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Abstract 
This paper examines the relationship between children’s weight and academic outcomes 
using genetic markers as instruments to account for the possible endogeneity of body size. 
We use medically assessed measures of body size which are more appropriate than the 
generally used BMI measures. OLS results indicate that leaner children perform better in 
school tests compared to their heavier counterparts, but the IV results, using genetic markers 
as instruments, show no evidence that fat mass affects academic outcomes. We compare 
these IV results to those using the instruments generally adopted in this literature. We show 
that the results are sensitive to the instrument set and argue that several of the commonly used 
instruments do not meet the exclusion restrictions required of a valid instrument.   
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There is a growing interest in the relationship between individuals’ physical traits and 

their economic success. The literature has focused on three attributes: beauty (Hamermesh 

and Biddle, 1994; Mobius and Rosenblat, 2006), height (Case and Paxson, 2008) and body 

size. The rise in body size across a large set of countries (OECD, 2007) makes the latter 

particularly pertinent. Studies that attempt to estimate the causal effect of obesity on 

economic outcomes report mixed results. Of those that focus on adults, some find that weight 

lowers wages, at least for white females (Cawley, 2004), whilst others find no significant 

effects (Norton and Han, 2008). Studies that focus on child weight and their academic 

achievement also report conflicting findings. Some find that weight lowers test scores, though 

only for girls (Ding et al., 2006; Sabia, 2007; Averett and Stifel, 2007), whilst others report 

no significant differences (Fletcher and Lehrer, 2008; Kaestner and Grossman, 2008).  

This paper examines the effect of children’s weight on their academic performance. 

We focus on children as there is growing evidence that socio-economic differences in 

adulthood are shaped early in life (Case, Dubotsky and Paxson, 2002; Cunha and Heckman, 

2007; Johnson and Schoeni, 2007). To overcome the problem that weight may be endogenous 

to academic attainment, we exploit variation in genetic make-up. Genes are randomly 

distributed at conception. Under certain assumptions that are discussed in detail below, they 

are strictly exogenous. This implies that correlations between the genetic variant and the 

outcome of interest cannot be due to reverse causation, behavioural, or environmental factors, 

including those that occur in utero. We therefore use recently identified genetic markers for 

weight as instrumental variables to identify the causal effect of child weight on academic 

achievement.1 These markers, in contrast with others used in recent studies in the economics 

literature, have been shown to be associated with weight in large population samples. 

In addition to the endogeneity issue, recent literature (Burkhauser and Cawley, 2008) 

                                                 
1 The use of genetic variation as instruments for endogenous variables is known in the epidemiologic literature 
as ‘Mendelian Randomization’ (Davey Smith and Ebrahim, 2003). 
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has identified the need for a more accurate measure of obesity than the commonly used Body 

Mass Index (BMI).2 We use a direct measure of the child’s body fat mass, determined by a 

dual-energy X-ray absorptiometry (DXA) scan and compare the robustness of the results to 

two other measures that proxy fat mass (BMI and Bioelectrical Impedance Analysis, BIA). 

Our outcome of interest is an objective, independent and comparable assessment of children’s 

achievement. We use the child’s score on the UK’s nationally set exam taken by all 14-year 

olds in the English public school system (known as Key Stage 3 tests). We also use data with 

rich information on a wide range of family background variables from a large cohort of UK 

children, allowing us to control for several measures of mother’s health and behaviour that 

may affect both body size and educational outcomes, but which are not observed generally in 

survey data.  

When accounting for the endogeneity of child weight by using carefully selected 

genetic markers, we find that there is no causal relationship between early obesity and 

children’s academic performance at age 14. In contrast, OLS estimates indicate that heavier 

children perform worse in school tests compared to their leaner counterparts.  

In addition to answering our question of interest, we contribute to the broader 

literature that has sought to exploit newly discovered genotypes to examine the relationship 

between physical attributes and economic outcomes.  First, we detail the specific conditions 

that need to be met for genetic markers to be used as instruments. These conditions have not 

been well defined in the current economic literature, but the increasing availability of 

biomedical data makes understanding of these conditions crucial to the successful use of 

genotypes as instruments for phenotypes. Second, we compare the performance of genetic 

instruments to those non-genetic instruments that have been used in the literature on the 

effect of child weight on educational performance. We examine an additional two sets of 

                                                 
2 BMI is weight in kg divided by height in metres squared. 
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instruments: maternal pre-pregnancy weight (as in Averett and Stifel, 2007; Sabia, 2007) and 

the child’s lagged weight categories (Kaestner and Grossman, 2008). We argue that these do 

not satisfy the exclusion criteria for a valid instrument and produce misleading results.  

   

I. Motivation 

There are three ways in which childhood obesity may be related to educational 

outcomes. First, obesity could cause lower academic performance. Second, poor results may 

cause obesity. And third, instead of there being a causal relationship, the association may be 

driven by other unobserved characteristics relating to both weight and academic outcomes.  

In terms of the first, various pathways have been suggested through which a child’s 

excess body weight may affect its educational outcomes. First, obese children have been 

shown to be significantly more absent from school (Geier et al., 2007), which in turn may 

affect their educational outcomes. Second, associations between obesity and health during 

childhood may affect educational achievement. For example, obese children are more likely 

to have sleep apnoea or other sleeping disorders (Redline et al., 1999), which are negatively 

related to cognitive functioning. Third, overweight children may be treated differently by 

teachers, parents and peers, affecting their (learning) environment (Schwartz and Puhl, 2003). 

Obese children may be bullied, lowering their self-esteem and harming their educational 

development. Lower popularity may also lead to ostracism; if this means that, rather than 

engaging in social activities, children spend more time on their studies, this would lead to 

better school outcomes. Similarly, fewer recreational activities can increase children’s 

weights and simultaneously increase the time that can be spent on studying (Kaestner and 

Grossman, 2008).  

The reverse causal relationship implies that poor school outcomes cause differences in 

body weights, rather than obesity causing differences in academic performance. Perhaps 
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some children eat excessively to compensate for doing poorly at school. Or conversely, stress 

caused by poor achievement may lead to reduced appetites and subsequent weight loss 

(Sabia, 2007).  

In terms of the third, even after controlling for an extensive set of background 

characteristics, there may still be a host of unobserved family or child factors that are related 

to both obesity and outcomes. For example, socio-economic position may affect both diet and 

attitudes to schooling, and with that affect both weight and school performance. Unobserved 

time discount rates may be positively related to child weight (i.e. children may be overweight 

because they place less value on the future) and – with the same reasoning – negatively 

related to the child’s human capital investment and educational outcomes. Similarly, rather 

than engaging in physical activity, overweight children may have an (unobserved) preference 

(e.g. level of discipline) to devote this time to studying which in turn increases their academic 

achievement. 

The current studies of the relationship between children’s weight and educational 

performance that do not exploit genetic variation reach mixed conclusions. Sabia (2007) 

examines 14-17 year-olds from the National Longitudinal Study of Adolescent Health (Add 

Health) and finds a negative relationship between white girls’ weights and their educational 

achievement. These results are robust to an individual fixed effects approach and to a 

specification using IV, with mother and father’s self-reported obesity status as instruments. 

But the estimates of any effect are small: it takes a weight difference of approximately 150 

pounds (68 kg) for there to be a half-letter grade difference in Grade Point Average, all else 

equal. Averett and Stifel (2007) examine the effects of two types of malnutrition – being 

underweight or overweight - on educational attainment using data on the children of female 

cohort members of the National Longitudinal Survey of Youth 1979 (C-NLSY79), from 1986 

to 2002. Focusing on elementary school-age children aged 6-13, they show that malnourished 
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children have lower educational outcomes compared to well-nourished children. This finding 

remains when using individual fixed effects or IV, with mother’s pre-pregnancy BMI and its 

square as instruments. Kaestner and Grossman (2008) examine 5 to 12 year-olds of the C-

NLSY79 between 1986 and 2004. They regress the change in educational attainment over 

two years on the level of weight and use IV, specifying the child’s lagged under- and 

overweight percentiles as instruments for current weight and find no evidence that children’s 

academic progress is affected by their weight. 

 

II. Use of Genetic Markers as Instruments for Children’s Weight  

A. Estimation of the Effect of Weight on Academic Performance. 

We examine the impact of a child’s weight on their educational outcomes at age 14. 

We model weight as part of a child education production function: 

( ), , ,i i i i iS f W X P u= ,  (1) 

where iS , the academic performance of child i, is a function of child weight iW , a set of child 

and family background characteristics iX  and parental health and behaviour iP . The variable 

 represents the unobserved component, which includes both unobserved child attributes 

and unobserved parental/family behaviour. If we begin with a simple OLS model: 

iu

0 1i iS W iuβ β= + +   (2) 

the parameter of interest, the relationship between child weight and academic achievement, is 

1β .  To (2) we can include the additional sets of covariates in iX  and iP , which allows us to 

explore how the relationship between child weight and academic achievement changes when 

controlling for various observed inputs in the child education production function.  

The possible endogeneity of child weight is characterised by the fact that the 

unobservable confounders  determine educational outcomes , but may also determine iu iS
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weight , leading to biased OLS estimates. The bias can be expressed as the final term in: iW

( )
( )1 1β β= +ˆ i iOLS

i

Cov W u
Var W

  (3) 

The existing literature generally tries to deal with the endogeneity problem by either 

estimating child fixed effects models when children are observed multiple times, or by using 

IV. The fixed effects specification deals with the endogeneity problem only if the unobserved 

factors that jointly affect child weight and educational outcomes are constant over time. Any 

time-varying unobservables such as changes in children’s peer groups, and changes in family 

or household circumstances that affect both school performance and children’s weight (gain) 

may therefore still bias the estimates. Additionally, the fixed effects model does not deal with 

any reverse causality running from school outcomes to obesity. 

