IWCSN 2009, Bristol UK

Introduction to Complex Networks

G Ron Chen Centre for Chaos and Complex Networks

1

Complex Networks:

Some Typical Examples

Complex Network Example: Internet

(K. C. Claffy)

3

Complex Network Example: WWW

(William R. Cheswick)

4

Complex Network Example: HTTP

Complex Network Example: Telecomm Networks

(Stephen G. Eick)

Complex Network Example: Routes of Airlines

7

Complex Network Example: Usenet

(Naveen Jamal)

Complex Network Example: VLSI Circuits, CNN

 $\sum_{k=1}^{n} a_{kl} V$

Complex Network Example: Biological Networks

Complex Network Example: Swarms and Flocks

Complex Network Example: Human Relationships

Complex Network Example: Arts ③

How To Model All Such Complex Networks ?

Graph Theory !

Leonhard Eüler (1707-1783)

"Father of Graph Theory"

The town Königsburg and the seven bridges in year 1736

Q: Can one walk across all the seven bridges, once and once only, and then return to the starting point ?

Topics for Today

Mathematical Models of Networks

- Random-Graph Network Model
- Small-World Network Model
- Scale-Free Network Model
- Some Real-World Examples
- References

Network Topology

A <u>network</u> is a graph, with a set of nodes interconnected via edges

Computer Networks: <u>nodes</u> – PCs <u>edges</u> – wires
 Neural Networks: <u>nodes</u> – cells <u>edges</u> – nerves
 Social Networks: <u>nodes</u> – individuals <u>edges</u> – relations

Regular Networks

(a) globally coupled network(b) ring-coupled network(c) star-coupled network

degree, degree distribution, distance, clustering coefficient, ...

Basic Network Models

- * Random Graph Theory Erdös and Rényi (1960)
- ER Random Graph model dominates for 50 years
 until recently
- * **Small-World effect (Watts and Strogatz, Nature, 1998)**
- * Scale-Free feature (Barabási and Albert, Science, 1999)

-- A revolution in the 1960s

Paul Erdös

Alfred Rényi

The simplest model for the most complex networks

ER Random Graph Models

Erdős-Rényi

(Publ. Math. Inst. Hung. Acd. Sci. 5, 17 (1960))

N nodes, each pair of node is connected with probability p

Features: Connectivity node degree distribution - Poisson Homogeneity all nodes have about the same number of edges Non-growing

Random Graph and Poisson Degree Distribution

Illustration of Erdös-Rényi randon-graph network model

Small-World Networks "Collective dynamics of 'small-world' networks" --- Nature, 393: 440-442, 1998

D. J. Watts

S. H. Strogatz

Cornell University

Small-World Networks

Watts-Strogatz

(Nature 393, 440 (1998))

N nodes forms a regular lattice. With probability p, each edge is rewired randomly Features: (Similar to ER Random Graphs) * Connectivity Poisson distribution * Homogeneity all nodes have about the same number of edges * Non-growing

New: Small-World Property !

Scale-Free Networks

"Emergence of scaling in random networks" Science, 286: 509 (1999)

A.-L. Barabási

R. Albert

Norte Dame University

Scale-Free Networks

(Barabasi-Albert, Science, 1999)

(0) Start with a small connected network (initialization)

(i) Add new nodes (incremental growth): With probability p, a new node is added into the network

(ii) Add new links (preferential attachment): The probability q of the new node connect to an existing node is proportional to the degree of the existing node

Scale-Free Networks

Features: Connectivity: power-law form $P(k) \sim k^{-\gamma}$ Non-homogeneity: very few nodes have many edges but most nodes have very few edges Growing

Complex Networks and Mathematics

International Congress of Mathematics (ICM) 22-28 August 2006, Madrid, Spain

Jon M Kleinberg (Comp. Sci.) received the Nevanlinna Prize for Applied Mathematics

He gave a 45-minute talk -"Complex Networks and Decentralized Search Algorithms"

J M Kleinberg, "Navigation in a small world," Nature, 2000

Cornell University

Comparison

	Degree Distribution	Average Distance	Clustering Coefficient	Homogeneity
Random Networks	Poisson	(Relatively) Large	Small	Homogeneous
Small-World Networks	Poisson	Small	Large	Homogeneous
Scale-Free Networks	Power-Law	Large	(Relatively) Small	Heterogeneous

Some Real Examples

Technology:

- > World Wide Web
- Internet

Social Science:

- > 6 degree of separation
- Movie actors network
- Scientific cooperation

World Wide Web

R. Albert, H. Jeong, A.-L. Barabási, Nature, 401 130 (1999)

Nodes: WWW documents Links: URL links

800 million documents (S. Lawrence, 1999)

ROBOT: collects all URL's found in a document and follows them recursively

World Wide Web

Average distance

- Computed average distance L = 14
- > Diameter $L = 19 \rightarrow$ at most 19 clicks to any webpage

Degree distribution

> **Outgoing edges:** $P(k) \sim k^{-\gamma}$ $\gamma = 2.38 \sim 2.72$

> Incoming edges: $P(k) \sim k^{-\gamma}$ $\gamma = 2.1$

Internet

(Computed in 1995-1999, at both domain level and router level)

- Average distance
 - L = 4.0 (small)
 - So, Internet is a small-world network
- Degree distribution
 - > **Obey power law:** $P(k) \sim k^{-\gamma}$ $\gamma = 2.2$
 - So, Internet is a scale-free network

Small-world network is a good model for the Internet

The Real Internet

 $P(k) \sim k^{-\gamma} \qquad \gamma = 2.2$

(at the AS level)

34

Complex Networks:

More Examples ...

Social Science

Small-World Experiment (1967) Stanley Milgram, Harvard University

Question: How many acquaintances would it take to connect two randomly selected individuals in the USA ? Answer: 6

Alice $\rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \rightarrow George$

S. Milgram, The small world problem, *Psychology Today*, May 1967, 60-67.

Small World Experiment

- A single "target" in Boston
- 300 initial "senders" in Boston and Omaha (Nebraska)
- Each sender forwarded a letter to a friend who was "closer" to the target
- In average, how many forwarding steps for a packet to arrive the target ?
 → 6 !

The celebrated discovery of "six degree of separation"

38

Six Degrees of Separation play John Guare (1991)

(Broadway, New York) In the play, Ousa tells her daughter: "Everybody on this planet is separated by only six other people. Six degrees of separation ..."

Alice \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \rightarrow George

The Kevin Bacon Game

The average distance between **Kevin Bacon** and all other actors = ?

The braintrust behind this craze (CNN)

- In January 1994, Bacon's movie *The Air Up There* was airing on TV
- Then, three men were invited to appear on the CNN TV Show Stewart Show, with Bacon; they tried to connect Bacon to any randomlypicked actor or actress in the Hollywood
- "We are three men on a mission. Our mission is to prove..... that Bacon is God."
- <u>Result</u>: Every actor in the Hollywood could be connected to Kevin Bacon, with typically 2 to 3 connections

40

Six Degree Separation of the Kevin Bacon Game

L = 3.65 (small) and C = 0.79 (large) \rightarrow small-world !

Bacon Number

Bacon numbers of actors and actresses (as of 1-1-2009)

http://oracleofbacon.org/cgi-bin/center-cgi?who=Kevin+Bacon

Kevin Bacon Number	# of People	
0	1	
1	2147	
2	208553	
3	634484	
4	147122	
5	9176	
6	803	
7	129	
8	15	

Total number of linkable actors: **N** = 1002430

Average Kevin Bacon number: L = 2.956

Scientific Collaboration

Nodes: authors (scientists) Edges: writing joint papers

Web of Scientists

"Let's write a paper together"

M.E.J. Newman (2001) and A.L. Barabási et al. (2001)

 $L = 4 \sim 9$

Pál Erdös (1913-1996)

 "A mathematical genius of the first order, Paul Erdös was totally obsessed with his subject -- he thought and wrote mathematics for nineteen hours a day until the day he died. He traveled constantly, living out of a plastic bag, and had no interest in food, sex, companionship, art -all that is usually indispensable to a human life."

- Book: The Man Who Loved Only Numbers (Paul Hoffman, 1998)
- "A mathematician is a machine that turns coffee into theorems" -- Erdös

Pál Erdös (1913-1996)

Erdös published > 1600 papers with > 500 coauthors Published 2 papers per month in 63 years

 Main contributions in modern mathematics: Ramsey theory, graph theory, Diophantine analysis, additive number theory, prime number theory, ...

