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mechanics of the structural transformation of the base-
plate, which will be discussed in this review.

Assembly Pathway of the Tail
The tail of bacteriophage T4 is a very large macromole-
cular complex, comprised of about 430 polypeptide
chains with a molecular weight of approximately 2 ×
107 (Tables 1, 2 and 3). Twenty two genes are involved
in the assembly of the T4 tail (Tables 1, 2 and 3). The
tail consists of a sheath, an internal tail tube and a base-
plate, situated at the distal end of the tail. Two types of
fibers (the long tail fibers and the short tail fibers),
responsible for host cell recognition and binding, are
attached to the baseplate.
The assembly pathway of the T4 tail has been exten-

sively studied by a number of authors and has been
reviewed earlier [16-20]. The main part of the assembly
pathway has been elucidated by Kikuchi and King
[21-23] with the help of elaborate complementation
assays and electron microscopy. The lysates of various
amber mutant phage-infected cells were fractionated on
sucrose density gradients and complemented with each
other in vitro. The assembly pathway is strictly ordered
and consists of many steps (Figure 2). If one of the gene
products is missing, the assembly proceeds to the point
where the missing product would be required, leaving
the remaining gene products in an “assembly naïve”
soluble form, as is especially apparent in the baseplate
wedge assembly. The assembly pathway has been con-
firmed by in vivo assembly experiments by Ferguson
and Coombs (Table 1) [24] who performed pulse-chase

experiments using 35S-labeled methionine and moni-
tored the accumulation of the labeled gene products in
the completed tail. They confirmed the previously pro-
posed assembly pathway and showed that the order of
appearance of the labeled gene products also depended
on the pool size or the existing number of the protein
in the cell. The tail genes are ‘late’ genes that are
expressed almost simultaneously at 8 to 10 min after
the infection, indicating that the order of the assembly
is determined by the protein interactions, but not by the
order of expression.
The fully assembled baseplate is a prerequisite for the

assembly of the tail tube and the sheath both of which
polymerize into the extended structure using the base-
plate as the assembly nucleus (Figure 2). The baseplate
is comprised of about 140 polypeptide chains of at least
16 proteins. Two gene products, gp51 and gp57A, are
required for assembly, but are not present in the final
particle. The baseplate has sixfold symmetry and is
assembled from 6 wedges and the central hub. The only
known enzyme associated with the phage particle, the
T4 tail lysozyme, is a baseplate component. It is
encoded by gene 5 (gp5).
The assembly of the wedge, consisting of seven gene

products (gp11, gp10, gp7, gp8, gp6, gp53 and gp25), is
strictly ordered. When one of the gene products is miss-
ing, the intermediate complex before the missing gene
product is formed and the remaining gene products stay
in a free form in solution. Gp11 is an exception, which
can bind to gp10 at any step of the assembly. Recently,
all the intermediate complexes and the complete wedge

Figure 1 Structure of bacteriophage T4. (A) Schematic representation; CryoEM-derived model of the phage particle prior to (B) and upon (C)
host cell attachment. Tail fibers are disordered in the cryoEM structures, as they represent the average of many particles each having the fibers
in a slightly different conformation.

Leiman et al. Virology Journal 2010, 7:355
http://www.virologyj.com/content/7/1/355
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(a) (b) (c)

(a) Schematic representation and model of Bacteriophage T4 prior to (b) 
and upon (c) host cell attachment. Leiman et al. (2010)
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Visualisation of the (left) tail sheath and (right) one of the six main helices of 
Bacteriophage T4 in the extended and contracted states. Falk and James (2006).
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Inspiration and motivation
!

• A multi-stable cylindrical structure is in itself of engineering 
interest.  
!

• We are motivated by a much broader vision, namely of 
translating molecular mechanisms into engineer-able 
mechanisms. 
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The device
!

• On the macroscale we have achieved this by using 
composite materials in a lattice arrangement to exploit 
interplay between pre-stress, material properties and 
structural geometry. 
!

• Engineering applications of such multi-stable structures 
include tailorable non-linear springs, non-linear dampers 
and shock-absorbers, exoskeletons, and deployable 
structures, especially for space applications.

8



Multi-Stable Cylindrical Lattices

Kinematics and elasticity
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Strain Energy
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Design space investigation & Conclusions
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• We demonstrate computationally 
that multi-stability is a robust 
phenomenon. 

• We also show analytically that it 
is possible to choose the 
design variables so that the 
energy is independent of the 
radius, thus resulting in every 
state of the structure being 
stable. 

• Exploitation is the next step…
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Questions?