The IV method estimates the causal effect 1β  by introducing instrumental variables 

iZ  that are associated with , but only associated with  indirectly through its association 

with W .  Formally, the assumptions are: 

iW iS

i

Assumption 1:   ( ) 0i iE Z W ≠  

Assumption 2:  ( ) 0i iE Z u =  

Figure A1, Appendix A, summarises the model assumptions for IV estimation in a 

directed acyclic graph (DAG) representing conditional independence relationships implied by 

the model for , W  and u , with the core conditions that must be satisfied by an instrumental 

variable 

S

Z . Each node represents a variable, with square nodes being observed and circular 

nodes being unobserved. Directed edges between the variables indicate causal direction. 

Two instrument sets commonly used in studies of child weight on educational 

attainm re the child’s or parental/maternal weights in previous periods.3  Both are likely 

                                                

ent a

 
3 Studies t at examine the effects of body size on adult labour market outcomes have also used sibling’s weights 
as instrumental variables (e.g. Cawley, 2004; Norton and Han, 2008). In stark contrast and similar to this paper, 

h
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to be related to the child’s current weight, satisfying the first assumption. However, whether 

the instruments satisfy the second assumption is debatable.  

The use of a child’s weight at earlier ages is often justified by arguing that this deals 

with pr

oefficient from equation (2), using the child’s lagged 

weight 

oblems of reversed causation, as current outcomes cannot affect previous weight. The 

correlation between children’s past and current weights, however, can be as high as 0.95. 

Such substantial correlation suggests that a child’s earlier weight is more or less a perfect 

predictor of its current weight and raises doubts about its use as an IV. For previous weight to 

be a valid instrument, the component of child weight that is uncorrelated to its previous 

weight needs to contain all of the correlation with the unobserved characteristics of school 

performance iu . Put another way: all factors contributing to the high correlation between 

weight and lagged weight must be unrelated with these unobserved components. With the 

(unobserved) family environment being an important determinant of both weight and 

educational outcomes, there is no reason to believe that this assumption holds. For example, 

high unobserved time discount rates can decrease children’s school performance and increase 

their weights. If this affects weight at all ages, both lagged and contemporaneous weight will 

be endogenous. This situation is depicted in Figure A2, Appendix A, showing an undirected 

edge between the instrument (the child’s lagged weight, L) and the unobserved confounderu , 

indicating a violation of assumption 2.  

The IV estimate of the weight c

iL  to instrument for current weight iW , is:  

( )
( )1 1

ˆ i iIV Cov L u

i iCov LW
β β= + ,  (4) 

where ( )
( )

i i

i i

Cov L u
Cov LW

 is the IV bias. With the child’s lagged weight being more or less a perfect 

                                                                                                                                                        
others argue that familial weights reflect unobserved family characteristics and include them to proxy for these 
confounders (Gronniger, 2005). We do not observe siblings in the data used here. 
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predictor of t weight,  curren ( )i iCov LW  is large, satisfying assumption 1. However, this also 

child’s lagged weight as the instruments to be very similar to the OLS estimates.  

The evidence of a genetic component in weight is often used to justify the choice of 

maternal weights as ‘quasi-genetic’ instruments (Averett and Stifel, 2007; Sa

implies that the covariance between lagged weight and the unobservables, , is very 

similar to the covariance between current weight and the unobservables  in 

equation (3), violating assumption 2. Hence, our prior is for the IV estim e 

7). 

Matern

( )i iCov L u

Cov W

ates that use th

bia,

( )i iu

 200

al (lagged) weight however, is likely to be correlated with family resources, 

unmeasured preferences or choices, and educational inputs. For example, discrimination 

against obese females in the labour market (Cawley, 2004) can affect the family’s financial 

resources that are available for inputs into the child education production function. Likewise, 

there is a large literature arguing that the family environment plays the main role in shaping 

children’s food preferences, and that genetics play a minimal part (see e.g. the review in 

Birch, 1999). With the family environment also being an important determinant in the child 

education production function, there is no reason to believe that the use of maternal weight as 

instruments solves the endogeneity problem. The situation is similar to that depicted in 

Figure A2, replacing iL  with iM : maternal (lagged) weight. Formally, the IV estimator using 

maternal (lagged) weight iM  as the instrument can be written as:  

( )
( )

1 1
i iCov M W

.  i iIV Cov M u
β β= + (5) 

If the relationship between weight and outcome

unobserved family environments or socio-economic position  

mother’s weight and the unobservables, 

s is driven by, for exam

, the covarian

ple, 

iu ce between

( ) , is likely to have the same sign as the i iCov M u

covariance between child weight and the unobservables, ( )Cov i iW u  in equation (3). In fact, 
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as a longer exposure to the (unobserved) nt for the mother may lead to stronger 

correlations with weight compared to that for the child, r may actually be larger 

than the latter. In addition, as maternal weight is correlated with child weight, 

 environme

the forme

( )i i  is 

likely to be large, satisfying assumption 1, though smaller than 

Cov M W

( )i iCov LW  of equation (3). 

Hence, dividing a relatively larger negative covariance ( )i iCov M u  by a rela ler 

denominator, our prior is for these IV estimates to be more nega ared to the OLS 

estimates and compared to the findings that use the child’ eight as the instruments. 

tively smal

 comp

More generally, the question is whether maternal weigh ed as a ‘quasi-genetic’ 

instrument, or whether it should act as a proxy for the unobserved family environment. In the 

latter case, it can be argued that maternal weight is part of, or a proxy for, parental inputs P, 

clearly invalidating the requirement for being a valid inst plies that mother’s 

weight should be included as a covariate in the regressi ed in the DAG shown in 

Figure A3, Appendix A.  

 

B. Mendelian Randomization 

Mendelian randomization – using genetic variation as instrum nts for endogenous variables – 

is closely linked to other study designs used in the epidemiologic and economic literature. 

First, it is closely related to Randomised Controlled Tria  allocation of treatment 

is randomised over all eligible individuals, as there is an equ l probability that either allele is 

transmitted to offspring. Individuals who carry the g t should have similar 

observable and unobservable characteristics compared to those without the variant. Second, 

Mendelian randomization is linked to the treatm ines 

the effect of treatment on a subgroup of indi ent to 

change the variable of interest (i.e. the endogenous regresso ple, Angrist and 

Krueger (1993) estimate the returns to schooling for those who are induced to remain in 

tive

s lagged w

t can be us

rument. It also im

ons, as depict

e

ls, where the

a

enetic varian

ent effect literature, which often exam

viduals who are induced by the instrum

r). For exam
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school due to being born at different times of the year. The treatment effect for these 

‘compliers’ is also known as the Local Average Treatment Effect (LATE). Estimates 

obtained from Mendelian randomization experiments however, can be interpreted as the 

population Average Treatment Effect (ATE), as all individuals are compliers.4 

We estimate equation (1) and use the child’s genotype as an instrument for its weight.  

Although 2SLS is widely used in economics, the use of genetic markers in this field is new. 

Epidemiological studies emphasize the importance of carefully examining several situations 

and (bi

 

knowle

                                                

ological) processes that may violate the IV assumptions in Mendelian randomization 

experiments (e.g. Davey Smith and Ebrahim, 2003). The existing studies in economics, 

however, have mainly failed to do so. We therefore begin with a discussion of each of the 

conditions that need to be met to obtain causal estimates of the effect of the phenotype on the 

outcome of interest.5  We discuss concepts defined in the epidemiologic literature and relate 

them to the IV assumptions as used in the economics literature. In this discussion, we focus 

on our research question i.e. the effect of child weight (the phenotype) on academic 

achievement (the outcome of interest) and examine the issues that arise in this context.6  

The first condition is the robustness of the genetic instrument in explaining the 

observed physical attribute. Mendelian randomization can only be used with genetic markers 

that have been robustly shown to affect the phenotype. This means it relies on prior

dge about the association between genotype and phenotype, as shown in a large 

number of independent studies. This latter point is especially important, as many genetic 

association studies fail to replicate (Colhoun, McKeigue and Davey Smith, 2003). Without a 

robust and consistent population association, even if a significant sample correlation between 

genotype and phenotype exists, IV assumption 1 is violated. Any correlation may simply be 

 
4 Only in the case of gene-environment interactions, i.e. if a gene is only expressed in certain environments and 
not in others, is the estimated effect a LATE rather than an ATE. 
5 For a brief description of some key concepts in genetic epidemiology see Appendix B. 
6 For a more general discussion of the use of Mendelian randomization, see Lawlor et al. (2008). 
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due to factors such as measurement error, chance, or poor quality DNA. But even if a suitable 

and robust genetic instrument is available, it may explain little of the variation in observed 

phenotype, leading to low explanatory power in the first stage regression. Moreover, if the 

alleles shift the weight distribution by a very small amount, the effect of weight on 

educational attainment will be identified by this difference in mean weight. Hence, as IV only 

relates the amount of phenotypic variation explained by the genetic variant to the outcome of 

interest, this emphasizes the need for very large sample sizes.  This, of course, is not a 

problem specific to Mendelian randomization, but refers to a more general problem of weak 

instruments, often encountered in IV studies (Angrist and Krueger, 1991).  

The second situation is that behaviours may be affected by the genotype. As children 

inherit their genes from their parents, in a study of children’s outcomes it is important to 

consider whether parents’ behaviours or preferences are affected by their genotype. For 

exampl

 2 will be violated.  

e, mothers who carry ‘fat’ alleles may be discriminated against in the labour market 

because of their higher weights (Cawley, 2004).7 This may affect her behaviour or 

preferences for her child’s education, violating assumption 2.  

