
  
A Goodness-of-Identifiability Criterion for 
Parametric Statistical Models 
 
 
 
 
 
David Pacini 
Discussion Paper 22/774 
 
15 October 2022 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
School of Economics 
 
University of Bristol 
Priory Road Complex 
Bristol 
BS8 1TU 
United Kingdom 



 

 

Public 

 
 

A Goodness-of-Identifiability Criterion for 
Parametric Statistical Models 

 
 

David Pacini 
School of Economics 
University of Bristol 

15 October 2022 
 

Abstract 
 

This note sets out a goodness-of-identifiability criterion. This criterion quantifies 
the concept of identifying power of a parametric statistical model. Unlike the 
qualitative criterion based only on the Fisher matrix, it applies to both regular and 
irregular points of the Fisher matrix. Unlike the qualitative criterion based only on 
the Hellinger distance, it quantifies set-identification. 
 
JEL classification numbers: C10, C50 
Keywords: Parametric statistical model, Identifiability, Fisher matrix, Hellinger 

distance 

 

1. Introduction  
 
The identifying strength of a statistical model is the ability of the model to 
distinguish different points in the parameter space from hypothetical knowledge of 
the population. It is a key input in the process of design, evaluating and choosing 
estimators for the parameters in the model. There is no quantitative criterion in the 
literature for measuring the identifying strength of a statistical model. This gap 
leaves fundamental questions -such as how the identifying strength quantitatively 
varies across the parameter space- answered.  
 
This note proposes a goodness-of-identifiability criterion for quantifying the 
identifying strength of parametric statistical models. The criterion measures the 
difference between the log of (one plus) the minimum eigenvalue of the Fisher 
matrix and the log of (one plus) the diameter of the set of observational equivalent 
parameter points. We characterize the minimum eigenvalue of the Fisher matrix and 
the diameter of the set of observational equivalent parameter points in terms of 
optimization problems only involving transformations of the Hellinger pseudo-
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metric function. This characterization synthetizes existing results and uncovers a 
new method for formalizing the notion of identifying strength using techniques from 
convex analysis. 
 
The goodness-of-identifiability criterion seems the first measure available for 
quantifying the identifying strength of a parametric statistical model. The two 
existing criteria for identifiability in parametric models, namely the Fisher matrix 
and Hellinger distance criteria, fall short as quantitative measures of identifying 
strength. The Fisher matrix criterion cannot quantify differences between point- 
from set-identifiability when the value of a parameter is an irregular point of the 
Fisher matrix. Models with irregular points in the parameter space include the 
normal instrumental variable model (Hausman, 1974), the normal sample selection 
model (Lee and Chesher, 1986), and the skew-normal location- scale model (Hallin 
and Ley, 2012). The Hellinger distance criterion, in turn, cannot quantify 
differences between different degrees of set identifiability. Models with different 
degrees of set-identifiability include the normal switching regression model 
(Vijverberg, 1993) and parametric finite mixture models (Tamer, Chen, and 
Ponemarova, 2014). Unlike the Fisher matrix criterion, the goodness-of-
identifiability criterion quantifies identifying power at regular and irregular points 
of the Fisher matrix. Unlike the Hellinger distance criterion, the goodness-of-
identifiability criterion can quantify different degrees of set-identifying strength. 
 
We now place the goodness-of-identifiability criterion in the context of the existing 
literature. The Fisher matrix criterion for identifiability was introduced by 
Rothenberg (1971). It was related to the Kullback-Liebler divergence between 
probability functions by Bowden (1973). The inability of the Fisher matrix criterion 
to distinguish identifiability from lack of it when the value of a parameter is an 
irregular point was noticed by e.g., Stoica and Soderstrom (1982) and Sargan (1983). 
The Hellinger distance criterion for identifiability was introduced by Beran (1977). 
Unlike the Fisher matrix criterion, the Hellinger distance criterion distinguish 
identifiability from lack of it when the value of a parameter is an irregular point, see 
e.g, Pacini (2022). The Hellinger distance criterion, however, cannot distinguish 
different degrees of set identifiability. The goodness-of-identifiability criterion 
introduced in this note fills this gap. 
  
