Probability seminar: TBA

13 October 2017, 3.30 PM - 13 October 2017, 4.30 PM

Thomas Sauerwald

SM4, School of Mathematics

Thomas Sauerwald, University of Cambridge

On coalescence time in graphs -- When is coalescing as fast as meeting?

Coalescing random walks is a fundamental stochastic process, where a set of particles perform independent discrete-time random walks on an undirected graph. Whenever two or more particles meet at a given node, they merge and continue as a single random walk. The coalescence time is defined as the expected time until only one particle remains, starting from one particle at every node. The meeting time is defined as the worst-case expected time required for two random walks to arrive at the same node at the same time.

As a general result, we establish that for graphs whose meeting time is only marginally larger than the mixing time (a factor of log2n), the coalescence time of n random walks equals the meeting time up to constant factors. This upper bound is complemented by the construction of a graph family demonstrating that this result is the best possible up to constant factors.

(joint work with Varun Kanade and Frederik Mallmann-Trenn)

Contact information

Organisers: Tyler Helmuth, Sean Ledger

Edit this page