

Multi-Functional Magnetic Composite Materials for use in Magnetic Gear Systems

Laura Edwards Jason Yon, Ian Bond, Phil Mellor

Introduction

• What is a magnetic gear?

Introduction

• What is a magnetic gear?

Why the Magnetic Gear?

Pros

- Low maintenance, noise and vibration
- Improved Reliability
- No lubrication
- Physical isolation between shafts
- Inherent overload protection

Cons

- Difficult to manufacture
- Over banding required to protect brittle permanent magnet material
- Block' construction limits design freedom

Why the Magnetic Gear?

Pros

- Lov
- In
- No
- Ph
- In

PROJECT AIM:

- Incorporate ferromagnetic material into a fibre composite central magnetic gear rotor
- In order to:
 - Simplify manufacture
 - Reduce cogging torque
 - Generate a self-supporting structural component without compromising gear performance

nanufacture g required ittle nagnet

ruction freedom

Central Rotor Design

- Stage 1
 - Material property data
- Stage 2
 - Forces acting on central rotor during operation
- Stage 3
 - Generate lay-up
 designs to meet both
 the mechanical and
 electromagnetic
 requirements of the
 central rotor

Central Rotor Design

- Stage 1
 - Material property data
- Stage 2
 - Forces acting on central rotor during operation
- Stage 3
 - Generate lay-up
 designs to meet both
 the mechanical and
 electromagnetic
 requirements of the
 central rotor

Central Rotor Design

- Stage 1
 - Material property data
- Stage 2
 - Forces acting on central rotor during operation
- Stage 3
 - Generate lay-up
 designs to meet both
 the mechanical and
 electromagnetic
 requirements of the
 central rotor

Manufacture and Testing

- Incorporating ferromagnetic material into fibre composite toroid
 - Bulk particulate composite
 - Inter/Intra layer incorporation
- Need repeatable method with controlled particle V_f
- Gear Test Rig
 - Test rotor designs
 - Compare with theoretical models

Manufacture and Testing

- Incorporating ferromagnetic material into fibre composite toroid
 - Bulk particulate composite
 - Inter/Intra layer incorporation
- Need repeatable method with controlled particle V_f
- Gear Test Rig
 - Test rotor designs
 - Compare with theoretical models

Acknowledgements

- Thanks to
 - Jason Yon, Ian Bond and Phil Mellor
 - ACCIS
 - EPSRC
- Thank you for listening
- Questions?