 

2. Definitions and Methods 
 

2.1 Parametric Statistical Models  
 
Let 𝑌 denote a random vector taking values on a sample space 𝒴. The available 

data {𝑌}ୀଵ
ே  are 𝑁 independent and identically distributed replications of 𝑌. Let 
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𝑃ఏ  be a probability function defined on the measurable space (𝒴, 𝒜)  and 
parametrized by 𝜃 ∈ Θ. The set 𝒜  is the 𝜎-field of Borel subsets 𝐴 ∈ 𝒴. The 
parameter space Θ is a subset of the Euclidean space ℝ for a positive integer 𝐾. 
We assume that, for any 𝜃 ∈ Θ, 𝑃ఏ is absolutely continuous with respect to a 𝜎-
finite measure 𝜇. Let 𝑓ఏ =d𝑃ఏ/d𝜇 denote the density of 𝑃ఏ  with respect to 𝜇. 
The parametric statistical model is ℱ = {𝑓ఏ}ఏ∈. We now impose the regularity 
conditions considered by Rothenberg (1971). We maintain them through the rest of 
this note. 
 
Assumption 2.1 (Regularity Conditions) ℱ is such that: (i) Θ is an open subset 

in ℝ; (ii) 𝑓ఏ ≥ 0 𝑎𝑛𝑑 ∫ 𝑓ఏ 𝑑𝜇 = 1 for every 𝜃 ∈ Θ; (iii) 𝑠𝑢𝑝𝑝(𝑓ఏ): =

{𝑦 ∈ 𝒴: 𝑓ఏ > 0} is the same for every 𝜃 ∈ Θ; (iv) for all 𝜃 in a convex set 
containing Θ and for all 𝑦 ∈  𝑠𝑢𝑝𝑝(𝑓ఏ), the functions 𝜃 ↦ 𝑓ఏ and 𝜃 ↦

ℓ(𝜃): = 𝑙𝑛 𝑓ఏ are continuously differentiable 𝜇-a.e.; (v) the elements of the 
matrix 𝔼[∇ℓ(𝜃)∇ℓ(𝜃)ᇱ]  are finite and continuous functions of 𝜃 
everywhere in Θ. 

 
Pacini (2022) presents examples and counterexamples illustrating Assumption 2.1 
 
2.2 Local Identifiability and Regular Points 
 
The Fisher matrix is the variance-covariance matrix of the score: 
 

∇ℓ(𝜃): = ∇ln 𝑓ఏ,

𝑤ℎ𝑒𝑟𝑒 ℐ(𝜃): = 𝔼[∇ℓ(𝜃)∇ℓ(𝜃)ᇱ] − 𝔼[∇ℓ(𝜃)]𝔼[∇ℓ(𝜃)]ᇱ 
 

The following definitions, of local identifiability and regular point to the Fisher 
matrix, are from Rothenberg (1971).   
 
Definition 2.1 (Local Identifiability) A parameter point 𝜃 ∈ Θ  is locally 

identifiable if there exists an open neighborhood of 𝜃 containing no other 
𝜃 ∈ Θ such that  𝑓ఏ = 𝑓ఏబ

. 

 
Definition 2.2 (Regular Point) A parameter point 𝜃 ∈ Θ is a regular point of the 

matrix ℐ(𝜃) if there exists an open neighborhood of 𝜃 in which ℐ(𝜃) 
has constant rank.  
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Lewbel (2019) presents examples illustrating the concept of local identifiability. 
The next example illustrates the concept of regular point, which has been less 
illustrated in the literature. 
 
Example 2.1 (Normal Squared Location Model). Set 𝒴 = ℝ  and Θ = ℝ . 

Consider the normal squared location model  

𝑓ఏ(𝑦) = ൫√2𝜋൯
ିଵ

𝑒𝑥𝑝[−(𝑦 − 𝜃ଶ)ଶ/2]. 

This model would, for example, arise if 𝑌  is the difference between a 
matched pair of random variables whose control and treatment labels are 
not observed. The Fisher matrix is ℐ(𝜃) = 4𝜃ଶ, see e.g., Pacini (2022). For 
𝜃 ≠ 0, ℐ(𝜃) has rank one.  For 𝜃 = 0, ℐ(𝜃) has rank zero. We deduce 
that 𝜃 = 0 is an irregular point of the Fisher matrix.   

 
Other models with irregular points of the Fisher matrix include, as already 
mentioned, the normal instrumental variable model (Hausman, 1974), the normal 
sample selection model (Lee and Chesher, 1986), and the skew-normal location- 
scale model (Hallin and Ley, 2012).  
 
2.3 Fisher Matrix Criterion 

 
For regular points of the Fisher matrix, we have the following characterization of 
local identifiability, see e.g., Rothenberg (1971, Theorem 1). 

