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Introduction 
 
In Module 6 we saw how multiple regression models can be generalised to handle 
binary responses, and in Module 7 these models were extended for the analysis of 
binary data with a two-level hierarchical structure.  Module 9 considered single-
level and multilevel models for categorical responses with more than two 
categories, where the numeric codes assigned to categories imply an ordering.  
Examples of ordinal variables include Likert scale items where respondents are 
asked to indicate their strength of agreement with a statement, and exam grades.  
In this module we look at models for nominal (or unordered) categorical responses, 
where the numeric codes assigned to categories are simply labels and serve only to 
distinguish between categories (see C1.3.8 for a classification scheme for 
variables).   
 
Examples of nominal responses include political party preferences (e.g. Labour, 
Conservative, Liberal Democrat, other in the UK), mode of transport and brand 
preference.  Aggregating such variables to a binary response not only wastes 
potentially important information, but may result in misleading conclusions if 
predictors have different effects for different categories.  For example, the choice 
between driving to work or using public transport may depend on the availability 
of free car-parking, while the choice between driving and walking is likely to 
depend strongly on the distance between home and work. Fortunately, 
multinomial regression methods have been developed that allow such distinctions 
between categories of a nominal response, and these have been extended to 
handle multilevel data structures. 
 
In this module, we begin by describing multinomial logit models for single-level 
nominal responses.  As the coefficients of multinomial models can be difficult to 
interpret, we pay particular attention to calculating predicted response 
probabilities to aid interpretation.  We then consider multilevel multinomial logit 
models for two-level structures.  We shall see that models for nominal responses 
are direct extensions of the models for binary responses described in Modules 6 
and 7.  The same generalisations of the basic multilevel model – for example, 
random slopes and contextual effects – are possible for nominal responses. We end 
with a discussion of conditional logit models which are used when the effects of 
characteristics of the different response alternatives are of interest.  For example, 
the choice between driving and using public transport may depend on their relative 
costs to an individual, according to where the individual lives and the travel time 
for each option.     
 

Introduction to the Example Dataset 
 
Our main example dataset for this module comes from the 2008 National Travel 
Survey (NTS)1.  The 2008 NTS is one of a series of annual cross-sectional household 

                                         
1Department for Transport, National Travel Survey, 2002-2008 [computer file]. 5th edition. 
Colchester, Essex: UK Data Archive [distributor], June 2010. SN: 5340.  The data are free to 
download after registration from http://www.data-archive.ac.uk/ 
 

http://www.data-archive.ac.uk/
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surveys, designed to provide regular data on personal travel in Great Britain.  We 
will use data from personal face-to-face interviews (the survey also includes travel 
diaries), and restrict the sample to household members who were aged 16 or 
older. 
 
The response variable for the analysis is the mode of transport used to travel to 
work, which has been grouped into three categories: 
 

Code Label 

1 Car /motorcycle 

2 Bicycle or walking 

3 Public transport  

 
 
We consider three individual-level characteristics as explanatory variables (all 
categorical): 
 

 Gender 

 Age (16-19, 20-29, 30-39, 40-49, 50-59 years) 

 Employed part-time (versus full-time) 
 
The survey is based on a stratified two-stage random probability sample of private 
households in Great Britain. The primary sampling units (PSUs) at the first stage of 
sampling are postcode sectors. At the second stage, a sample of households was 
drawn from the selected PSUs.2  We will ignore the household level in this module, 
and treat the data as a two-level structure with individuals at level 1 and PSUs at 
level 2.   
 
We consider one PSU-level explanatory variable: 
 

 Type of area (London boroughs, metropolitan built-up areas, other urban 
areas over 250,000 population, urban 25,000-250,000 population, urban 
10,000-25,000 population, urban 3000-10,000 population, rural) 

 
After excluding a small number of individuals with missing data on at least one of 
the variables, the analysis file contains 8,512 individuals nested within 683 PSUs. 
 
Note that the same dataset was analysed in Module 9 for an ordinal response 
(frequency of walking).  In this module, the analysis sample has been restricted to 
employed respondents aged less than 60 because means of travel to work was only 
asked of this group. 
 