The third situation relates to the mechanisms through which genetic variants affect fat 

mass. These are often unknown.8 If the mechanism involves changes in behaviour or 

preferences that also affect the outcome of interest, assumption

The fourth situation relates to the allocation of genes across populations. Although 

                                                 
7 This example merely gives an idea of a possible violation of the IV assumptions. In reality, this situation is 
very unlikely, as genotypes have small phenotypic effects. Being overweight or obese will therefore mainly be 

 

due to other factors, including non-genetic ones, rather than due to being homozygotic for the alleles used here. 
8 A decade ago, researchers mainly used the ‘candidate gene approach’ to examine associations between SNPs 
and phenotypes. This approach consists of testing a specific hypothesis: based on biological knowledge,
researchers examined the association between one particular variant and the phenotype. However, we now know 
that these studies produced many false-positive findings. Currently, genome wide association studies (GWAS) 
are used. This approach genotypes 500,000 to 1,000,000 SNPs in one go and relates all SNPs to the phenotype 
of interest in a hypothesis-free way. Stringent criteria are used for GWAS p-values to take account of this 
hypothesis-free approach. Studies are either two-stage studies, where GWAS is performed on one sample of 
individuals, after which the small number of SNPs that reach GWAS levels of statistical significance are typed 
in other independent samples to examine the extent of robustness. Or studies consist of a number of independent 
GWAS, where only those SNPs that have consistent associations across all studies are interpreted as robust.  

 12



allocation of genes is random within families, any assortative mating may affect this 

random

e

c variants that may affect the outcome of interest. Mendel’s second law states that 

the inh

ness between families, leading to population stratification. Population stratification 

refers to a situation in which there exists a systematic relationship between the allele 

frequency and the outcome of interest in different sub-populations. This can lead to an 

association between the two at the population level without an actual causal relationship. For 

example, allele frequencies can vary across ethnic groups. Any systematic differences in 

educational outcomes across these subpopulations that are not due to a genetic make-up may 

therefore lead to biased estimates of the effect of weight by violating assumption 2.  As a 

result, in studies which use genes as instruments it is necessary to test whether certain 

population subgroups are more likely to carry the genetic variant than others. The second, 

third and fourth situations can all be depicted by the DAG shown in Figure A2, Appendix A, 

substituting the instrument L with the genetic marker, which is related to unobserved 

population subgroups, parental preferences or behaviour iu  that affect both weight and 

outcomes.  

Finally, there is the situation of a relationship betw en the genetic instrument and 

other geneti

eritance of one trait is independent of the inheritance of another. However, it has been 

shown that this does not always hold and that some variants are likely to be co-inherited, 

especially if they are physically close to each other on the chromosome. Depending on the 

effects of the co-inherited variant, this so-called ‘Linkage Disequilibrium’ (LD) can bias the 

estimates. This is shown in Appendix A, Figures A4-a and A4-b, where G1 denotes our 

instrumental variable. If G1 is in LD with another polymorphic locus G2 that affects the 

phenotype W, the IV estimates remain unbiased (Figure A4-a). However, if G1 is in LD with 

a polymorphic locus G2 that affects the outcome S, assumption 2 is violated and the estimate 

will be biased (Figure A4-b). Relatedly, there is the situation of pleiotropy, where one genetic 
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marker has multiple phenotypic effects. The case is similar to that of LD, and will invalidate 

the IV approach if the pleiotropic effect influences children’s educational outcomes S, but not 

if it affects only the phenotype W.9  

Whether assumption 2 is violated by the conditions discussed here can be tested using 

tests of over-identification, but as in all IV studies this remains an assumption and the ‘truth’ 

can never be stated with certainty. Various studies have examined the relationship between 

genetic

                                                

 variants and individual or family characteristics. These studies provide insight into 

whether genetic markers are likely to be related to background characteristics or preferences. 

Davey Smith et al. (2008), for example, estimate pairwise correlations between non-genetic 

variables and genetic markers and compare the number of correlations that are statistically 

significant with the number expected by chance if all variables were uncorrelated. This sheds 

light on the degree of confounding that Mendelian randomization studies may be subjected 

to.10 They show significant correlations between behavioural, socioeconomic and 

physiological factors, with 45% of the 4,560 pairwise correlations being significant at the 1% 

level. In contrast, genetic variants show no greater association with each other, or with the 

behavioural, socioeconomic and physiological factors than what would be expected by 

chance. In an attempt to shed some light on whether genotypes are related to individual’s 

preferences and behaviours, Bhatti et al. (2005) explore differences in polymorphism 

frequencies by willingness to participate in epidemiologic studies. They examine three 

studies with different recruitment designs and different participation incentives. Conditional 

on having provided blood or saliva samples, they investigate whether genotype frequencies 
 

9 Another biological process that may affect estimates in Mendelian randomization studies is canalisation. This 
refers to a process by which potentially disruptive influences on the outcome of interest are buffered by foetal or 
post-natal developmental processes. Canalisation therefore alters the association between genotype and 
outcome, without any change in the relationship between genotype and phenotype. Canalisation is not likely to 
affect our estimates, as the pathways through which weight may affect educational attainment are generally not 
biological. Rather, they are socially or culturally constructed and therefore unlikely to be influenced by 
developmental processes that result in canalisation. 
10 They use a wide range of non-genetic indicators, such as body size, pulse, vitamin levels, type and frequency 
of the consumption of various foods, weekly hours of exercise, social class, education, housing tenure, smoking, 
birth weight, number of siblings, nurse estimation of life expectancy, etc.  
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differ by the timing of non-response to questionnaires (early, late and never responders). 

They find no evidence of correlations between genotypes and response characteristics.  

  

C. Empirical Evidence on the Impact of Child Weight using Genetic Markers 

 Ding et al. (2006) examine the effects of several health conditions, one of which is 

escent’s academic achievement. Their IV results show large and significant 

negative r obese 

 been shown between the genotype and phenotype in a large 

umbe

weight, on adol

 effects on female’s Grade Point Average (GPA), but not for males. GPAs fo

girls are on average 0.8 points lower than those for non-obese girls. They use four markers: 

the dopamine transporter (DAT1), the dopamine D2 receptor (DRD2), tryptophan 

hydroxylase (TPH) and cytochrome P4502B6 (CYP2B6). Fletcher and Lehrer (2008) take a 

similar approach to Ding et al. (2006), but use a different dataset (the Add Health data) to 

exploit within-family genetic inheritance, slightly different instruments, and find no effects of 

obesity on academic achievement. In addition to DAT1 and DRD2, their instruments include 

the dopamine D4 receptor (DRD4), the serotonin transporter (5HTT), monoamine oxidase 

(MAOA) and cytochrome P4502A6 (CYP2A6). Finally, Norton and Han (2008) examine the 

effects of excess weight on labour market outcomes using DAT1 and DRD4 to instrument for 

BMI and find no relationship.  

 The discussion in section IIB above highlights the importance of the choice of genetic 

variants in Mendelian randomization experiments. The first condition is that consistent and 

robust associations should have

n r of independent studies. The three economic studies cited above do not appear to have 

taken this approach. Rather than basing their selection on associations that are robustly shown 

in the literature, their choice of instruments seems rather ad hoc: using either forward 

stepwise estimation (Ding et al., 2006) or selecting those SNPs that have statistically 

significant sample correlations in the first stage (Fletcher and Lehrer, 2008). In fact, both 
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these studies acknowledge there is “weak and inconsistent evidence in the medical literature 

of the association between [their] genetic markers and health status or behaviours”. Fletcher 

and Lehrer (2008) also state that “the scientific literature has not identified a unique (…) 

obesity gene”. Norton and Han (2008) base their selection of SNPs on a study by Guo, North, 

and Choi (2006), who argue that there is a negative association between DRD4 and obesity. 

This relationship, however, has not been replicated in other independent studies. For 

example, Hinney et al. (1999) and Schneider (2001) find no evidence of any relationship 

between DRD4 and individuals’ weights, and Fletcher and Lehrer (2008) find an insignificant 

but positive association. 

In addition, these studies are unable to replicate various associations they note are 

reported in the literature. For example, Ding et al. (2006) find no association between DAT1 

and obesity, whilst they note the literature reports a positive relationship, and Norton and Han 

(2008) 

have been shown consistently to relate to child weight. Using a 

tal of 38,759 individuals aged between 7 and 80 from 13 different cohorts of European 

find a negative correlation. Fletcher and Lehrer (2008) fail to show any correlation 

between the A1A1 variant of DRD2 and obesity. However, given that the evidence of a robust 

association for these variants is lacking, this is not surprising (Lawlor, Windmeijer and 

Davey Smith, 2008). Furthermore, Norton and Han (2008) argue that the effects of the 

genetic markers differ by gender, while Patsopoulos et al. (2007) note that most claims of 

gender differences are spurious. Finally, Norton and Han (2008) use several markers as 

additional controls rather than instruments, as they fail the over-identification tests (SLC6A4, 

MAOA, DRD2 and CYP2A6). Fletcher and Lehrer (2008) and Ding et al. (2006) use several 

of these as their instruments.  

 

D. The Genetic Markers used in the Present Study 

 We use two SNPs that 

to
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ancestry, Frayling et nd BMI, the risk of 

 individuals and confirm the relationship in an 

the genetic markers and child weight justifies their use as instruments. 

In addi

al. (2007) explore the association between FTO a

being overweight and the risk of being obese. They find a positive association with all 

measures of weight for individuals in all cohorts, in all countries, of all ages and of both 

sexes, with no difference between males and females. They show that FTO is specifically 

associated with fat mass, and much weaker with lean mass. In addition, there is no 

association between FTO and birth weight, or FTO and height, indicating that the relationship 

with BMI is entirely driven by individuals’ weights. They find that each copy of the risk 

allele is associated with an increase in BMI of 0.2 units at age 7, to 0.4 units at age 11. For 

the average age-specific height, this refers to a weight increase of 0.3 and 0.9 kg respectively. 

Hence, 11-year-olds who are homozygous for the rare allele are on average 1.8 kg heavier 

compared to those carrying no rare alleles.  

 Several different SNPs near MC4R also have been associated with obesity. We use 

that identified by Loos et al. (2008) here. They find a positive relationship with BMI in 

genome-wide association data from 16,876

additional 60,352 adults and 5,988 children. They find no differences by gender, and no 

effects on birth weight or height, again suggesting the association is mediated solely through 

an effect on weight.  

Our choice of genetic markers can be related to the conditions for suitable use of 

genetic markers as instruments discussed in IIB above. First, the prior findings of robust 

associations between 

tion, the effect of FTO (MC4R) on child weight is relatively large; each allele leads to 

an increase of 0.9 (0.3) kg. Our instruments are therefore not weak (as we will show below). 