 
Lemma 2.1 (Rothenberg, 1971, Theorem 1) Let 𝜃 ∈ Θ be a regular point of 

ℐ(𝜃). The point 𝜃 is locally identifiable if and only if ℐ(𝜃) 𝑖𝑠 𝑛𝑜𝑛 −

𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟. 
 
All the proofs are in the Appendix. Lemma 1 does not apply to irregular points in 
the parameter space.  
 
We are going to investigate how to obtain a characterization of local identifiability 
applying to all the points of the parameter space. We find convenient to make use 
of the following three concepts in this investigation: Hellinger distance, the 
diameter of a set in ℝ𝑲, and equivalent class. We next review these concepts for 
the sake of completeness. 
 
2.4 Hellinger Distance 
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The Hellinger distance between the densities 𝑓ఏ and 𝑓ఏబ
 is 

 

𝜌(𝜃, 𝜃) =
ଵ

ଶ
ቛ𝑓ఏ

ଵ/ଶ
− 𝑓ఏబ

ଵ/ଶ
ቛ

మ(ఓ)

ଶ

=
ଵ

ଶ
∫ ቀ𝑓ఏ

ଵ/ଶ
− 𝑓ఏబ

ଵ/ଶ
ቁ

ଶ

𝑑𝜇 

 
Fix now 𝜃  in Θ . We call 𝜃 ↦ 𝜌(𝜃): =  𝜌(𝜃, 𝜃) the Hellinger pseudo-metric 
function. Since 𝜌(𝜃) can be zero for some 𝜃 different from 𝜃 is not a metric 
function. We have the following result 
 
Lemma 2.2 𝝆 can take values between 0 and 1, which are independent of the 

choice of the dominating measure 𝜇. 𝜌(𝜃) = 0 if and only if 𝑓ఏ = 𝑓ఏబ
. 

 
The following example illustrates the Hellinger pseudo-metric function. 
 
Example 2.1 (Normal Squared Location Model, Continued). The Hellinger pseudo-

metric function in this model is 𝜌(𝜃) = 1 − 𝑒𝑥𝑝(−(𝜃ଶ − 𝜃
ଶ)/8), see e.g., 

Pacini (2022).  
 
2.5 Diameter 
 
Let 𝒮 be a nonempty convex set in ℝ. Let 𝕊 = {𝑞 ∈ ℝ: ‖𝑞‖ = 1} denote the 
unit sphere in ℝ . The support 𝛿𝒮(𝑞) and width 𝜔𝒮(𝑞) functions of 𝒮 in the 
direction 𝑞 ∈ 𝕊  are 𝛿𝒮(𝑞): =  𝑠𝑢𝑝௦∈𝒮〈𝑞, 𝑠〉 and 𝜔𝒮(𝑞): = 𝛿𝒮(𝑞) + 𝛿𝒮(−𝑞), 
respectively. The following example illustrates the support and with functions of 
different convex sets. 

 
Example 2.2 (Support and Width Functions) Consider first a singleton 𝒮 = {𝑠}. 

We have 𝛿{௦}(𝑞) = 𝑞′𝑠 and 𝜔{௦}(𝑞) = 𝑞′𝑠 − 𝑞′𝑠 = 0. Consider now the 

Euclidean unit ball 𝔹: = {𝑞 ∈ ℝ: ‖𝑞‖ ≤ 1} . The support function is 
𝛿𝔹(𝑞)=𝑞′𝑞 = ‖𝑞‖ଶ = 1  and the width is function is 𝜔𝔹(𝑞) =  ‖𝑞‖ଶ +

‖−𝑞‖ଶ = 2. Both functions are constant; the support function is the radius, 
and the width function is the diameter of the ball. Finally, consider the case 
when 𝒮 is an ellipse in ℝଶ. The support function is the signed distance from 
the origin to a supporting plane. The width is the length of a chord in a 
direction. 

 
For later use, we now use the width function to characterize the diameter of the set 
of minimizers a continuous function 𝑓: ℝ → ℝ. We resort to the conjugate 𝑓∗ of 
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the lower semi-continuous regularization of the extended value extension of 𝑓  
defined by 

𝑓∗(𝑦) = 𝑠𝑢𝑝௫∈(𝒞){〈𝑥, 𝑦〉 − 𝑓(𝑥)},  

where 𝑐𝑙(𝒞)  denotes the closure of a convex subset 𝒞 ⊆ ℝ . We have the 
following result 
 
