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Summary. A new statistical model is proposed for the analysis of hierarchically
structured cross-sectional growth data, especially for where measurements are made over
long age ranges. The model combines a two-level model with grafted piecewise poly-
nomials, to make efficient use of available data.

1. Introduction

Two approaches to the modelling of longitudinal repeated measures data—poly-
nomial growth curves and fixed-occasion models—were proposed by Goldstein (1986,
1987, 1989). They utilize a two-level framework in which the individual is considered
to be a level 2 unit and measurement occasions within an individual are level 1 units.
Many growth studies, however, involve cross-sectional data with a hierarchical
structure which consists of measurements of children at different ages within geo-
graphical or other clusterings. There has been no attempt to use multilevel models to
study cross-sectional growth data for clustered populations, although the existence of
hierarchical population structures will generally require such models to be used.

The example given in this paper consists of 8971 weight measurements of children
from birth to 6 years old in 18 subdistricts in the middle east and southeast of China.
A two-level model will be employed where the level 2 unit is a subdistrict and the level
1 unit is a child. If the subdistricts were further clustered within higher-level units then
these would constitute a third level of the hierarchy.

First we are interested in the average growth trajectory and the variation in growth
trajectories between subdistricts or clusters. Secondly we are interested in the factors
which may account for this variation. Thirdly we wish to study the structure of the
between-child variation in growth, and the factors which might explain that.

2. The two-level growth model

2.1. Piecewise polynomials

The use of a single curve to describe growth over a long time period raises difficult
problems. If it is a polynomial it will typically need to be of high order and will often fit
badly at some ages, especially at the extremes of the range. If it is a nonlinear curve it
will typically require a large number of parameters, which makes estimation difficult, or
else may introduce fixed relationships between growth events which are unrealistic
(Goldstein 1979). In the present paper we consider the use of piecewise polynomials;
that is, the smooth joining of separate low-order polynomials, which are joined
together with the property that the derivatives of a desired order are continuous. We
shall be concerned here with the following fixed-order piecewise polynomials of degree
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p. These are a special case of general spline functions (Cox 1971) and are also known as
‘grafted polynomials’ (Fuller 1976). We write

m—1
A= £+ T et 8 ()
where

(r=§) =0, 1<§;
(t=)r, t=¢;

The values ¢, {1 <{ < ... <{,,_; are termed join points and f{?) is a polynomial of
degree p within the intervals ¢ <¢y; ¢ <t <¢;, j=2,3,..., m-1, {,_; <t Single
polynomials are special cases of the above functions when m=1. The value of p is
typically 3 or 5 for human growth data. For example, when one join point {; and
polynomials of degree 3 we obtain

SIO)=Bo+ Bit + Bt + Bs0° 1<
Bot Bt + B + B +B8,(— 5 >0

Such functions are useful for many purposes on the grounds of simplicity and
flexibility, and possess the property of being continuous in as many derivatives as
possible without degenerating into simple polynomials. In addition the form of these
functions makes them suitable for use in multilevel models.

2.2. A basic two-level model

Let person / in subdistrict j be measured on response variable Y at age ¢. For sub-
district or cluster j, we write the basic grafted polynomial of degree p with m—1 join
points as follows

Y= B+ Buty+ Boti+ .. + B+ By 1t — 1 + .. +Bpim1 = Cm- 1"
Boy=Bo;j+ e ¥))

In this model, the term e;; is referred to as the level 1 ‘residual’ for the ith child in the
Jth cluster. The coefficients of the intercept 3y; and slope $y; etc. can vary across
clusters and these coefficients are treated as random variables at level 2. Thus each
cluster has its own set of such coefficients. We write

Boy=voo + Ug;
B1;=1v10+ Uy, etc. 3

We also have

E(eu) = COV(eij,ekj) = E(u,j) =0

We may wish to attempt to account for between-cluster variation in terms of one or
more features, Z, of the children or W of the clusters being studied. For example, geo-
graphical features of subdistricts or socioeconomic characteristics of the child’s family
and the model could be extended by including such explanatory variables to give the

following
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Boij= Yoot L YWkt & Soizij + g + €y 4

Likewise the slope, etc. coefficients can be modelled as functions of cluster or person
level explanatory variables. One important application is where separate coefficients are
fitted for different subgroups, for example boys and girls, and typically this would be
done only for the low-order polynomial coefficients.

The random variation at level 1 can also be further structured. For example we can
fit separate level 1 variances for subgroups or allow the between-child variance with
age. Goldstein (1987) gives details of how these can be specified, and also provides an
introduction to multilevel modelling.