Second, we are able to examine whether maternal characteristics and behaviours are 

significantly related to the child’s genetic markers as our data contains a wide range of 

variables on maternal behaviour. Third, the possible mechanisms through which SNPs affect 
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weight are increasingly studied in the medical literature. Although this work is ongoing, the 

current evidence suggests that the SNPs used here are associated with diminished satiety 

(Wardle et al., 2008) and are expressed in the hypothalamus (Willer et al., 2008). The main 

functions of the hypothalamus are to control food intakes and metabolic processes. Fourth, as 

we observe genotypes for both the mother and the child, we can examine the allele 

frequencies in both generations. If frequencies are orthogonal across generations, i.e. if there 

is no assortative mating, they are in ‘Hardy-Weinberg Equilibrium’ (HWE). We test for this 

below. Note that although FTO-allele frequencies are known to vary by ethnic group 

(Frayling et al., 2007), population stratification is not likely to be a problem in our data, as 

our cohort is recruited from a specific geographically defined region with a predominantly 

white population.11 In addition, we observe and control for whether the child is non-white. 

We also examine whether genotypes are related to child and family background 

characteristics by testing whether there are specific patterns in observable characteristics 

between non-carriers, heterozygotes and homozygotes. In this exercise, we examine all 

covariates used in our analysis as well as an additional random set of background variables 

that we do not include in our specifications. The latter will provide further evidence of our 

instruments satisfying IV assumption 2. 

Fifth, Linkage Disequilibrium (LD) would bias the IV estimates if the linkage is with 

another variant that affects children’s educational outcomes such as IQ. Although there is 

some evidence of IQ heritability, specific variants or chromosomes have not been identified. 

In addi

                                                

tion, as LD is not likely to occur for genetic markers on different (non-homologous) 

chromosomes, and the degree of linkage is a function of the distance between the loci, the 

‘ability marker’ would have to sit on the same chromosome and be physically close to our 

genetic instruments. Although we cannot rule this out, it does not seem plausible. However, 

 
11 Only 5.1% of children in the region have a non-European, non-Caucasian parent (Golding et al., 2001). 
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even if our genetic variant is in LD with an ‘ability marker’, the literature (e.g. Plomin et al., 

1994) suggests that ‘ability markers’ have very small phenotypic effects, leading to little bias 

in the estimates.  

Finally, pleiotropy would invalidate the IV approach if the pleiotropic effect 

influences children’s educational outcomes. Frayling et al. (2007) explored the relationship 

between FTO and type II diabetes and found a strong association between the two.  However, 

this rel

cohort of children born in one geographic area (Avon) of 

England. Women eligible for enrolment in the population-based Avon Longitudinal Study of 

Parents and Children (ALSPAC) had an e livery date between 1 April 1991 and 31 

Decem

Hence, the variables in ALSPAC relate to a wide range of child health and development, 

                                                

ationship disappeared once they controlled for BMI, suggesting that the association 

with diabetes is mediated through BMI. Similar positive associations were found between 

FTO and insulin, glucose and triglycerides (Freathy et al., 2008) but again become 

insignificant after adjusting for BMI. Hence, even if type II diabetes is related to children’s 

educational attainment, the effect of the instrument goes via BMI. Therefore the IV 

assumptions are not violated. 

 

III. Data 

Our data are from a 

xpected de

ber 1992. Approximately 85% of these mothers enrolled, leading to about 14,000 

pregnancies. The Avon area has approximately 1 million inhabitants and is broadly 

representative of the UK as a whole, although slightly more affluent than the general 

population (Golding et al., 2001).12 Detailed information on the children and their families 

has been collected using a variety of sources, including self-completed questionnaires, data 

extraction from medical and educational records, in-depth interviews, and biological samples. 

 
12 See www.alspac.bris.ac.uk for more a detailed description of the representativeness of the sample, its 
enrolment, and response rates. 
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family background, family inputs and school measures.  

 We observe a total of 12,620 children who survived past the age of 1 and returned at 

least one questionnaire. Our sample selection process is as follows. First, we select those 

children for whom we observe their genotypes, leaving us with approximately 7,700 children. 

Second, we drop children with missing phenotypes. Children were invited to attend specially 

-year-olds in English state (public) schools14. This 

dren’s performance is therefore objective and comparable across all children. 

Children’s scores for thre e) are obtained from the 

Nationa

      

designed clinics, where their anthropometric measures were recoded. As not all children 

attended these clinics, our sample sizes reduce to just over 4,500, equally distributed between 

boys and girls. Third, as we aim to explore whether maternal BMI can be used as quasi-

genetic instruments or whether it should be included as a covariate, we drop observations 

where these are missing. Finally, we restrict the sample to those children for whom we 

observe their educational outcomes, leading to a final sample size of just over 3,500 children. 

We deal with missing values on other covariates by using mean substitution and including an 

indicator for the value being missing.13  

  

A. Measures of Academic Achievement 

Our main outcome measure is the child’s Key Stage 3 (KS3) score. The KS3 exam is 

a nationally set exam, taken by all 14

measure of chil

e subjects (English, maths and scienc

l Pupil Database, a census of all pupils in England within the state school system, 

which is matched into ALSPAC. We use an average score for the three subjects, standardised 

on the full sample of children for whom data is available, with mean 100 and standard 

deviation 10.  

 
                                           
13 In robustness checks below, we present results after imputing the missing values for all variables apart from 
the genotypes, resulting in a sample size of 7,706 children. 
14 93 percent of English children attend state schools. 
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B. Measures of Child Weight, Fat Mass and the Genetic Markers 

Our main measure for child weight is the child’s body fat mass (adjusted for age in 

months, height and height squared), as measured by a dual-energy X-ray absorptiometry scan 

(DXA). This method scans the whole body, dividing it into body fat, lean tissue mass, and 

one density. The measurements are taken at age 11 and 9. Our primary focus is on DXA 

measures at 1 e 9. For ease 

of inter

cational outcomes are known to differ 

ith within year-age, the analyses include dummies for children’s age (in months), as well as 

an indicator for indicating the 

number

local) area deprivation: the 

                                                

b

1: when we examine lagged fat mass we use the DXA score at ag

pretation and for comparison with later measures, DXA scores are standardised on the 

full sample of children for whom data is available, with mean 100 and standard deviation 10. 

For the genetic markers, we use two SNPs that have been consistently found to relate to 

weight: FTO (rs9939609) and MC4R (rs17782313).15  

 

C. Contextual Variables and Mother’s Health and Behaviour  

The child’s initial health status is measured by its birth weight, together with ordered 

indicators for the intensity of mother’s breastfeeding as proxies for early nutrition (never, <1 

month, 1-3 months and 3+ months). As children’s edu

w

 whether the child is non-white. We also include variables 

 of older and younger siblings under 18 in the household.  

 We include several controls for socio-economic status: log equivalised family income 

and its square, four binary indicators for mother’s educational level, the mother’s parents’ 

educational level, an indicator for whether the child is raised by a lone parent, dummy 

variables for the family’s social class, maternal age at birth, and parents’ employment status 

when the child is 21 months.  We also include a measure of small (

 
15 The rs-number (reference SNP, or RefSNP) is an identification tag that uniquely positions the polymorphism 
in the genome. All genotyping was performed by KBioscience (http://www.kbioscience.co.uk). SNPs were 
genotyped using the KASPar chemistry, which is a competitive allele-specific PCR SNP genotyping system 
using FRET quencher cassette oligos (http://www.kbioscience.co.uk/genotyping/genotyping-chemistry.htm). 
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Index of Multiple Deprivation (IMD).16  

In addition to these generally observed controls, our data allows us to also account for 

further measures of mother’s health and behaviour, which may be correlated to both child 

weight and educational attainment. In addition, we use these to test whether mother’s 

behaviour differs significantly for the different genotypes.  We include two binary variables 

which measure whether the mother smoked or drank alcohol in the first three months of 

pregnancy to control for the in utero environment. We include measures of the mother’s 

‘locus of control’, a psychological concept that describes whether individuals attribute 

successes and failures to internal or external causes. Those with an internal (low) locus of 

control see themselves as responsible for the outcomes of their actions. Those with an 

external (high) locus of control believe that successes and failures are chance-determined. We 

also include two measures of maternal mental health during pregnancy.17 We include several 

measures of parental involvement or interest in the child’s development.18 Finally, we use a 

continuous variable that measures the extent to which the parents engage in active (outdoor) 

activities with their children.19 

 

D. Descriptive Statistics 

                                                 
16 Family income is an average of two observations (when the child is aged 3 and 4) and is in 1995 prices). The 
educational dummies are having poorer qualifications than those taken at school leaving age (less than O-level), 
O-level, having qualifications that permit higher educational study (A-level) and having a university degree. We 

he mother is more 

e) certain songs, the alphabet, being polite, etc. We use an average score from three measures at ages 

use the standard UK classification of social class based on occupation (professional (I), managerial and 
technical (II), non-manual skilled (IIInm), manual skilled (IIIm), semi-skilled (IV) and unskilled (V)). IMD is 
based on six deprivation domains, including health deprivation and disability; employment; income; education, 
skills and training; housing; and geographical barriers to services. Increasing scores on this measure indicate 
greater deprivation. The IMD measures relates to areas containing around 8000 persons. 
17 These are the Edinburgh Post-natal Depression Score (EPDS) and Crown-Crisp Experimental Index (CCEI) at 
18 weeks gestation. EPDS indicates the extent of post-natal depression; CCEI captures a broader definition of 
mental health, measuring general anxiety, depression and somaticism. Higher scores mean t
affected. 
18 A continuous variable ranging from 0-10 is included measuring the mother’s ‘teaching score’. This is 
constructed from questions that measure whether the mother is involved in teaching her child (depending on the 
child’s ag
18, 30 and 42 months to capture longer-term involvement. Likewise, a variable is included indicating whether 
the mother reads or sings to the child, allows the child to build towers or other creations, and so on. 
19 This includes several recreational pursuits (including going to the park or playground and going swimming). 
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We begin by testing the assumption that genotype frequencies are orthogonal across 

generations using the HWE test on the child’s and mother’s FTO and MC4R. The test and its 

sults are detailed in Appendix C. The results support the null of random distribution of 

alleles and of no differences in ge en the mother and child. We next 

examin

re

notype frequencies betwe

e whether the instruments are correlated with fat mass by plotting the empirical DXA 

distribution functions for non-carriers, heterozygotes and homozygotes for the FTO risk allele 