My Erdös Number is 2

P. Erdös

C. K. Chui

G. R. Chen

- 1. I. Borosh, C. K. Chui, and P. Erdos: ``On changes of signs in infinite series," Anal. Math., 4(1), 3-12, 1978.
- 2. C. K. Chui and G. R. Chen: Kalman Filtering with Real-Time Applications, Springer-Verlag (1st ed., 1987; 2nd ed., 1991; 3rd ed., 1999; 4th ed., 2009)

The Erdös number network is a small-world (and scale-free) network !!

Complex Networks:

Even More Examples ...

Metabolic Networks

-- The metabolic network of 43 organisms is scale-free

Nodes: chemicals (substrates) Edges: bio-chemical reactions

And, is also **small-world** with L = 3

H. Jeong *et al., Nature,* 407: 651-654, 2000 Nature 408 307 (2000)

news and views feature

Surfing the p53 network

Bert Vogelstein, David Lane and Arnold J. Levine

The p53 tumour-suppressor gene integrates numerous signals that control cell life and death. As when a highly connected node in the Internet breaks down, the disruption of p53 has severe consequences.

p53 gene is perhaps the most important discovery in cancer research

"One way to understand the p53 network is to compare it to the Internet. The cell, like the Internet, appears to be a 'scalefree network'."

C. Elegans Neural Network: Small-World Network

http://www.imsc.res.in/~sitabhra/research/neural/celegans/index.html

C. Elegans Neural Network

Nodes: neurons Edges: synapses

The 302 neurons of C. Elegans worm (black circles) make ~7000 synapses. The positions of each neuron and synapse are known. L = 2.65 and C = 0.28

Yeast Protein Interaction Network: Scale-Free Network

H. Jeong et al., Nature, 411: 41-42, 2001

Red: Lethal Green: non-lethal Orange: slow growth Yellow: unknown

Nodes: proteins Edges: physical interactions

Yeast Protein Interaction Network: Scale-Free Network

Language

- Words in human language interact like a small-world network
- Human brain can memorize 10^{4}~10^{5} words (Romaine, 1992)
- Average distance between two words
 - $d = 2 \sim 3$ (small world)
- Degree distribution obeys a scale-free power-law:
 P(k) = k^{-γ}, γ = 3

A random-graph model for scale-free network generation

W. Aiello, F. Chung and L. Y. Lu (2001)

- Start with no nodes and no edges
- At each time, a new node is added with probability *p*
- With probability q, a random edge is added to the existing nodes
- **Here**, *p* + *q* = 1
- **Theorem:** The degree distribution of the network so generated satisfies a power law with $\gamma = 1 + 1/q$
- **If** $\frac{1}{2} < q < 1$ then $2 < \gamma < 3$

So much for today ...

SCI papers: Complex Networks

El papers: Complex Networks

SCI papers: Small-World Networks

El papers: Small-World Networks

SCI papers: Scale-Free Networks

El papers: Scale-Free Networks

Main References

* **Overview Articles**

- Steven H. Strogatz, Exploring complex networks, Nature, 8 March 2001, 268-276
- Réka Albert and Albert-László Barabási, Statistical mechanics of complex networks, Review of Modern Physics, 2002, 74: 47-97
- * Xiaofan Wang, Complex networks: Topology, dynamics and synchronization, Int. J. Bifurcation and Chaos, 2002, 12: 885-916
- * Mark E. J. Newman, Models of the small world: A review, J. Stat. Phys., 2000, 101: 819-841
- Mark E. J. Newman, The structure and function of complex networks, SIMA Review, 2003, 45(2): 167-256
- * Xiaofan Wang, Guanrong Chen, Complex Networks: Small-world, scale-free and beyond, IEEE Circuits and Systems Magazine, 2003, 3(1): 6-20
- Stefono Boccaletti, et al. Complex networks: structure and dynamics. Physics Reports, 2006, 424: 175-308
- S. D. Dorogovtsev, A. V. Goltsev, Critical phenomena in complex networks, Reviews of Modern Physics, 2008, 80: 1275-2335
- A Arenas, A Diaz-Guilera, J Kurths, Y Moreno, C S Zhou, Synchronization in complex networks, Physics Reports, 2009, 469: 93-153

* Technical Books

- ✤ 汪小帆,李翔,陈关荣,复杂网络理论及其应用,清华大学出版社,2006
- Mark Newman, Albert-László Barabási, and Duncan J. Watts, The Structure and Dynamics of Networks, Princeton University Press, 2006
- Stefan Bornhodt and Heinz G Schuster (eds.), Handbook of Graphs and Networks, Wiley-VCH, 2003

Thank You!