2.3. Calculation

Commonly available statistical packages are not available to provide efficient
estimates of the parameters in complex multilevel models. In this paper we use the ML3
software produced by the Multilevel Model Project, Department of Mathematics,
Statistics and Computing, Institute of Education (Prosser, Rasbash and Goldstein
1990).

3. Anexample

The data are derived from 4292 girls and 4697 boys with weight measurements from
birth to 72 months in six districts in Shanghai and five provinces in the middle east and
southeast of China. The data were measured by the WHO Collaborating Centre for
Physical Growth and Psychosocial Development of Children in Shanghai, in 1986. The
staff were specially trained to ensure validity under the guidance of experts from the
WHO Maternal and Child Health Division. The sample was finally clustered into 18
subdistricts which were classified as rural or urban.

The first step in the analysis was to identify the degree of the polynomial to be fitted
to the data and the number of polynomials which should be fitted. A previous analysis
(Pan, Goldstein and Yang 1990), suggested that there should be two polynomials
joining at 12 months, since the velocity of growth changes markedly at this age.

3.1. Basic models
Let y;; denote the weight in kg of the ith child in the jth cluster, ¢; denote the age in
months. Our basic model is as follows

Vi =Boj+ Buty+ Both+ Bty + Baylty— 12 +b3z5+ ¢ &)

where Z; is a dummy variable for gender. We suppose that the growth pattern varies
from district to district, with just the coefficients of the intercept and slope varying. We
have

Boi = voo + Ug;
By="10t Uy
B2j="20
B3;="v30
Baj="a0

where v is the mean intercept and v, is the mean linear growth rate. The variances of
u,; and u,; and their covariance denoted by 0%, 021 and o,q, respectively.
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The level 1 random variation can also be structured. Suppose we wish to fit
separate level 1 variances for boys and girls. If Z; is coded 1 for boys and 0 for girls,
we specify the level 1 random component as

€jj= €o;j T €323
Then the level 1 variance is given by
020 + 02323 + 20,0323 ()]

By constraining o2; = 0 we obtain for boys a level 1 variance 0%+ 20,03 and for girls o%).
The ML3 software used in the analysis (Prosser ef a/. 1990) allows such a model to be
specified. Note that setting ¢2;=0 is simply used as a device to avoid the over-
parameterization implied by (6).

By calculating weight variances for fixed age groups we find that the weight
variance increases with age. This suggests that we should model the level 1 variance as
a function of age. If #; is the age of the ith child in the jth cluster we now write

e,jzeOij+e3ijz3ij+e,ijtij (7)
We now obtain the following level 1 variance
O%O + 2090323,'1' + ZUeOttij + 2083123,']1,']' + O'gtf,zj

In fact, in our data o7 is actually estimated as zero and g, is very small and not
significant, so that the level 1 variance is modelled as a linear function of age, that is

o0+ 20,0323+ 20004}

Table 1 shows the estimated coefficients for the fixed part where we have fitted grafted
polynomials of order 3. The estimates of the fixed part of the model represent the
mean growth curve for the entire sample. In both models A and B the fixed coefficients
are substantially larger than their standard errors. The estimates in model A and
model B are similar, but the standard errors for the fixed coefficients in model B are
smaller than in A because the level 1 random structure is more accurately specified.
The variance estimates at level 2 are similar in the two models but of course are quite
different at level 1. The variance of 1-62 in model A is an overall average. In model B,
at a fixed age ¢ in months, the boys’ level 1 variance is 0-545 + 0-046¢, and the girls’ is
0-38 + 0-046¢. We could also allow for an interaction between age and gender so that
the rate of increase of variance differs between boys and girls. The difference, in the
present sample, is negligible. At level 2 we see that the between-cluster variation
changes with age, as a result of both the variance and the mean increasing with age.

3.2. Adding further explanatory variables

We now study the effect of including terms for urban/rural, gender, and region
(southeast and middle east of China). Let W}, W,, Z; denote region, urban/rural and
gender respectively. We have included gender already in models A and B, but only as
an overall boy/girl difference. Now we allow an interaction between gender and the
linear and quadratic polynomial coefficients by adding the terms z;;#;, z3,-jt,zj to the
model.
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Table 1. Estimated parameters and variance components of models A and B

(standard errors in parentheses).

