

Damage Control in Skin-Stiffened Structures

Rafael Luterbacher-Mus

Supervisors: Prof Ian Bond, Dr Richard Trask

Damage in Composites

B.J. Blaiszik et al. (2010)

Damage in Composites

No damage growth

Tolerate damage

- Safety margins
- NDT

IABG (2014)

B.J. Blaiszik et al. (2010)

Weight savings

Self-healing

C. Norris et al. (2011)

Damage in Composites

No damage growth

Tolerate damage

- Safety margins
- NDT

IABG (2014)

Katnam et al. (2013)

a Delamination

d Fiber rupture and pullout
b Impact/indentation surface cracking surface cracking
c Fiber debonding

f Puncture

d Deep cut in coating in coating in coating in coating protected metal

k Ablation

Opening crack

B.J. Blaiszik et al. (2010)

Weight savings

Self-healing

S.White et al. (2001)

C.Norris et al. (2011)

Skin-stiffened structures

Efficient structural solution, But through thickness stresses arise at flange tip

Application to structural features

Adapt self-healing feature to damage pattern

Adapt damage pattern to selfhealing feature

Type of feature

- Damage Redirection
 - Tolerate and manage damage propagation into self-healing feature

Damage redirection mechanisms

Interleaves

Vascules

Ply Structure

- Tested in skin-stiffener debond specimens
- Static and fatigue testing

Damage redirection mechanisms

Interleaves

Vascules

Ply Structure

Transverse vascules act similar drill holes thereby redirecting delaminations

Norris et al. (2011)

Damage redirection mechanisms

Interleaves

Vascules

Ply Structure

Main Results:

- Creation of damage free areas in the specimen
- No difference in global mechanical properties
- Connectivity of vascular network with damage

Summary

- Interleaves and vascules do not alter global mechanical performance under static and fatigue loading
- Successful steering of damage with the help of the interleaves, vascules and ply structure into a self-healing feature
 - Damage visualisation
 - Healing
- Fatigue damage successful "healed" and global mechanical properties recovered

	Control through Interleaves	Control through Vascules	Control through Ply Structure
No knock down on static properties	*	✓	×
No knock down on fatigue properties	*	~	×
Damage redirection	✓	~	*
Healing	?	?	?
Damage visualisation		-	-

Current challenge

Challenge for healing resin:

Trade off between:

Mechanical properties vs.
Injectability

Acknowledgments

- Ian Bond
- Richard Trask
- ACCIS CDT
- EPSRC
- Fundació Obra Social "la Caixa"

www.accismultifunctional.com

Thank you for your attention! Questions?

Rafael Luterbacher-Mus aerlm@bristol.ac.uk

www.accismultifunctional.com www.bris.ac.uk/composites