Lemma 2.3 Let 𝑓: ℝ → [0,1] be a continuous function that is convex relative to 

the non-empty open convex set 𝒞 ⊆ ℝ with 𝑖𝑛𝑓 𝑓: = 𝑖𝑛𝑓௫∈𝒞 𝑓(𝑥). Then, 
the set of minimizers 𝑎𝑟𝑔 𝑖𝑛𝑓௫∈𝒞 𝑓(𝑥)  is a non-empty convex set with 
diameter 

 
𝑑𝑖𝑎𝑚(𝑎𝑟𝑔 𝑖𝑛𝑓௫∈𝒞 𝑓(𝑥)) = 𝑠𝑢𝑝∈𝕊𝜔డ∗()(𝑞) 

 
where 𝜕𝑓∗(0) is the subdifferential of 𝑓∗ evaluated at 0.  

  
2.6 Equivalence Class 
 
Let s  and s  be two points in a set 𝒮  A binary relationship 𝑠 ∼ s  is an 
equivalence if and only if it is reflexive (𝑠 ∼ 𝑠 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑠), symmetric (𝑠 ∼ s if 
and only if s ∼  𝑠 for any 𝑠, s 𝑖𝑛 𝒮) and transitive (if 𝑠 ∼ �̃� and �̃� ∼ s, then 
s∼ s for any 𝑠, �̃�, s 𝑖𝑛 𝒮). We define the equivalence class of s  under ∼ as 
[s]𝓢 = {𝑠 ∈ 𝒮: 𝑠 ∼ s}. The following example illustrates this notion. 
 
Example 2.3 (Equivalence class) Two parameter points 𝜃  and 𝜃  are 

observationally equivalent if 𝑓ఏ = 𝑓ఏబ
. Let denote this binary relationship 

by 𝜃 ∼ 𝜃. It is reflexive, symmetric, and transitive. The equivalence class 
[𝜃] = {𝜃 ∈ Θ: 𝜃 ∼ 𝜃} is known as the identified set of 𝜃.  

 
 

3. Main Results  
 
We are now able to quantify the identifying strength of a model for a point 𝜃 in 
the parameter space. 
 
3.1 Identifying Negentropy 
 
We begin by relating the concept of local identifiability in Definition 2.1 to the 
smallest eigenvalues of the Fisher matrix. This matrix, being a variance-covariance 
matrix, is positive semi-definite. Since a positive semi-definite matrix is non-
singular if and only if its smaller eigenvalue is positive, one can re-state Lemma 2.1 
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as follows. 
 
Lemma 3.1 Let 𝜃 be a regular point of the Fisher matrix. This point is locally 

identifiable if and only if ln ቀ1 + 𝑒൫ℐ(𝜃)൯ቁ > 0 , where 𝑒൫ℐ(𝜃)൯ 

denotes the smallest eigenvalue of the matrix ℐ(𝜃). 
    
The identifying negentropy of the model ℱ at 𝜃 is  

 

𝑙𝑛 ቀ1 + 𝑒൫ℐ(𝜃)൯ቁ. 

 
It is a measure, certainly not the only one, associated to the ability of the statistical 
model to discern nearby points in the parameter space. It misses, however, the 
inability of the model to discern nearby points in the parameter space. We next 
introduce a measure of this inability. 
 
3.2 Identifying Entropy 
 
Let Θ denote an open convex subset of Θ such that 𝜃 ∈ Θ and the Hellinger 
pseudo-metric function is a convex function when defined on it. Θ is non-empty. 
It is not a singleton because 𝜌: Θ → [0,1]  is locally convex around 𝜃  (see 
Lemma 3.3 below). We have the following result concerning the convexity of the 
set of observational equivalent values to 𝜃 
 
Lemma 3.2 The equivalent class [𝜃]బ

: = {𝜃 ∈ Θ: 𝜃 ∼ 𝜃}  is a non-empty 
convex subset of Θ. 

 
We now define the identifying entropy in terms of the diameter of [𝜃]బ

 as 
 

𝑙𝑛 ቀ1 + 𝑑𝑖𝑎𝑚൫[𝜃]బ
൯ቁ, 

 
where we set 𝑙𝑛(∞) = ∞. The identifying entropy is a measure, certainly not the 
unique one, of the inability of a statistical model to distinguish nearby values in the 
parameter space. 
 