Parameters A B
Fixed
Constant 3:06(9-70x 10~2) 3-05(7:33x1072)
t 1-13(2:65x10-2) 1-15(1-78 x10-2)
? —8:07x1072(2:59%10-3)  —8-23x10-2(1:85x10-2)
I 2:24%1073(7-64x105) 2:29%1073(5-59%10~5)
(=123 —-2-24x1073(7-83x107%  —2:29x1073(5-81x 10~ %)
Z, 0-52(2:70x 10~2) 0-51(2:26x1072)
Random
Level 2
02y 7-23x1072(2:71x1072) 6-14x1072(2:20x1072)
oZor 2-55%1073(9-59x 104 2:51x1073(9-15%x 10~
oz, 1-28x1074(4-52x10~%) 1:34%1074(4-76 X 10~5)
Level 1
aZ, 1-62(2-43x 1072 0-38(2:21x1072)
0003 8:25x 10-2(1-50x 10~2)
oot 2:28x 1072(6-91x 10-%)

Z4 is coded 1=boy 0=girl.
Number of boys=4679, number of girls =4292.

Table2. Estimated parameters and variance components of models C and D

(standard errors in parentheses).

Parameters C D
Fixed
Constant 2-85(9:27x1072) 2-85(8:80x 1072)
t 1:13(1-88x1072) 1:11(1:83x1072)
2 —8:27x1072(1-92x 1073)  —8:24x10-2(1-86x 10~3)
s 2:30x1073(5-80x 10-%) 2:30x 1073(5-64x 10~5)
(t—120 -2-31x1073(6-02x107%  —2-30x10-3(5-85x 107 %)
W, 0-42(8:27x1072) 0-43(7-82x10-2)
W *t 1:59%10-2(3:99 % 10-3) 1-58x1072(3-94x 10-3)
W, 0-21(7-55x10-2) 0-20(7-14x10-2)
Wyt 1-27x1072(3-63 x 10-3) 1-30x 10-2(3-59x 10~ 3)
Zy*t 4-93x1072(2-80x 10~3)
Zy2 —7-24x1074(5-67x 10~5)
Random
Level 2
02y 2:03x1072(8-40% 10~ 3) 1-80x1072(7-53% 10~3)
Thon 5:86x 1074(3:04x 10-*) 5-89%x 1074(2-88 X 10~ %)
oZ, 4-86x1073(1-94x 10-%) 4-76x1073(1-90x 10~%)
Level 1
o2 0-43(2-40%x 10-2) 0-40(2-25x 10-2)
0,03 9-06x 1072(1-62x 1072 8-45x1072(1-52x 1072
Topt 2-32%1072(7-24%x 104 2:29%1072(7-00x 10-%)

W, is coded 1=middle east, 0= southeast.
W, is coded 1=urban, 0=rural.
Z4 is coded 1 =boy, 0=girl.

Interaction are denoted by the * symbol. Thus, for example, the interaction

between age and region is denoted by W *t.
Number of boys=4679, number of girls=4292.
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The intercept, linear, and quadratic coefficients of age are structured in terms of W1,
W, as follows.

Boj = voo T Yo Wi+ voa W + Uy
Bii="v10+ Yuwii+yiwy+uy;

B2i="20
B3;="30
Baj="40

Table 2 shows the estimates for fixed and random effects of models C and D. All the
coefficients of the fixed part of models C and D are statistically significant. In model D
the coefficient of region is 0-43, which indicates that the average weight at the initial
status in the middle east is considerably larger than that in the southeast, and the
estimate of vy of 0-016 indicates tha the average growth rate of weight in the middle
east is greater than that in the southeast. In other words the regional difference in weight
increases with age, although only by 1%. Likewise, the urban children on average grow
just under 2% faster than the rural children. Both in model C and D the level 2
variances are smaller than their counterparts under model B: each variance has
decreased more than 60%. These reductions suggest that much of the between-cluster
variation is accounted for by region and urban/rural. In model D we see the different
growth trajectories for boys and girls. Figure 1 is a plot of average weight curves of boys
of urban and rural areas in the middle east and the southeast of China for model D.
Figure 2 shows a plot of estimated standardized child level residuals against predicted
values for model D. The pattern of residuals shows no trend of variance with the
predicted values, and no exceptionally large outliers, which implies that the model D fits
adequately.

Table 3 presents results for model E which uses the same explanatory variables as
model D but with a logarithmic transformation of weight. We see that in model E the
coefficient of W,*t and o, are no longer significant at the 5% level and are omitted in

19 T T T T
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Weight in kg
=
=

3 . L | . L ;
o] 18 36 54 72

Age in months

Figure 1. Mean weight curves of boys in urban and rural areas in the middle east and southeast of China
for model D.
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Figure2. Child (level 1) standardized residuals by predicted values for model D.

Table 3. Estimated parameters and variance components of models E and F
(standard errors in parentheses).

