particular the vignette entitled “Computational Methods” 
which deals with the statistical theory. 
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average, while 0ˆ ju <0 for a below-average school.  (We will obtain confidence 
intervals for residuals to determine whether differences from the overall mean can 
be considered ‘real’ or due to chance.) 
 

Partitioning variance 
 
The between-school (level 2) variance schoolid (Intercept) in attainment is 
estimated as 2

0ˆu  = 61.02, and the within-school between-student (level 1) 

variance Residual is estimated as 2ˆe  = 258.36.  Thus the total variance is 
61.02 + 258.36 = 319.38. 
 
The variance partition coefficient (VPC) is 61.02/319.38 = 0.19, which indicates 
that 19% of the variance in attainment can be attributed to differences between 
schools.  Note, however, that we have not accounted for intake ability (measured 
by exams taken on entry to secondary school) so the school effects are not value-
added.  Previous studies have found that between-school variance in progress, i.e. 
after accounting for intake attainment, is close to 10%.   
 

Testing for school effects 
 
To test the significance of school effects, we can carry out a likelihood ratio test 
comparing the null multilevel model with a null single-level model.  To fit the null 
single-level model, we need to remove the random school effect: 
 

0ij ije score  
 
> fit <- lm(score ~ 1, data = mydata) 
 
> summary(fit) 
 
Call: 
lm(formula = score ~ 1, data = mydata) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-31.095 -12.095   1.905  13.905  43.905  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 31.09462    0.09392   331.1   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 17.31 on 33987 degrees of freedom 

 
The likelihood ratio test statistic is calculated as two times the difference in the 
log likelihood values for the two models.   
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You can obtained the log likelihood value for a model with the loglik command: 
 

> logLik(nullmodel) 
'log Lik.' -143269.5 (df=3) 
 
> logLik(fit) 
'log Lik.' -145144.4 (df=2) 

 
LR = 2(-143269.5 - -145144.4) = 3750 on 1 d.f. (because there is only one 
parameter difference between the models, 2

0u ).  
 
Bearing in mind that the 5% point of a chi-squared distribution on 1 d.f. is 3.84, 
there is overwhelming evidence of school effects on attainment.  We will therefore 
revert to the multilevel model with school effects.8 
 
 
P5.1.2 Examining school effects (residuals) 
 
To estimate the school-level residuals 0ˆ ju  and their associated standard errors, we 

use the ranef command with the postVar option.  This create a random effects 
object, containing the variance-covariance matrix in the postVar attribute.  
 

> u0 <- ranef(nullmodel, postVar = TRUE)   
 
> u0se <- sqrt(attr(u0[[1]], "postVar")[1, , ]) 

 
The 508 school level residuals are stored in u0,  a type of R object called a list.  It 
is actually a list of lists.  The first and unique element of the list, u0[1], is the list 
corresponding to the first set of random effects.  We can obtain a description of 
u0[1] by using the str command: 
 

> str(u0[1]) 
List of 1 
 $ schoolid:'data.frame':       508 obs. of  1 variable: 
  ..$ (Intercept): num [1:508] -11.84 3.21 3.4 -7.42 3.43 ... 
  ..- attr(*, "postVar")= num [1, 1, 1:508] 5.71 1.7 2.24 4.29 2.66 ... 

 
The first line of the output confirms that there are 508 schools in the data. The 
second line ( $ (Intercept)) lists the school effects while the third line 
corresponding to the “postVar” attribute lists their associated posterior 
variances. 
 
In our case there is only one set of random effects and therefore u0[1] is a list of 
only one object, u0[[1]].  u0[[1]] is itself a dataframe containing the school-level 
residuals and the “posterior variances” of these residuals within the attribute 
postVar:  To access the elements of this dataframe, we need to use two sets of 
square brackets as opposed to one set of square bracket. 

