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Chapter 5: Information from Paleoclimate Archives

(1) To place current and future changes in the
broader perspective of natural past changes.

(2) To provide an independent test of the models
which are used to predict future climate.

(3) To document “slow” components of the
system, e.g. ice sheets and vegetation, for
which the instrumental record is too short.
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(1) To place current and future changes in the broader perspective of natural past changes.

Carbon Dioxide in Antarctic ice cores
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(1)

Temperature anomaly (°C)
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The ‘Hockey Stick’ curve
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(2) To provide an independent test of the models which are used to predict future climate.
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(2) To provide an independent test of the models which are used to predict future climate.

Carbon Dioxide in Antarctic ice cores
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(2)

parts per million

To provide an independent test of the models which are used to predict future climate.

Carbon Dioxide in Antarctic ice cores
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temperature change given a doubling of CO,.

> Useful metric

» Can be estimated using models, which have strengths and
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» “Climate sensitivity” is usually defined as the global mean
temperature change given a doubling of CO,.

> Useful metric

» Can be estimated using models, which have strengths and
weaknesses.

> Consideration of uncertainties is essential.

» AR4: “likely to be in the range 2 to 4.5°C with a best estimate
of about 3°C, and is very unlikely to be less than 1.5°C. “

» AR5: “likely in the range 1.5°C to 4.5°C with high confidence,
extremely unlikely less than 1°C (high confidence) and very

unlikely greater than 6°C (medium confidence).
BUT.....




(3) To document components of the system for which the instrumental record is too short.

models neglect many processes....

AFfrom 2 x CO,

Climate g -
Additional forcing \ Equilibrium
feedbacks from slow feedbacks \ warming
\ 1 Equilibrium with slow
N | warming S — feedbacks

Timescale: Very little Timescale:
centuries ocean heat millennia
uptake

EARTH SYSTEM SENSITIVITY - long-term response to sustained
elevated CO, concentrations, including all feedbacks.
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To document components of the system for which the instrumental record is too short.

Vegetation from palaeobotanical (e.g. pollen) data
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Vegetation from palaeobotanical (e.g. pollen) data

1
<

Tropical Forest Temperate Forest Savanna & Dry Woodland
(] n tropical evergreen forest - temperate deciduous forest 12 tropical savanna
i 14;’143 149 tropical semi-deciduous forest ﬂ temperate conifer forest 18 temperate broadleaved savanna
1 [} tropical deciduous forest/woodland 7 cool mixed forest 47 open conifer woodland

n cool conifer forest m temperate sclerophyll woodland
Warm- temperate Forest Bl cold mixed forest m boreal parkland
n warm-temperate mixed forest
Desert Tundra
Grassland & Dry Shrubland 26 desert 27 land ice 21 steppe tundra
413 tropical xercphytic shrubland 22 shrub tundra
14 temperate xerophytic shrubland Boreal Forest - dwarf-shrub tundra

t / it fi t
19 tropical grassland m evergreen taigaimantane fores 24 prostrate shrub tundra

20 temperate grassland m deciduous taiga/montane forest - cushion-forb, lichen, moss tundra

. e B¢
Figure 1. Location of 35“-/\
Orangeburg scarp and + +

position of cores and out- NG
crops analyzed for marine
microfossils. 1—LB 173, D
of Cronin (1988), SC-76 of  g5: _%K g‘?
Cronin (1981), lat 34°19° Q
45"N, long 79°58'00"W; 2\
2—LB 179, K of Cronin SC Q

(1988), SC-65 of Cronin

(1981), 34°01'3¢"N, 79° 3+ é&; 1

59'00"W; 3—Robeson 4

Farm, C of Cronin (1988), o s ATLANTIC

NC-27 of Cronin (1981), OCEAN

34°42°39"°N, TB 44" 16" 'W,;
4—Lumber River, B of
Cronin (1988), NC-21 of
Cronin (1981), 34°35"35" N,
78°58'53"W. NC = North
Carolina, SC = South Caro- 32“4
lina, GA = Georgia.

337

AREA OF
ENLARGEMENT




(3)

>ll

To document components of the system for which the instrumental record is too short.

Vegetation from palaeobotanical (e.g. pollen) data
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Figure 1. Location of
Orangeburg scarp and
posilion of cores and out-
crops analyzed for marine
microfossils. 1—LB 173, D
of Cronin (1988), SC-76 of
Cronin (1981), lat 34°19'
45"N, long 79°58'00"W;
2—LB 179, K of Cronin
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Carolina, SC = South Caro-
lina, GA = Georgia.
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Earth system sensitivity over millennia timescales including

longterm feedbacks ...could be significantly higher than CS.”




Geoengineering
Chapter 7: Clouds and Aerosols

S

0 ﬁ W IICDR"

Ocean And Storage

CARBON DIOXIDE REMOVAL

e ployetent Ocean Brightening
[ S With Microbubbles

Stratospheric e
@ ; ‘ @ w
@ u-imcm vm-q

IISRM”

-
=
w
=
w
O
<
=z
<
=
=
=
=
=
g
o
<<
-]
(o]
w

“Geoengineering refers to a broad set of methods and technologies
that aim to deliberately alter the climate system in order to alleviate
the impacts of climate change”.



Geoengineering

» CDR methods could provide mitigation of
climate change if CO, can be reduced, but there
are uncertainties, side effects and risks, and
implementation would depend on technological
maturity along with economic, political and
ethical considerations.

» SRM remains unimplemented and untested
but, if realisable, could offset a global
temperature rise and some of its
effects....Numerous side effects, risks and
shortcomings from SRM have been identified.