 

                                         
2 See Anderson, Christophersen, Pickering, Southwood and Tipping (2009) National Travel Survey 
2008 Technical Report. Prepared for the Department of Transport. This report and other 
documentation can be downloaded with the dataset from http://www.data-archive.ac.uk/ 

http://www.data-archive.ac.uk/
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C10.1 Multinomial Logit Model for Single-Level Data 
 
In this module we focus on multinomial logit models, the most common approach 
for the analysis of nominal responses.  Another model for nominal responses, the 
conditional logit model, is discussed in the final section C10.5. 
 
 

C10.1.1 The multinomial logit model 
 

Consider response variable y which takes values 1, 2, . . ., C. 
 
We define response probabilities for each category   as 
 

           
 
where               .  
 
As for binary and ordered logit models, one of the response categories is chosen as 
the reference.  We then model the log-odds of being in one of the remaining 
categories rather than the reference category.  If we take the first category as the 
reference, for example, we model the log-odds of being in category             
rather than category 1.  
 
We begin be considering models for a single-level nominal response.  Suppose we 
have one continuous or binary explanatory variable  , then the model for the 
contrast between response category   and the reference category 1 for individual 
            can be written 
 

    
   

   
                                                 

 
Equation (10.1) consists of     contrasts or sub-equations, one for each category 
apart from the reference, where     is the intercept and     the effect of   for 
the contrast of category   versus category 1. 
 
Before discussing interpretation of the multinomial logit model, we note that the 
binary logit described in Module 6 is a special case of (10.1).  To see this, suppose 
that the response yi is binary but coded 1 and 2 (rather than the usual 0 and 1).  
Taking the first category as the reference (now coded 1 rather than 0) equation 
(10.1) reduces to a single contrast: 
 

    
   

   
      

   

     
           , 

 
 
where     is the binary response probability. 
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Remarks 
 

 The multinomial logit model given by (10.1) has the same predictor x in 
each equation.  This restriction can be relaxed to allow a predictor to affect 
a subset of contrasts.  In some software packages, it is possible to directly 
specify the contrast(s) for which a particular predictor should be included. 
In other packages, a predictor is removed from a contrast by constraining its 
coefficient to equal zero. 
 

 The equations in (10.1) are estimated simultaneously, but an approximation 
to the multinomial logit model is obtained by estimating a series of binary 
logit models on subsets of the data.  For example, the contrast of category 
2 versus 1 may be approximated by selecting respondents with     or 
    and estimating a simple logit model for a new binary response 
distinguishing these two categories (coded 1 when     and 0 when    ).3  
However, this approach does not extend to the multilevel case where we 
will typically wish to allow for correlations between random effects for the 
different contrasts. 
 

 

C10.1.2 Interpretation of coefficients and predicted probabilities 
 
The intercept     for contrast   is the log of the probability of being in category   
relative to the probability of being in category 1 when    , and its exponent 
         is the ratio of the probability of being in category   to the probability of 
being in category 1.  The left-hand side of equation (10.1) is commonly referred to 
as the log-odds of being in category   rather than category 1, and we will refer to 
it as such as a shorthand even though we are really modelling the ratio of two 
probabilities.4  However, it is incorrect to refer to              as simply the odds 
of being in category   (as we would for a binary response); if we do not explicitly 
refer to the reference category, the odds are                 . This is an 
important difference between the binary logit model and the multinomial logit 
model for a multi-category response which has implications for the interpretation 
of coefficients from a multinomial model (as discussed below).  
 
The coefficient of   for contrast  ,    , is the effect of a 1-unit increase in   on 
the log-odds of being in category   rather than category 1.  As in the binary 
response case, we can interpret          as an odds ratio, comparing the odds of 

being in category   rather than category 1 for two randomly selected individuals 
whose   values differ by 1 unit. 
 
