

Modeling of 3D woven fabrics for deformation and defect generation

Bassam El Said, Dmitry Ivanov, Andrew Long and Stephen R. Hallett

CDT Conference April 2014 - ACCIS, Bristol

Multiscale modelling of 3D woven materials

- An integrated modelling framework capable of predicting 3D woven fabric deformation during weaving and compaction.
- Two modelling phases are needed mechanical and kinematic. For both phases, a multiscale modelling approach is adopted for accuracy and computational efficiency.

Kinematic Modelling

Mechanical Modelling

Unit cell as-woven geometry

- An initial unit cell loose geometry is built based on the fabric architecture and the number of fibres per yarn.
- Thermal load is applied to the bundles of beam elements to simulate the weaving process

Initial yarn paths

Weaving Simulation

Macro scale kinematic models

- For this length scale a yarn is represented by a single continues contact surface.
- To prevent the excessive cross section deformation viscolelastic cross-section supports are used.
- The viscoelastic support material properties are selected to have shear dominated deformation.
- The unit cell model is converted to a full scale model using tessellation.

Unit Cell Example

Orthogonal fabric

Layer to layer interlock fabric

Experiment CT Scan

Digital element

Proposed model

Macro scale kinematic models

Feature Scale Models

a) 1 b) 3 3 2 2

- Full scale fabric models can be built using tessellation based on unit cell geometries from the previous stage.
- These models can be used to simulate macro scale compactions on rigid or flexible tool

Full Scale Models

Multi-scale Mechanical Modelling

The proposed multi-scale mechanical modelling framework:

Meso Scale Mechanical Models

- Material properties such as intra-yarn volume fraction and material axis are extracted from the kinematic models.
- Using triangulation each integration point in a Voxel mesh is assigned properties.
- These models can accurately capture the behavior of 3D and 2D multilayer woven materials

Material Mapping

Stress Distribution in Fibre direction , 24 million DoF

Macro Scale Mechanical Models

- A computationally efficient modelling approach is needed for macro-scale mechanical models.
- Voronoi tessellation is used to divided the 3D woven material into cells. Each cell is assigned a fabric geometry point.
- Volume averaging of material properties is carried for each cell.
- A low fidelity model is then built using the Voronoi cells.

Material Mapping

Stress Distribution in Fibre direction ,1.98 million DoF

The way forward:

- Develop a Lagrangian multipliers based multi-scale modeling technique which integrates both the macro/meso in a single multi-scale model.
- Introduce progressive damage modelling capabilities to the meso-scale models.
- Conduct a set of experiments to verify the completed 3D woven modelling framework.

Acknowledgment:

 The authors would like to acknowledge Rolls-Royce plc and the EPSRC for funding this work.

Questions?