(as in Angrist, Graddy and Imbens 2000). Figure 1a shows large differences between the 

distributions, with homozygotes having most fat mass. Figure 1b presents the differences 

between these distribution functions and plots the unnormalized weight functions for 

heterozygotes and non-carriers (solid line) and for homozygotes and non-carriers (dashed 

line). These are defined as 

[ ] [ ]
| |1 0

1 11 1i iN Ni heterozygote i non carrier
DXA j DXA j

−

≥ − ≥∑ ∑            and   

[ ] [ ]1 1
| |1 0

1 1
i homozygote i non carrier−

i iDXA j DXA j
N N

≥ − ≥∑ ∑             for min maxDXA j DXA≤ ≤  

[ ]1 ⋅respectively, where  is an indicator function equalling one when the expression between 

brackets holds. The figure shows that the two FTO genotypes affect a similar and large area 

of the DXA distribution (between the values of 85 and 125). Only the very top and bottom of 

the distribution is not captured by the instruments. Heterozygotes’ and homozygotes’ weights 

. 

are similar in the lower part of the DXA distribution (85 – 95), but the middle and upper part 

are weighed more heavily for homozygotes. Figure 2 shows a similar picture for MC4R, with 

both genotypes associated with the bulk of the DXA distribution, though with slightly smaller 

weights. 

Table 1 presents summary statistics for non-carriers, heterozygotes and homozygotes 

of the FTO and MC4R risk alleles. The table shows that children with one risk-allele 

(heterozygotes) of either marker have significantly higher DXA scores than those without
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Similarly, those with two risk alleles (homozygotes) have higher DXA scores than 

heterozygotes. For the relatively small sample sizes for MC4R-homozygotes, the difference is 

not significant. There is also a positive relationship between the number of risk alleles and the 

probab

e 

assump

ility of being overweight (defined as being in the top 15% of the DXA distribution). 

The table shows that these differences are driven by children’s weights rather than their 

heights, which do not show significant differences for both variants. The average DXA score 

at age 9 shows similar trends to that at age 11. Mother’s pre-pregnancy BMI is higher for 

children with one or two risk-alleles compared to none, but the difference is not significant. 

Finally, the contextual variables and the indicators for mother’s health and behaviour 

do not show any clear patterns of significant differences across the child’s genotypes.20 For 

example, MC4R-heterozygotes have a lower mean birth weight, and their mothers have lower 

teaching scores. FTO-homozygotes are more likely to be in social class II (managerial or 

technical occupations), and their mothers have a higher average locus of control. However, 

there is no obvious structure in the magnitude or significance of these means, supporting th

tion that the genotypes are distributed randomly in the population and are unrelated to 

other child or family characteristics. Also note that the two genetic markers are uncorrelated 

(r=0.00), and that both markers lead to a weight increase. If this rise in weight affects (e.g.) 

mother’s behaviour, we would expect to see similar patterns or differences in mean 

characteristics for both markers. Only for mother’s locus of control do we find increasing 

scores for both variants; none of the other behaviours or preferences show similar patterns, 

supporting the assumption that they are not affected by the genotype (condition two in section 

IIB above).21 

 
                                                 
20 There are also no differences in mother’s health and behaviour by mother’s genotype (results available from 
the authors).   
21 Appendix D presents the relationship between our SNPs and an additional set of background variables that are 

s of significant differences, providing further evidence that our instruments satisfy assumption 2. 
not included in our analyses. Apart from strong positive associations with waist and hip circumference, it shows 
no clear pattern
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IV. Results 

We begin by examining the non-parametric relationship between educational 

attainment (KS3 scores at age 14) and the child’s fat mass (DXA score at age 11). Figure 3 

shows a clear negative relationship, which is linear over the full range of the DXA 

istribution. Table 2 presents the OLS results from the regression of KS3 on DXA. Each 

column subsequently adds more control he raw correlation between educational 

attainm

d

 variables. T

ent and fat mass is negative, with a one standard deviation increase in fat mass 

associated with an almost 0.1 standard deviation decrease in test scores (column 1). Column 2 

controls for mother’s pre-pregnancy BMI and BMI squared, leading to a slight decrease in 

the effect of fat mass on KS3, although the coefficient remains highly significant. Accounting 

for the contextual variables (column 3) and mother’s health and behaviour (column 4) brings 

the estimate closer to zero, but it remains negative and significant.22 Accounting for the 

contextual variables also renders the effect of the linear and quadratic terms in mother’s BMI 

jointly insignificantly different from zero, suggesting that maternal BMI is picking up part of 

the effect of contextual variables. The estimated coefficients of the other covariates (not 

shown) are in line with priors and other analyses of educational attainment on these UK 

tests.23 In summary, these OLS findings suggest that there is a correlation, albeit a small one, 

between child fat mass and educational attainment.  

We now turn to the 2SLS estimates. We examine three sets of instruments. First, 

following Averett and Stifel (2007) and Sabia (2007), we instrument weight by mother’s pre-

pregnancy BMI and BMI squared.24 Second, as Kaestner and Grossman (2008), we use the 

                                                 
22 Non-linearities in DXA were explored, but show no clear patterns (available upon request). 
23 Girls perform better, and the child’s age is positively related to performance. Test scores are lower for those 
brought up by a stepfather rather than the natural father. Mother’s education and father’s social class are 
positively related to the child’s test score. Mother’s employment status negatively affects the child’s 
performance, with larger coefficients for full-time employment compared to part-time. Test scores are lower for 
those living in more deprived areas and for those whose mothers have an external locus of control. Mother’s 
teaching and child related activity scores show positive associations with school performance. 
24 Sabia (2007) uses mother’s and father’s obesity status. However, as father’s height and weight is only known 
for a much smaller sample, we take Averett and Stifel’s (2007) approach and use mother’s BMI and its square. 
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child’s lagged under- and overweight categories (more specifically, the percentiles 0-5, 6-15, 

16-84, 

 a 

value o

e 3). Compared to column 1 

howeve

part of which is genetic, is not strongly related to these two variants. Similarly, even after 

85-94 and 95-100 of the distribution) as instruments for later fat mass.25 Finally, we 

present our preferred instruments, instrumenting the child’s phenotype with its genotype.  

Table 3 presents the specification tests for the first-stage regressions using the three 

sets of instruments and controlling for all covariates. All instruments have a significant 

association with DXA, as shown by the F-statistic of IV strength. The smallest F-statistic, 

using the genetic markers, still exceeds the Stock and Yogo (2002) critical values with

f 17.6. If we use only the stronger FTO SNP, the F-statistic rises to almost 30, 

confirming the strength of our genetic markers.26 The LM test for under-identification has 

large values in all three columns, indicating that all instruments perform well on this 

criterion. The Hansen J-test, although not formally rejected, is close to being significant when 

using either the mother’s or child’s lagged weight, suggesting the instruments may be related 

to the error term of the structural equation. The specification in column 3 is not rejected, 

supporting the assumption that the genetic instruments are valid. 

The only difference between columns 1 and 2 and between columns 1 and 3 is the 

addition of the instrumental variables, as all specifications include a linear and quadratic in 

mother’s BMI.27 Hence, these instruments cause the decrease in the F-statistic of joint 

significance of mother’s BMI and BMI squared (final row in Tabl

r, the F-statistic in column 3 is not significantly smaller, implying that mother’s BMI, 

controlling for the child’s lagged weight (column 2), the F-statistic for mother’s BMI remains 

                                                 
25 Kaestner and Grossman (2008) regress the change in educational attainment on the level of child weight, 

tly smaller F-

olumn 1, while columns 2 and 3 include them as covariates. 

using the child’s lagged weight categories as the instruments. To make the analysis more comparable across our 
alternative instrument sets, we use the level of educational performance as the dependent variable. 
26 Distinguishing between heterozygosity and homozygosity for the genetic markers leads to sligh
statistics. However, the coefficient for being homozygous is twice that of being heterozygous, suggesting the 
relationship is linear. We therefore use one indicator for FTO and one for MC4R, although the results are robust 
to other genetic instrument specifications. 
27 They are specified as the instruments in c
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just under half the size compared to that in column 1. Child (lagged) weight is a result of both 

environmental and genetic influences. Over and above this, the effect of maternal BMI is 

likely to proxy additional family and environmental characteristics. This therefore suggests 

that maternal BMI should not be used as a ‘quasi-genetic’ instrument, but should be added as 

a covariate in the regressions to proxy for these unobservables.  

Table 4 presents the second stage regression results. Panels A, B and C refer to the 

different instrument sets. Column 1 replicates the OLS results from Table 2, whilst columns 2 

– 5 show the findings after instrumenting for fat mass. Controlling for all covariates, the OLS 

results show that fat mass negatively affects school performance. Using mother’s pre-

pregnancy BMI and BMI squared as instruments (panel A), this relationship remains negative 

and highly significant. The estimates suggest that one standard deviation increase in fat mass 

relates 

The size and patterns of our estimates in panels A and B correspond to our priors as 

to 0.1 standard deviation decrease in KS3 (column 5). The IV estimate is more than 

2.5 times larger than the OLS, suggesting that the OLS underestimates the true effect. Panel 

B, which uses the child’s lagged fat mass as instruments, also shows negative effects of fat 

mass on KS3, although the inclusion of contextual variables renders these insignificant. In 

contrast, when genetic markers are used as instruments in panel C, the estimates show 

positive effects of fat mass on educational performance. With relatively large standard errors 

however, we cannot reject the null that there is no effect on academic outcomes. 