As you can tell from the above, interpretation of the coefficients of a multinomial 
logit model (and the associated odds ratios) is rather awkward!  In a binary logit 
model, the coefficients are the effects of predictors on being in one of the 

                                         
3 This approximation was proposed by Begg, C.B. and Gray, R. (1984) “Calculation of polychotomous 
logistic regression parameters using individualized regressions”. Biometrika 71, 11-18.  
 
4 Exponentiated coefficients from a multinomial logit model are more accurately described as 
relative risk ratios, but this terminology is less commonly used than odds ratio. 



Module 10 (Concepts): Single-level and Multilevel Models for Nominal Responses 

Centre for Multilevel Modelling, 2013 5 

response categories rather than the other, but in the multinomial generalisation 
we could have many pairwise contrasts to consider.  It would be much easier to 
interpret the effects of a predictor on each response category, rather than on a 
contrast between two categories.  Fortunately, we can calculate predicted 
response probabilities from the estimated coefficients for whatever values of   we 
choose.    
 
Equation (10.1) can be rearranged to give the following expressions for the 
response probabilities: 
 
 

     
               

                  
 
   

                                       

  
 
with the probability for the reference category calculated by subtraction: 
 

           

 

   

 
 

                  
 
   

                            

 
 
Predicted response probabilities are calculated by ‘plugging in’ the estimates for 
    and     from the fitted model and applying (10.2) and (10.3) for selected 
values of   (some examples will be given in C10.2). 
 
Retherford and Choe (1993, p.153)5 note that coefficients (or odds ratios) are not 
only difficult to interpret, but may even be misleading because the sign of     may 
not reflect the direction of the effect of x on either of the response probabilities 
being compared (   and   ). To illustrate the problem, suppose we fit a 
multinomial logit model to a three-category response taking category 1 as the 
reference, and including a single binary predictor  . We consider two scenarios 

where the coefficient of   for the contrast of response categories 2 and 1,  
    in equation (10.2), does not reflect the effect of   on the response 
probabilities for these categories.   
 
In Table 10.1 the probabilities for categories 1 and 2 (   and   ) are both lower for 

    than for    , so we would say that there is a negative association between 
being in categories 1 or 2 of the response and  . However, the ratio of    to    is 
constant across values of  , so that            which implies      .  
Interpreting the coefficients of  , we might be tempted to incorrectly conclude 

that there is no relationship between   and being in response category 2.  The 
correct interpretation of     is that the probability of being in category 2 rather 
than category 1 does not depend on  .   
 
  

                                         
5 Retherford, R. D., & Choe, M. K. (1993). Statistical Models for Causal Analysis. New York: Wiley. 
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What are Three-Level Multilevel Models? 
 
In the previous modules we illustrated two-level multilevel models for analysing 
two-level data structures where units (level 1) are nested within groups (or 
clusters) (level 2). When the groups are themselves nested within supergroups (or 
superclusters) (level 3), the data form a three-level hierarchy and three-level 
models can be fitted to account for the additional level. Examples of three-level 
data structures include: students (level 1) nested within classes (level 2) nested 
within schools (level 3); voters nested within counties nested within states; and 
patients nested within doctors nested within clinics. In this module, we describe 
three-level data structures and multilevel models which can be used to analyse 
them. Of course, there is nothing to stop data structures being even more complex 
and having four or more levels and we shall also consider examples of such data 
structures in this module. Many further examples of three- and four-level data 
structures are described in C4.2 and C4.3 of Module 4, respectively.  
 