Parameters E F
Fixed
Constant 1:23(1-42x 107 2) 1:22(1:42x1072)
¢ 0:20(2:54%x 1073 0:20(2:54x1073)
2 —1:52%x1072(2:47x 1074  —~1-53x1072(2-48x 10~ %)
I 4:22%1074(7-26 x 10~9) 4-23%1074(7:27%10795)
(¢—12% —423x107%7-43x107%  —4-24x1074(7-44x1079)
W, 7-20x1072(1-25x 1072) 7:26x1072(1-25x1072)
Wt 1-56 x 1074(2-02x 104
W, 3-59%1072(1-14%x 10~2) 3:58x1072(1-14%1072)
Wy*t 367X 1074(1-87x 1074 3-65x10-4(1-92x 10~ %)
Zy*t 3:84%x1073(2-59x 10~%) 3:-84x1073(2-59x 10~ %)
Zy*? —5-60x1075(4-68x10°%)  —5:60x10-5(4-68x1076)
Random
Level 2
02y 4-92x1074(1-90x 10~% 4-93x1074(1-91x 10~ %)
oo 1:01x1078(2-22%x 1079) 9:36x 10-7(2-27x10-9%)
a2, 9-25x1078(5-12x 10 %) 1:00x10-7(5-38x 107 8)
Level 1
02 1-55%10-2(4-02x 10~4) 1-55%10-2(3-41 x 109
0,03 4:69x107%(2:03x10~%)
Oe0t —3-46x1075(4-53x107%  ~3-46x1075(4-53x1079)

W, is coded 1=middle east, 0= southeast.

W, is coded 1=urban, O=rural.

Z5 is coded 1=boy, 0=girl.

Interaction are denoted by the * symbol. Thus, for example, the
interaction between age and region is denoted by W, *t.
Number of boys=4679, number of girls =4292.

model F. We see that the variance on the log scale is a decreasing function of age. Since
the standard deviation of log (weight) is approximately equal to the standard deviation
of weight divided by the mean weight, this simply means that relative weight is a
decreasing function of age.
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Figure3. Normal probability plot for level 1 residuals for model D.
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Figure4. Normal probability plot for level 1 residuals for model F.

The advantage of using model F is that we need to specify fewer parameters.
Furthermore, the distribution of the residuals is less skew, as is shown in figures 3 and 4
which compare normal probability plots for the level 1 residuals from analyses D and F.
Substantively, the omission of the interaction between region and age in analysis F
implies that the ratio of weight for the regions is an additive function of region and age.
The use of F rather than D, however, does not change our general conclusions in any
important way.
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4. Discussion

The main feature of a two-level model for cross-sectional data on growth is that we
can study between-cluster variation and at the same time fit heterogeneous variation at
level 1 to allow for different gender variances and changing variability with age. The
present paper has shown the feasibility of fitting grafted polynomials to a wide age
range with a multilevel structure which also allows for covariates.

In our paper only # in equation (1) is permitted to be different for the separate
pieces of the polynomial. A more general form, known as weak splines, can allow #~!
etc. to have different coefficients in the various segments of the piecewise polynomials
(Cox 1971). Further study of this will be presented in another paper. In practice we have
found that the grafted polynomials can cope with multilevel growth data successfully.
More than one join point would be necessary to fit curves for longer age ranges, and in
special situations, such as the age range including adulthood, a more complicated
method is needed and further study of this problem is planned.

In model A we found that the estimates of the coefficients of £ and (¢ — 12)%. are
almost equal in absolute value, which implies that the polynomial in the second
subrange is effectively quadratic, and we could have incorporated a constraint to make
these coefficients equal in absolute value.

In our examples only the linear coefficient of age is assumed to be random at level 2.
In some cases we may wish to make the coefficients of higher-order terms random, and
that involves a straightforward extension. If, however, the coefficient of the highest-
order term, in our case the cubic, is made random we require both the coefficients of g,
(t— 12)%. to be random and their covariance to be fitted as well as their variances.

Finally, other factors, for example family circumstances, can be incorporated
readily into the fixed part of the model to see how far they might explain between-
cluster or between-child variation in growth.
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Zusammenfassung. Es wird ein neues statistisches Modell zur Analyse hierarchisch strukturierter
Querschnittsdaten zum Wachstum vorgestellt, das insbesondere geeignet ist, wenn Messungen fiir eine
grofle Altersspanne vorliegen. Das Modelle kombiniert ein Zwei-Stufen Modell mit ‘‘grafted piecewise
polynomials’’, um aus den verfliigbaren Daten effizient Nutzen zu ziehen.

Résumé. Un nouveau modéle statistique est proposé pour I’analyse de données de croissance transvers-
ale hiérarchiquement structurées, en particulier pour les cas ou les mesures sont faites en englobant de
vastes gammes d’age. Le modele combine un modéle 4 deux niveaux avec assemblages polynomiaux con-
struits pas a pas, afin de faire un usage efficace des données disponibles.