 The findings in panel A confirm Averett and Stifel (2007) and Sabia (2007), who use 

similar instruments. However, they are in stark contrast with the results in panel C, and also 

somewhat with those in panel B. The only driver behind these differences is the choice of 

instrument, since the model specification is identical in all other aspects. As both maternal 

and child weight are likely to be correlated with family resources, preferences and 

educational inputs, they seem a poor choice of instrument.  
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discussed in section IIA: larger negative coefficients when using maternal BMI as the 

instruments (panel A), and similar coefficients to those found in OLS when using the child’s 

lagged fat mass as the instruments (panel B). These findings add to the argument that both 

maternal and child lagged weight should not be used as instruments for current weight. In 

addition, comparing the estimates of panels A and B as we move across the columns, 

including more covariates, shows that the impact of DXA decreases with each addition, with 

the larg

                                                

est drop from column 3 to 4. Changes in the DXA estimate only occur if the predicted 

DXA from the first stage regression is correlated with the variables added to the model. 

However, as each subsequent column adds covariates to both stages of the 2SLS regression, it 

is unclear how to interpret a change in the second stage DXA estimate. Examining the first 

stage coefficients though, shows they are very similar for panels A and C (results available 

upon request).28 This implies that the difference in predicted DXA between panels A and C is 

solely driven by the instruments chosen. With the effect of DXA decreasing monotonically as 

we include more controls in panel A, this suggests that predicted DXA is picking up the 

effects of the child and family background characteristics. As discussed above, these are also 

related to children’s test scores. In contrast, panel C does not show any clear patterns in the 

magnitude of DXA, suggesting that predicted DXA is not systematically related to 

background characteristics that are also related to academic outcomes. This therefore again 

casts doubt on the appropriateness of using maternal or child lagged weight as instruments for 

child current weight. 

 

V. Robustness Checks 

A. Measurement of Child Fat Mass 

Our results suggest that once the endogeneity of child weight is accounted for using 

 
28 The first stage coefficients differ for Panel B, as the estimates can then no longer be interpreted as affecting 
children’s weight, but as affecting children’s weight gain. 
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children’s genotypes as IVs, there are no differences in academic performance between 

children of different weights. Burkhauser and Cawley (2008) show that the parameter 

estimates of obesity on employment are sensitive to different definitions of obesity, as 

efined by BMI or percentage body fat from a Bioelectrical Impedance Analysis (BIA).  

Although DXA is a direct measure serve several other indicators and 

can use these to examine the fat mass.  First, we observe 

the chil

                                                

d

 of body fat, we also ob

 robustness to different proxies for 

d’s DXA score at age 9 as well as at age 11, allowing us to examine whether the effect 

of fat mass is the same regardless of when it is measured in the mid-childhood years. Second, 

we use the child’s BMI at age 9 and at age 11 as a proxy for fat mass. Third, we compute a 

measure indicating the percentage body fat, calculated as fat mass as a percentage of total 

body mass, based on the DXA scan. Fourth, we use the percentage body fat as measured by 

BIA, as Burkhauser and Cawley (2008).29 Finally, we check for non-linearities, using the 

child’s overweight status, defined as being in the top 15th percentile of the DXA distribution. 

We focus on the regressions that use genetic markers as instruments and control for all 

covariates, including mother’s BMI, as this is our preferred specification. To allow for 

comparisons, DXA and BMI are standardised with mean 100 and standard deviation 10. The 

percentage body fat is entered as a percentage. 

 Table 5 presents the results. In contrast to the OLS results, all estimates are positive, 

though they are small and not significant. The estimated DXA coefficients at ages 9 and 11 

suggest that precisely when DXA is measured in this two-year-span does not matter. Like 

DXA, the BMI coefficient is larger at age 9 than age 11, though again not significantly 

different from zero. One standard deviation increase in fat mass, as measured by BMI or 

DXA, is related to an increase in KS3 scores of between 0.05 and 0.11 standard deviations. 

 
29 To measure children’s fat mass with BIA, examiners attach electrodes to the child’s heel and toe and pass 
very small electrical currents through the body, measuring weight and impedance. These measurements can be 
used to calculate fat and fat-free mass as the resistance to an electric current is inversely related to the amount of 
fat-free mass in the body; the water in muscles and lean tissue conducts the electricity while fat does not. 
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The estimates from the two measures of percentage body fat are also slightly different in 

agnit

ton, 2004).31 

This leads to a doubling of our sample to 7,706 observations.32 The (second stage) IV results, 

using maternal pre-p ies, and the child’s 

genetic

m ude: the effect of a one percent increase in body fat measured by BIA is almost three 

times the size of that measured by DXA (though both are small and neither is significant). 

The estimate of being overweight is positive, but not significant. So while the parameter 

estimates do appear sensitive to the definition of fat mass used, for all measures we cannot 

reject the null that fat mass has no effect on children’s academic performance.30 

 

B. Multiple Imputation to Increase the Sample Size 

Although the IV regressions show no evidence of weight affecting outcomes, the 

standard errors are relatively large. Indeed, the OLS and IV estimates are not significantly 

different due to the relative imprecision of the latter. One way of dealing with this is to use a 

larger sample. For all variables apart from the genetic markers, we therefore impute their 

missing values using Multiple Imputation by Chained Equations (MICE; Roys

regnancy BMI, the child’s lagged weight categor

 markers, are presented Table 6, panels A, B and C respectively. The sign and 

magnitude of the coefficients are similar to those estimated on the smaller sample (Table 4).33 

Adding more controls to the regression also leads to similar (decreasing) patterns in the 

estimated coefficients of panels A and B, but again not in panel C. The standard errors are 

                                                 
30

for boys and girls and examine earlier outcomes (tests at age 11). We find no significant differences between the 
genders and the direction of the findings again suggests that, if any r lationship exists, it is that fat mass 

 As growth patterns and academic performance differ by gender, we also test whether our findings are similar 

e
increases rather than decreases test scores. 
31 As the genetic markers do not show any systematic correlation to the other covariates in the model apart from 

have missing observations for all measures of weight. Similarly, a 

7 and 14, this will 

child weight or fat mass, we cannot impute its values; the markers are distributed randomly. 
32 Due to the strong within individual correlation in DXA and BMI over time, and as we observe the child’s 
DXA score, its BMI and its weight at various ages, we have strong predictors if child DXA is missing at age 11. 
In fact, only 36 out of the 7,706 children 
child’s performance on the Key Stage tests (taken at 7 and 11 as well as 14) is highly correlated over time. As 
we observe the child’s scores on the entry assessment test, as well as their KS exams at age 
help in imputing any missing KS3 scores. For 787 children, we do not observe any of these outcome measures. 
33 The OLS and first stage IV results are available upon request; they are also similar to those estimated on the 
smaller sample used above. 
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slightly smaller than those derived using the smaller sample. However, they remain large and 

the imputation does not allow us to statistically distinguish between OLS and IV.  

 

VI. Conclusions 

We examine the relationship between child weight and educational outcomes, using 

data from a rich cohort of UK children. To account for the endogeneity of child weight, we 

examine genetic markers. We compare these to two instrument sets recently used in the 

terature to date: maternal pre-pregnancy weight and the child’s lagged weight.  

 The OLS results show that lea m better in school tests compared to 

their he

s. Using the 

hild’s

 

li

ner children perfor

avier counterparts, but our preferred genetic IV contradicts these findings. We find no 

evidence that children’s fat mass affects their academic performance. The observed 

association therefore appears to be driven by unobserved characteristics. We also find that 

using genetic IVs produces different results from the other two instrument set

c  lagged weight as instruments for current weight leads to (patterns of) estimates that 

are very similar to those obtained by OLS, though with slightly larger standard errors. The 

estimates that use maternal BMI as the instruments confirm the OLS results: fat mass 

negatively affects educational outcomes. We argue that these results arise from incorrect 

specification of the instruments: both are correlated with unobservables that also affect 

academic performance. 

 The increasing availability of biomedical data, in combination with a growing medical 

literature on the effects of carrying specific genetic markers, opens up the use of new 

instruments for examination of physical traits on economic outcomes. However, even with 

strictly exogenous instruments that comply with all IV assumptions, the limitations of genetic 

markers need to be understood. If the markers account for only a small amount of phenotypic 

variation, this implies the need for one of three things. These are (1) larger sample sizes than
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those used in many current studies to increase the precision of the estimates; (2) observing 

Variables Estimators in Simultaneous Equation Models with an Application to the Demand 

Angrist, J. D., and A. B. Krueger. 1991. “Does Compulsory School Attendance Affect 

Averett, S. L., and D. C. Stifel. 2007. “Food for Thought: The Cognitive Effects of 
 

http://aysps.gsu.edu/events/2007/averett_stifel_obesity_june.pdf. 
. et al. (2005). “Genetic Variation and Willingness to Participate in Epidemiologic 

Research: Data from Three Studies.” Cancer Epidemiology Biomarkers and Prevention 
14:2449-53. 

Birch, L. 1999. “Development of Food Preferences.” Annual Review of Nutrition, 19: 41-62 
R., and J. Cawley. 2008. “Beyond BMI: The Value of More Accurate Measures 

of Fatness and Obesity in Social Science Research.” Journal of Health Economics, 27: 519-

C
eview, 92(5): 1308-34. 