It is important to incorporate three-level structures in to our models when they 
arise in the data and lead the higher level clusters to differ substantially from one 
another on the response variable under study. Naively fitting two-level models to 
three-level data will lead us to misattribute response variation to the two included 
levels (van Landeghem et al., 2005; Moerbeek, 2004; van den Noortgate et al., 
2005; Tranmer and Steele, 2001). This in turn may lead us to draw misleading 
conclusions about the relative importance of different sources of influence on the 
response. For example, fitting a students-within-classes two-level model of 
student attainment and ignoring the fact that classrooms are further nested within 
schools will likely lead us to overstate the importance of classrooms as a source of 
variation in student attainment. That is, much of the variation that we attribute to 
classrooms may be driven by school-to-school differences in attainment. Our naïve 
analysis would therefore overstate the importance of classrooms on student 
attainment and would ignore the role of schools (i.e. school policies, practices, 
context and compositional effects). Furthermore, by incorrectly modelling the 
dependency in the data we will likely obtain biased standard errors for the 
predictor variables, particularly those measured at higher levels. We therefore run 
the risk of making incorrect inferences and drawing misleading conclusions about 
the relationships being studied. For example, including school-level predictor 
variables in our students-within-classes two-level model, but ignoring school as a 
level in the model will typically lead us to severely underestimate the standard 
errors on these school-level variables. When we then go on to test the significance 
of these variables, we will run the risk of making type 1 errors of inference. 
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Introduction to the Example Dataset 
 
In educational research, there is considerable interest in measuring the effects 
that schools have on students’ educational achievements. Measuring the effects 
that schools have on their students is after all a necessary first step to learning 
how schools’ policies and practices combine to generate differences between 
schools. Governments are also often interested in measuring school effects, 
typically for school accountability purposes, but often to also provide parents with 
information to help guide school choice. However, in nearly all education systems, 
there are substantial differences between schools in their students’ attainments at 
intake (i.e. when students first arrive at their schools). For the purposes of 
researching the effects of schools’ policies and practices, holding schools 
accountable, or informing school choice, schools should not be compared simply in 
terms of their average exam results as these differences will, at least in part, be 
driven by these initial differences.  
 
Traditional studies of school effects attempt to measure the ‘true’ effects that 
schools have on their students by fitting two-level students-within-schools 
multilevel models to students’ exam scores where covariate adjustments are made 
for students’ initial scores, and typically for a range of other student background 
characteristics. The school-level residuals from these models are then argued to 
measure the effects that schools have on their students having adjusted for the 
non random selection of students into schools. These effects are interpreted as 
measuring the influences schools have on their students’ academic progress 
(improvement or change in attainment) while they attend their schools. In school 
effectiveness research these influences are referred to as ‘value-added’ effects. 
 
In terms of studying students’ academic progress, there are many other potential 
sources of clustering or influence which may also be important determinants of 
student progress. For example, where data contain multiple academic cohorts of 
students, we can think of schools as potentially having different effects in 
different academic cohorts. This leads students from the same school-cohort to 
appear more alike than students from different school-cohorts. The data are then 
three-level with students (level 1) nested within school-cohorts (level 2) nested 
within schools (level 3). In this module, we shall introduce three-level multilevel 
models to explore such data. In particular, we shall focus on the stability of school 
effects over time by examining the extent to which school effects change from 
cohort to cohort.  
 
We shall then go on to consider the further nesting of schools within administrative 
educational regions referred to as local authorities (LAs) (level 4).1 In England, 
secondary schools are organised into 150 LAs. Traditionally, LAs controlled the 
distribution of government funds across schools, co-ordinated school admissions, 
and were the direct employers of all teachers and staff in many schools. While 
over the last few years there has been a reduction of LAs’ powers, one might still 
expect to identify LA effects in the data. If nothing else, we would expect LA 

                                         
1 LAs correspond to school districts in the U.S. 
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effects to pick up geographic variation in student attainment that exists across 
England. 
 
We shall use data from England’s National Pupil Database (NPD), a census of all 
students in state (i.e. government funded) schools in England. The data are 
provided by the Department for Education (http://www.education.gov.uk). The 
NPD records students’ academic attainments and a limited number of background 
characteristics. We focus on three consecutive academic cohorts of students who 
sat their General Certificate of Secondary Education (GCSE) examinations (age 16 
years) in London schools in 2008, 2009 and 2010, respectively. These students sat 
their Key Stage 2 (KS2) examinations (age 11 years) five years earlier in 2003, 2004 
and 2005, respectively.2 3 
 
Table 11.1 presents the number of units at each level of this data hierarchy. 
 

