

Ceramic Matrix Composites-Manufacturing and Applications in the Automotive Industry

Diego Bracho García

CMCs Introduction

- Combination of covalent and ionic bonding between metallic and nonmetallic elements
- High stiffness, low density, chemical inertness, thermal stability, good insulators, etc.
- Operation over a wide range of temperatures
- Lack of toughness and brittleness → catastrophic failure at low strains (<1%)

Image from http://brokenstringsandprettythings.wordpress.com/ (Accessechmidt,/e0id), Acta Astronaut. 55, 409 (2004).

Fibre Reinforced Ceramics

Fibre reinforcements can be used to improve the toughness of a material

S. Fan, et al., Compos. Sci. Technol. 67, 2390 (2007).

- High temp. in processing (and service) of CMC components
 - Temperature resistance
 - Chemical compatibility
 - Thermal expansion mismatch

Conv. Ceramic Consolidation	Cold-Pressing and Sintering	
Prepreg form	Slurry Impregnation and Hot-Pressing	
Porous Preform Infiltration	Melt Infiltration	
	Sol-Gel Infiltration	
	Polymer Infiltration and Pyrolysis (PIP)	
	Reactive Liquid Infiltration	
	Directed Oxidation/Nitridation (Lanxide™)	
	Reaction Bonding	
	Chemical Vapor Infiltration (CVI)	

Non-Reactive Liquid Infiltration

- Melt Infiltration
 - Single step
 - High density
 - High melting temperatures
 - High viscosities

K. K. Chawla, in *Compos. Mater.*, 3rd ed. Springer New York, New York, NY, 2012

Reactive Liquid Infiltration

- Liquid silicon infiltration (LSI)
 - First developed in late 1980s
 - Infiltration of C green-body with molten Si

$$C_{(s)} + Si_{(l)} \rightarrow SiC_{(s)}$$

D. Kopeliovich, available at http://www.substech.com/ (Accessed 11/11/2014)

Gas Infiltration

Chemical Vapour Impregnation (CVI)

Ceramic Matrix	Precursors
SiC	CH_3SiCl_3
Si_3N_4	$SiCl_4 + NH_3$
Al_2O_3	$AlCl_3 + CO_2$
ZrO_2	$ZrCl_4 + CO_2$
TiB_2	$TiCl_4 + BCl_3$

- Almost any ceramic can be formed
- Near-net shape
- Slow process (diffusion)
- High cost

K. K. Chawla, in *Compos. Mater.*, 3rd ed. Springer New York, New York, NY, 2012

Automotive Ind.- Braking systems

- Ceramic composite brakes: C/SiC
 - High braking performance
 - Low weight (2.4 g/cm³)
 - Low wear rate
 - Operating temperatures 1,400°C
- First studied in 1990s, available in 2000s
 - Mercedes CL 55 AMG F1 Lim. Ed. (2000)
 - Porsche 911 GT2 (2001) (PCCB)
- 50,000-70,000 CMC brake discs manufactured in 2006
 - SICOM™, BREMBO™, etc.

Porsche Cars Great Britain Ltd., available at http://www.porsche.com/uk/ (Accessed 15 Oct 2014).

High Cost

Automotive Ind.- Clutches

- Porsche Ceramic Composite Clutch (PCCC)
 - Specially designed for the Carrera GT
 - Siliconized carbon fibre fabrics
 - 169 mm- diameter, 3.5 kg
 - One tenth of mass moment of inertia
 - Lower transmission and engine mounting → Lower centre of gravity
 - High cost

W. Krenkel and F. Berndt, Mater. Sci. Eng. A 412, 177 (2005)

W. Krenkel and R. Renz, in *Ceram. Matrix Compos.* Wiley-VCH, Weinheim, Germany, 2008

Limitations and Future Challenges

- CMCs offer a unique set of properties, especially at high temperatures
- Progress in manufacturing, such as LSI process, has made CMCs available in areas such as automotive
- The high costs is the main barrier for further penetration in more cost-sensitive areas
- Development of new tech. to lower processing temperatures
- Automation