C ms of Reporting Genetic 

C
: 31-47. 

c 

Davey Smith G. et al. 2008. “Clustered Environments and Randomized Genes: A 

Impact of Poor Health on Academic Achievement.” 

more genetic variants to increase the explained variation in phenotype; or (3) waiting for 

genetic markers to be discovered with large phenotypic effects, though as larger effects tend 

to be discovered before smaller ones, the last route seems unlikely to be one that will be 

useful. 
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Table 1: A selection of descriptive statistics by FTO and MC4R genotype. Mean (standard deviation)  
 FTO  (rs9939609) MC4R  (rs17782313) 
 Non-carrier Heterozygous Homozygous Non-carrier Heterozygous Homozygous 
       
Weight       
DXA, age 11 98.6 100.1 *** 101.2 *** 99.4 100.1 ** 100.5 
 (9.26) (10.03) (10.47) (9.71) (10.02) (10.43) 
DXA overweight 0.107 0.157 *** 0.188 *** 0.135 0.155 0.160 
 (0.31) (0.36) (0.39) (0.34) (0.36) (0.37) 
BMI, age 11 98.6 100.0 *** 101.2 *** 99.5 100.1 * 99.3 
 (9.05) (9.98) (9.89) (9.62) (9.87) (8.85) 
Weight (kg), age 11 42.6 43.5 *** 44.9 *** 43.3 43.5 43.8 
 (9.55) (9.99) (10.07) (9.66) (10.03) (11.02) 
Height (cm), age 11 150.6  150.5 151.2 150.8 150.4 150.3 
 (7.14) (7.21) (7.13) (7.07) (7.31) (7.36) 
DXA, age 9 98.8 100.2 *** 101.1 *** 99.6 100.1 99.6 
 (9.13) (9.89) (10.04) (9.67) (9.81) (8.68) 
BMI mother,  99.8 100.4 100.2 100.1 100.1 100.7 
  pre-pregnancy (9.47) (9.76) (9.28) (9.74) (9.35) (9.50) 
       
Contextual variables      
Birth weight (g) 3416 3410 3424 3433 3382 *** 3439 
 (555) (524) (546) (538) (540) (527) 
Ln(income) 5.32 5.33 5.34 5.34 5.32 5.30 
 (0.44) (0.41) (0.42) (0.42) (0.43) (0.38) 
Mother’s education 0.12 0.15 * 0.12 0.13 0.14 0.15 
  < O level (0.33) (0.36) (0.32) (0.34) (0.34) (0.36) 
Mother’s education 0.50 0.44 *** 0.50 0.48 0.45 0.51 
  O level (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) 
Mother’s education 0.25 0.27 0.25 0.25 0.28 ** 0.21 
  A level (0.43) (0.44) (0.43) (0.43) (0.45) (0.41) 
Mother’s education 0.12 0.14 0.13 0.14 0.13 0.13 
  Degree (0.33) (0.35) (0.34) (0.34) (0.33) (0.34) 
Social class I 0.09 0.10 0.11 0.10 0.10 0.09 
 (0.29) (0.30) (0.31) (0.30) (0.29) (0.28) 
Social class II 0.31 0.33 0.37 ** 0.32 0.33 0.30 
 (0.46) (0.47) (0.48) (0.47) (0.47) (0.46) 
Social class IIInm 0.14 0.13 0.11 0.12 0.13 0.15 
 (0.34) (0.33) (0.31) (0.33) (0.33) (0.36) 
Social class IIIm 0.30 0.28 0.28 0.28 0.29 0.27 
 (0.46) (0.45) (0.45) (0.45) (0.45) (0.45) 
Social class IV 0.09 0.09 0.07 0.09 0.08 0.09 
 (0.28) (0.29) (0.26) (0.29) (0.27) (0.29) 
Social class V 0.02 0.03 0.01 0.02 0.02 0.03 
 (0.15) (0.16) (0.12) (0.15) (0.15) (0.18) 
       
Mother’s health and behaviour      
Smoke 0.18 0.18 0.15 0.17 0.18 0.17 
 (0.38) (0.39) (0.36) (0.38) (0.38) (0.38) 
Alcohol 0.56 0.57 0.56 0.57 0.55 0.56 
 (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) 
Mother’s locus 98.3 98.9 99.3 ** 98.6 98.8 99.4 
  of control (9.33) (9.64) (9.69) (9.61) (9.43) (9.46) 
EPDS 6.3 6.5 6.3 6.4 6.4 6.5 
 (4.63) (4.57) (4.43) (4.69) (4.37) (4.54) 
CCEI 12.3 12.6 12.5 12.3 12.7 12.7 
 (7.33) (7.20) (7.06) (7.28) (7.19) (6.91) 
Teaching score 7.0 7.0 7.0 7.1 7.0 ** 7.0 
 (0.91) (0.91) (0.86) (0.88) (0.94) (0.92) 
Activities (indoor) 0.69 0.68 0.69 0.68 0.69 0.70 
 (0.19) (0.20) (0.20) (0.20) (0.19) (0.16) 
Activities (outdoor) 27.9 27.9 28.1 27.9 28.0 27.6 
 (4.41) (4.45) (4.05) (4.34) (4.37) (4.71) 
       
N 1295 1666 552 2031 1295 187 
Notes: * p<0.10; ** p<0.05; ***p<0.01 refers to t-tests of mean(hetero/homozygous) equals mean(non-carriers). 
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Table 2: OLS regressions of KS3 (age 14) on child DXA (fat mass, age 11) 
 (1) 

KS3 
(2) 

KS3 
(3) 

KS3 
(4) 

KS3 
     
DXA -0.095*** -0.074*** -0.044** -0.036** 
 (0.015) (0.016) (0.014) (0.014) 
     
Mother’s pre-pregnancy BMI  0.029 0.139 0.149 
  (0.176) (0.152) (0.146) 
Mother’s BMI squared  -0.000 -0.001 -0.001 
  (0.001) (0.001) (0.001) 
F-statistic of joint significance      
     of mother’s BMI and BMI2  11.29 1.62 2.23 
     
R-squared 0.01 0.02 0.26 0.29 
Number of observations 3513 3513 3513 3513 
     
Maternal pre-pregnancy BMI  Yes Yes Yes 
Contextual variables    Yes Yes 
Mother’s health and behaviour    Yes 
Notes: * p<0.10; ** p<0.05; ***p<0.01, robust standard errors in parentheses.  
 
 
 
 
 
 
 
Table 3: First stage specification tests of the Instrumental Variable regressions of child weight 
 (1) (2) (3) 
 IV: Maternal pre-

pregnancy BMI, BMI2 
IV: Lagged child 
weight (at age 9)  

IV: Genetic Markers  

    
IV strength, F-statistic 132.5 1203.8 17.58 
Under identification LM test a 223.5 729.3 34.57 
p-value, Hansen J test 0.169 0.131 0.867 
F-stat: joint sign of mother’s  132.5 b 58.25 130.3 
   BMI and BMI2    
    
Notes: a The Kleibergen-Paap LM statistic for under-identification; b The F-statistic of joint significance of 
mother’s BMI and BMI2 is identical to the F-statistic of IV strength, since mother’s BMI and BMI2 are the 
instruments in column (1); All controls included.  
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Table 4: Second stage IV results: KS3 on child DXA  
 OLS  2SLS 
 (1) 

KS3 
 (2) 

KS3 
(3) 

KS3 
(4) 

KS3 
(5) 

KS3 
A. Maternal BMI as IV       
DXA, age 11 -0.042***   -0.309*** -0.105** -0.108** 
 (0.014)   (0.0523) (0.0461) (0.0453) 
       
B. Child’s lagged weight as IV      
DXA, age 11 -0.036**  -0.0846*** -0.0623*** -0.0312 -0.0247 
 (0.014)  (0.0197) (0.0211) (0.0195) (0.0193) 
       
C. Genetic markers as IV       
DXA, age 11 -0.036**  0.0590 0.0830 0.000 0.0506 
 (0.014)  (0.143) (0.153) (0.133) (0.132) 
       
Maternal pre-pregnancy BMI Yes   Yes Yes Yes 
Contextual variables  Yes    Yes Yes 
Mother’s health and behaviour Yes     Yes 
Notes: Panel A only includes mother’s BMI and BMI2 as instruments; i.e. they are not included in the model, 
hence the OLS estimate in column 1 differs from that of panel B and C and from Table 2. * p<0.10; ** p<0.05; 
***p<0.01, robust standard errors in parentheses. 
 
 
 
 
 
 
Table 5: Robustness checks, IV regressions of KS3 on different indicators of child weight 
 Measured at IV estimate Robust SE N 
     
DXA age 11 0.051 (0.132) 3513 
DXA age 9 0.101 (0.134) 3643 
BMI age 11 0.047 (0.138) 3568 
BMI age 9 0.113 (0.127) 3819 
% Body fat from DXA age 11 0.057 (0.139) 3516 
% Body fat from BIA age 11 0.157 (0.267) 2887 
Overweight age 11 1.667 (4.219) 3513 
     
Notes: * p<0.10; ** p<0.05; ***p<0.01, robust standard errors in parentheses, all controls included.



Table 6: Second stage IV results: KS3 on child DXA, imputed sample 
 OLS  2SLS 
 (1) 

KS3 
 (2) 

KS3 
(3) 

KS3 
(4) 

KS3 
(5) 

KS3 
A. Maternal BMI as IV       
DXA, age 11 -0.043***   -0.431*** -0.154*** -0.165*** 
 (0.010)   (0.0584) (0.0493) (0.0484) 
       
B. Child’s lagged weight as IV      
DXA, age 11 -0.037***  -0.0746*** -0.0549*** -0.0108 -0.0048 
 (0.011)  (0.0157) (0.0164) (0.0145) (0.0142) 
       
C. Genetic markers as IV       
DXA, age 11 -0.037***  0.0286 0.0477 -0.022 0.0351 
 (0.011)  (0.135) (0.144) (0.117) (0.119) 
       
Maternal pre-pregnancy BMI Yes   Yes Yes Yes 
Contextual variables  Yes    Yes Yes 
Mother’s health and behaviour Yes     Yes 
Notes: Panel A only includes mother’s BMI and BMI2 as instruments; i.e. they are not included in the model, 
hence the OLS estimate in column 1 differs from that of panel B and C and from Table 2. * p<0.10; ** p<0.05; 
***p<0.01, robust standard errors in parentheses. 
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Figure 1: Distribution and weight functions of DXA for FTO genotypes 
Figure 1a 
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Figure 2: Distribution and weight functions of DXA for MC4R genotypes 
Figure 2a 
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Figure 3: Non-parametric regression of KS3 on DXA 
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Appendix A: Directed Acyclic Graphs 
 
 
 
Figure A1: A directed acyclic graph (DAG) of the effect of child weight W on educational outcomes S, using 
instruments Z 

SWZ

u

 
 
 
 
 
Figure A2: A DAG of the effect of weight W on educational outcomes S, using lagged weight L as instruments 
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Figure A3: A DAG with maternal lagged weight M as part of, or proxy for, parental inputs P 
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Figure A4: Two DAGs, showing a Mendelian randomization experiment with linkage disequilibrium where (in 
Figure A4-a) the IV assumptions are not violated, and (in Figure A4-b) the IV assumptions are violated 
 
(a)        (b) 
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Appendix B: A Brief Introduction to Genetics 

Each cell in the human body contains a nucleus in which most DNA (99.9995%) is 

kept.34 DNA is stored in structures called chromosomes, where each chromosome contains a 

single continuous piece of DNA. All cells in the human body apart from gametes (i.e. germ 

cells) contain 46 chromosomes, organised into 23 chromosome pairs: one copy of 

chromosome 1-22 from each parent, plus an X-chromosome from the mother and either an X 

or a Y chromosome from the father.  