Table 11.1 Number of units at each level of the data hierarchy 
 

Level number Level Number of units 

4 LAs 32 

3 Schools 427 

2 School-cohorts 1,232 

1 Students 189,940 

 
Thus, there are 32 LAs at level 4, 427 schools at level 3, 1,232 school-cohorts at 
level 2 and 189,940 students at level 1 of the data hierarchy. At this point it is 
helpful to explicitly define ‘cohort’ and ‘school-cohort’. When we say ‘cohort’ we 
are referring to the three academic cohorts in the data: 2008, 2009 and 2010. 
When we refer to ‘school-cohorts’ we are referring to the 1,232 groups, or school-
by-cohort combinations of students, in the data which are formed by crossing the 
427 schools by the three cohorts. The number of schools and students present in 
the data for each cohort are as follows. In 2008 there were 412 schools and 63,208 
students. In 2009 there were 410 schools and 63,072 students. In 2010 there were 
410 schools and 63,660 students.4 Three hundred and ninety five schools had all 
three cohorts represented in the data, 15 schools had only two of the three 
cohorts, while a further 17 schools had only one of the cohorts present. The 32 
schools which were not present for one or more cohorts reflect the opening of new 
schools and the closing of old schools. 
 
The response variable for all our analyses is a continuous point score summarising 
students’ overall attainment in their GCSE examinations.5 To ease the 

                                         
2 GCSE examinations are taken in the last year of secondary schooling. Successful GCSE results are 
often a requirement for taking A-level examinations (age 18 years) which in turn are a common 
type of university entrance determinant. For those who leave school at 16 years of age, GCSE 
results are their main job market qualification. 
3 KS2 examinations are taken in the last year of primary schooling. 
4 The 2010 cohort of 410 schools and 63,660 students will provide the example dataset in Modules 
11 and 12. 
5 Specifically, the response variable is the student’s capped ‘best 8’ total point score at GCSE with 
an additional bonus for attainment in each of English and Mathematics, and is the same measure as 

http://www.education.gov.uk/
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interpretation of this variable, and so that the residuals at each level better 
approximate the normality assumptions of the models, we transform it to a 
standard normal score which has the property of being more normally distributed 
with mean zero and variance one.6 This transformation allows the effects of the 
covariates in our multilevel models to be interpreted in terms of standard 
deviation units of the response. As our focus is on the stability of school effects 
across cohorts and not on any overall, London-wide, trend in student attainment 
over time, we carry out this transformation separately for each cohort. Put 
differently, in this analysis we are interested in the relative performance of 
schools to one another; we are not interested in the average absolute performance 
of schools. 
 
We consider eight student-level predictor variables 
 

 Attainment at age 11 (average point score across English, maths and 
science) (transformed to a standard normal score) 
 

 Female (0 = male; 1 = female) 
 

 Age (ranges from 0 to 1 where higher values correspond to older children; 
specifically, 0 corresponds to the youngest child in the data, born on the 
last day of the academic year, while 1 corresponds to the oldest child in the 
data, born on the first day of the academic year) 

 

 Eligible for free school meals (FSM) (0 = no FSM; 1 = FSM) 
 

 Special education needs (SEN) (0 = no SEN; 1 = SEN) 
 

 English as an additional language (EAL) (0 = no EAL; 1 = EAL) 
 

 Ethnicity (1 = White; 2 = Mixed; 3 = Asian; 4 = Black; 5 = Chinese; 6 = Other) 
 

 Index of deprivation affecting children index (IDACI) a measure of 
residential neighbourhood social deprivation (transformed to a standard 
normal score) 

 
and one school-cohort-level variable 
 

 Cohort (1 = 2008; 2 = 2009; 3 = 2010) 
 

 

  
                                                                                                                               
that published in Government school performance tables (see 
http://www.education.gov.uk/performancetables). 
6 The transformation is carried out by first ranking the   students by their original scores. The 

standard normal score for the  th ranked student in the data is then               , where     
denotes the inverse of the standard normal cumulative distribution function. This transformation is 
order preserving and students with the same original scores will also be tied in terms of their 
standard normal scores. 

http://www.education.gov.uk/performancetables/
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