                                          
8 Note that this test statistic has a non-standard sampling distribution as the null hypothesis of a 
zero variance is on the boundary of the parameter space; we do not envisage a negative variance.  
In this case the correct p-value is half the one obtained from the tables of chi-squared distribution 
with 1 degree of freedom. 
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You can see the difference the second pair of square brackets makes by using the 
str command: 
 

> str(u0[[1]]) 
'data.frame':   508 obs. of  1 variable: 
 $ (Intercept): num  -11.84 3.21 3.4 -7.42 3.43 ... 
 - attr(*, "postVar")= num [1, 1, 1:508] 5.71 1.7 2.24 4.29 2.66 ... 

 
The output seems similar to the previous one, except that the name of the higher 
level random-effect is no longer specified.  
 
R uses lists in particular to associate specific attributes to data objects such as 
dataframes or vectors.  By default, R returns a dataframe for the random effects, 
even when there is only one set of random effect. 
 
As there is only one set of random effects, the postVar attribute only contains 
the “posterior variance” of each school-level residual.  To access this set of 
variances, we look into the attribute postVar of the dataframe u0[[1]].  This 
returns a three-dimensional array with the third dimension referring to each 
individual residual.  To reduce this array into a simple vector containing the 
“posterior variances” for each residual, we use attr(u0[[1]], 
"postVar")[1,,].  To view the first few elements of this vector, we can use the 
head command: 
 

> head(attr(u0[[1]], "postVar")[1, , ]) 
[1] 5.714615 1.698067 2.243282 4.291562 2.658550 1.969786 

 
The school-level residuals and their standard errors have been calculated and 
stored for each individual school.  We can therefore calculate summary statistics 
and produce graphs based on these data. 
 
Next we create a dataframe containing an identifier, residual and standard error 
for every school: 
 

> schoolid <- as.numeric(rownames(u0[[1]])) 
 
> u0tab <- cbind(schoolid, u0[[1]], u0se) 
 
> colnames(u0tab) <- c("schoolid", "u0", "u0se") 

 
We then sort this table by ascending order based on the values of u0: 
 

> u0tab <- u0tab[order(u0tab$u0), ] 

 
and create a new column containing the ranks: 
 

> u0tab <- cbind(u0tab, c(1:dim(u0tab)[1])) 
 
> colnames(u0tab)[4] <- "u0rank" 

 
We finally reorder the table based on the school identifier: 
 

> u0tab <- u0tab[order(u0tab$schoolid), ] 
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To see the school residual, standard error and ranking for a particular school, we 
can list the data by using the indexing structure of the R dataframe.  Here we do 
this for the first 10 schools in the data.  

 
> u0tab[1:10, ] 
   schoolid         u0     u0se u0rank 
1         1 -11.844059 2.390526     37 
2         2   3.207216 1.303099    337 
3         3   3.396920 1.497759    344 
4         4  -7.416852 2.071609     73 
5         5   3.427138 1.630506    345 
6         6  12.437109 1.403491    487 
7         7  -1.652372 1.460226    199 
8         8  20.984041 2.021872    508 
9         9  -8.693975 6.438403     59 
10       10   1.737830 1.904961    291  

 
From these values we can see, for example, that school 1 had an estimated 
residual of -11.84 which was ranked 37, i.e. 37 places from the bottom.  For this 
school, we estimate a mean score of 30.60 – 11.84 = 18.76.  In contrast, the mean 
for school 8 (ranked 508, the highest) is estimated as 30.60 + 20.98 = 51.58. 
 
Finally, we use the plot and segments commands to produce a ‘caterpillar plot’ 
to show the school effects in rank order together with 95% confidence intervals.   
 
We start by creating the plot but without plotting any data 

 
> plot(u0tab$u0rank, u0tab$u0, type = "n", xlab = "u_rank", ylab = "conditional 
modes of r.e. for school_id:_cons") 

 
By using the type = “n” option, we create the axis for the plot but prevent any 
data from being plotted.  
 
We then add to the plot the 95% confidence intervals by using the segments 
command: 

 
> segments(u0tab$u0rank, u0tab$u0 - 1.96*u0tab$u0se, u0tab$u0rank, u0tab$u0 + 
1.96*u0tab$u0se) 

 
The segments command takes at least four arguments corresponding to the pair 
of (x,y) coordinates, corresponding to the two end points of the segments, or in 
this case the lower and upper values of the 95% confidence intervals. 
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