

Robust Aeroelastic Design A Parametric Study

Carl Scarth, Jonathan Cooper, Paul Weaver

Robust Aeroelastic Design

- Aeroelasticity: Static and dynamic interaction of structures with aerodynamic loads
 e.g Divergence, Flutter
- Aeroelastic Tailoring: Use of composite anisotropy to offset aeroelastic phenomena
- Uncertainty: Lack of knowledge or variability resulting from randomness or approximation
- Robust Design: Optimal design with minimal sensitivity to uncertainty

Very computationally expensive!

Example: Plate Model

$$[A]\ddot{q} + \rho V[B]\dot{q} + (\rho V^{2}[C] + [E])q = 0$$

- Wing idealised as plate
- Ply orientations uncertain
- Solved using Rayleigh Ritz
- Uncertainty modelled using Polynomial Chaos Expansion

Response is Discontinuous

Example Plot of Instability Speed with Bend-Twist Coupling Parameters

Example: $[45_2 - 45_2 0_2 90_2]_S$

- Multiple modes gives rise to multiple PDF peaks
- Efficient approach superimposes separate distributions

100 samples sufficient

Order of magnitude reduction in runs compared to Monte Carlo

Parametric Study Results

- Laminates with layup $[x_1 x_2 x_3 x_4 0_2 90_2]_{S_1} x_1 x_4 = \pm 45^{\circ}$
- Different bend-twist coupling parameter ξ_{11} , same un-coupled properties

- Mode switch causes significant sensitivity to uncertainty
- Robust design important for aeroelastic tailoring

Thanks for listening