Locations (or loci) where DNA varies between people are called polymorphisms. The 

most commonly studied form of polymorphism is a Single Nucleotide Polymorphism (SNP): 

a single base-pair variation in a DNA locus. As chromosomes come in pairs, humans have 

two variations at each locus, called alleles. These alleles can either be the same or different. 

The term genotype is used to describe the specific set of alleles inherited at a particular 

chromosome locus. For example, individuals can have one of three genotypes of the FTO 

SNP (one of the genetic variants used here): they can be homozygous for the common allele 

(TT), heterozygous (AT), and homozygous for the rare allele of FTO (AA).35 The visible or 

measurable effect of a particular genotype is called the phenotype.  

 The phenotype we examine in this paper is child weight. Studies that examine the 

heritability of weight generally report large proportions of the variance that are due to 

genetics: between 0.4 and 0.7 (Plomin, 1986).36 A high heritability however, does not imply 

that any individual genetic variant has large phenotypic effects. For example, there are many 

                                                 
34 A small amount of DNA exists in the mitochondria, structures that supply the cell with energy. The remainder 
of this section refers only to nuclear DNA, which is the DNA used to obtain genetic variation in this (and most 
genetic epidemiology) studies. 
35 Conventionally, italics are used to indicate the name of a genetic variant (e.g. FTO); not italicising indicates 
the protein influenced by a particular genetic variant (e.g. the FTO SNP). We use the same convention. 
36 The heritability of a characteristic is defined as the proportion of the total variance that is explained by genetic 
factors. It is most commonly calculated from twin studies by comparing intra-pair correlations for the 
characteristic in monozygotic (MZ) twins with intra-pair correlation in dizygotic (DZ) twins. The implicit 
assumption is that the effects of shared environmental factors are similar for MZ and DZ twins. The heritability 
is of a characteristic is calculated as twice the difference between MZ and DZ intra-pair correlations (h2 = 
2*(rMZ-rDZ)). The fact that heritability is a relative measure means that it will differ between populations that 
have a different prevalence of non-genetic causes of the characteristic. 

 42



different SNPs that affect human weight, though all with small effects: so-called ‘polygenes’. 

Together, these variants will have a large phenotypic effect. 

 Mendelian randomization refers to the random assortment of genes from parents to 

children that takes place at conception. It uses Mendel’s second law that states that the 

inheritance of one trait is independent from the inheritance of another. Despite the random 

allocation of alleles being at the level of parents to offspring, this randomness seems also to 

hold at the population level: genetic variants are generally unrelated to confounders that often 

plague studies in the economics and observational epidemiologic literature, such as socio-

economic position and lifestyle factors (Bhatti et al., 2005; Davey Smith et al., 2008; 

Kivimäki et al., 2008; Lawlor et al., 2008). This therefore suggests that the genetic markers 

are exogenous to behavioural or environmental factors that may affect the outcome of 

interest. Instrumenting the phenotype with the genetic variant will therefore isolate the causal 

effect from any confounding factors, such as the choices made by children and parents. We 

discuss this in more detail in section II. 
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Appendix C: The Hardy-Weinberg Equilibrium (HWE) 

The HWE states that genotype frequencies in a population remain constant from 

generation to generation unless specific disturbing influences are introduced. These include 

non-random mating, mutation, gene flow, genetic drift and natural selection.37 Consider the 

two FTO alleles, A and T, with population proportions p and q respectively. There are no 

other alleles, so p + q = 1. The proportions of AA, AT and TT genotypes in the population 

are given by ( )2 2 2p q p pq q+ = + + 2 , i.e. p2, 2pq, and q2 respectively. This is also referred to 

as the Hardy-Weinberg proportions, which hold under the assumption of the absence of the 

above mentioned influences. Hence under the HWE, p and q are independent. 

Deviations from the HWE can be tested by comparing the observed genotype frequencies in 

the data with the expected frequencies based on the HWE, using a 2χ -test. The null 

hypothesis states that the data are in Hardy-Weinberg proportions.38 The results for the 

child’s and mother’s genotypes are presented in Table C.  

 

Table C1: Testing the Hardy-Weinberg Equilibrium 
 Child  Mother 
 FTO MC4R  FTO MC4R 
      
% Non-carrier  36.9 57.8  37.1 59.3 
% Heterozygous  47.4 36.9  47.9 35.5 
% Homozygous  15.7 5.3  15.0 5.2 
Total observations 3513 3513  2266 2253 
      
% observed allele 1 60.6 76.3  61.1 77.1 
% observed allele 2 39.4 23.7  38.9 23.0 
      

2χ (1):  0.177 1.095  0.145 0.038 

 p-value:  0.672 0.306  0.724 0.905 
      
 

                                                 
37 Many of these do not generally refer to humans. For example, gene flow increases the variability of the gene 
pool, as members of local populations with a distinct gene pool mate with occasional immigrants from an 
adjacent population of the same species, introducing new genetic variants or altering gene frequencies in the 
residents. Genetic drift may occur if the population is very small. Chance may then drift an allele frequency to 
higher or lower values, ultimately causing the entire population to be homozygous. 
38 These tests have relatively low power (Lewontin and Cockerham, 1959).  
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Appendix D: FTO, MC4R and a Random Set of Additional Variables 
 

Table D1: Coefficients (std err) of the indicators presented in the first column regressed on FTO and MC4R 
 FTO MC4R 
Sleep variables     
Length of night’s sleep (school day), 81 months 0.014 (0.017) -0.011 (0.020) 
Length of night’s sleep (Saturday), 81 months 0.011 (0.022) -0.031 (0.025) 
Chid has regular sleeping routine, 81 months¹ -0.003 (0.005) 0.001 (0.005) 
Child has difficulty sleeping, 81 months¹ -0.016 (0.011) 0.007 (0.013) 
Sleeping problem anxiety score, 81 months 0.029 (0.034) -0.010 (0.036) 
     
Behaviour / self-esteem child     
Child is picked on / bullied, 9 years¹ -0.009 (0.009) -0.015 (0.011) 
Depression score child, 9 years 0.325 (0.225) 0.164 (0.258) 
Anti-social score child, 9 years 0.216 (0.206) -0.386 (0.239) 
Child locus of control, 8 years 0.023 (0.244) -0.264 (0.291) 
Child’s scholastic competence score, 8 years 0.063 (0.241) -0.110 (0.283) 
Child’s global self worth score, 8 years -0.012 (0.237) -0.178 (0.279) 
Child’s total self esteem, 8 years 0.019 (0.205) -0.123 (0.240) 
     
Strength & Difficulties Questionnaire (SDQ)     
Anti-social behaviour (mother-reported), 9 years -0.044 (0.224) 0.268 (0.256) 
Hyperactive behaviour (mother-reported), 9 years -0.262 (0.217) 0.407 (0.257) 
Emotional problems (mother-reported), 9 years -0.152 (0.218) 0.027 (0.254) 
Conduct problems (mother-reported), 9 years -0.056 (0.220) 0.305 (0.260) 
Peer problems (mother-reported), 9 years -0.300 (0.216) 0.036 (0.259) 
     
Learning difficulties     
Freq. to special class due to learning difficulties, 81 months 0.013 (0.014) 0.021 (0.019) 
Freq. to special class due to learning difficulties, 9 years 0.003 (0.020) -0.004 (0.023) 
Freq. to special class due to learning difficulties, 11 years 0.033* (0.018) 0.022 (0.022) 
Child ever had speech/language therapy, 91 months¹ -0.004 (0.007) 0.002 (0.008) 
Child has dyslexia (mother-reported)¹ -0.002 (0.004) 0.003 (0.005) 
Child is autistic (mother-reported)¹ 0.001 (0.002) 0.001 (0.002) 
     
Mother’s health and behaviour     
Mother’s self-esteem (Bachman score) 0.310* (0.184) 0.056 (0.220) 
Mother’s depression score, 18 weeks gestation 0.037 (0.032) 0.004 (0.038) 
Mother’s somatic problems score, 18 weeks gestation -0.001 (0.035) 0.033 (0.040) 
     
Financial situation of the household     
House is owner-occupied, 21 months¹ -0.005 (0.007) 0.008 (0.008) 
House is rented or via housing association, 21 months¹ 0.001 (0.005) 0.001 (0.006) 
Council housing, 21 months¹ 0.002 (0.005) -0.010* (0.005) 
     
Indicators at birth of child     
Month of birth (1=September, 12 = October) 0.016 (0.039) 0.012 (0.043) 
Admission to special care birth unit¹ -0.008 (0.005) 0.005 (0.006) 
Multiple births (twins or triplets)¹ -0.001 (0.003) 0.002 (0.004) 
Gestational age at delivery 0.027 (0.032) 0.025 (0.039) 
Caesarean section¹ -0.006 (0.007) 0.008 (0.008) 
     
Different measures of child weight / fat mass     
Waist circumference, 11 years 1.14*** (0.198) 0.85*** (0.242) 
Hip circumference, 11 years 0.95** (0.172) 0.43** (0.210) 
     
Notes: ¹ Binary indicator. * p<0.10; ** p<0.05; *** p<0.01 