3.3 Goodness-of-Identifiability Criterion 
 
Define the local goodness-of-identifiability criterion ℊ(𝜃) evaluated at 𝜃 as the 
difference between the identifying negentropy and the identifying entropy 
    

ℊ(𝜃):= 𝑙𝑛 ቀ1 + 𝑒൫ℐ(𝜃)൯ቁ − 𝑙𝑛 ቀ1 + 𝑑𝑖𝑎𝑚൫[𝜃]బ
൯ቁ. 
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The function 𝜃 →  ℊ(𝜃) takes values on the extended real line. It quantifies the 
variation in the identifying strength of a parametric statistical model. We have the 
following result.      
 
Lemma 3.3 The point 𝜃  is locally identifiable if and only if the identifying 

negentropy is greater or equal than the identifying entropy: ℊ(𝜃) ≥ 0. 
 
This result characterizes local identifiability for any point in the parameter space. It 
generalizes the main result in Rothenberg (1971, Theorem 1) by considering 
irregular points of the Fisher matrix, c.f., Lemma 3.3, and Lemma 2.1. 
 
We now characterize the local goodness-of-identifiability criterion in terms of the 
Hellinger pseudo-metric function. This characterization relates the identifying 
entropy and negentropy to convex optimization problems. We proceed by relating 
the Fisher matrix to the Hellinger pseudo-metric function. 
 
Lemma 3.4 Assume that 𝜃 → 𝑓ఏ

ଵ/ଶ  is continuously differentiable 𝜇 𝑎. 𝑒.. Then, 
ℐ(𝜃) = 4∇ଶ𝜌(𝜃), where ∇ଶ𝜌(𝜃) denotes the matrix of second partial 
derivates evaluated at 𝜃 of the Hellinger pseudo-metric function. 

  

The assumption on the differentiability of 𝜃 → 𝑓ఏ
ଵ/ଶ is mild given that we have 

already assumed 𝜃 → 𝑙𝑛 𝑓ఏ  that is continuously differentiable. Since the Fisher 
matrix is a variance-covariance matrix, it is positive semi-definite matrix. It follows 
from Lemma 3.4, by the characterization of a convex function in Rockafellar and 
Wets (1998, Theorem 2.14), that the Hellinger pseudo-metric function is a locally 
convex function. Since Hellinger pseudo-metric function is also bounded between 
zero and one, one is then justified to use the characterization of the minimizers of 
convex functions in Lemma 2.3 to obtain the following characterization of the 
goodness-of-identifiability criterion.    
 
Theorem 3.1 Let Assumption 2.1 and the assumption in Lemma 3.4. Then, 
 

ℊ(𝜃)=𝑖𝑛𝑓∈𝕊〈𝑞, ∇ଶ𝜌(𝜃)𝑞〉 − 𝑠𝑢𝑝∈𝕊𝜔డఘ∗()(𝑞) 
 
and the point 𝜃 is locally identifiable if and only if 
 

𝑖𝑛𝑓∈𝕊〈𝑞, ∇ଶ𝜌(𝜃)𝑞〉 ≥ 𝑠𝑢𝑝∈𝕊𝜔డఘ∗()(𝑞). 
 
Two remarks are in order. First, when the Hellinger pseudo-metric function has a 
unique minimizer, one has that the identifying entropy is zero and 𝜃 is locally 
identifiable even if the Fisher matrix is singular. This case was not covered by the 
criterion based on the Fisher matrix. Second, the objective functions in the 
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optimization problems are both convex functions. One could use this result, for 
instance, for constructing a test for checking that a point 𝜃 is locally identifiable. 
This construction, which is of practical importance in applications where 
identifiability is costly to deduce by analytical calculations, is out of the scope of 
this note and it is left for future research. 
 
 

4. Conclusion 
 
This note provides a novel criterion quantifying the notion of identifying strength 
of a parametric statistical model. This criterion, unlike the qualitative identifying 
criteria based on the Fisher matrix, applies to regular and irregular points in the 
parameter space. It also offers a characterization of the set of observational 
equivalent values in the parameter space in terms of the Hellinger pseudo-metric 
function. These are novel theoretical advances towards the quantification of the 
identifying strength of econometric models. 
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Appendix: Proofs 
 

Proof of Lemma 2.1. This result was established by Rothenberg (1971, Theorem 1). 

For the sake of completeness, we replicate the proof in Rothenberg (1971).  

We first show that if 𝜃 is not locally identifiable, then the Fisher matrix is singular. 

Assume that 𝜃 is not locally identifiable. By the Mean Value Theorem, there is a 

point 𝜃∗ between 𝜃 𝑎𝑛𝑑 𝜃 such that  

ℓ(𝜃) − ℓ(𝜃)=∇ℓ(𝜃∗)′(𝜃 − 𝜃). 

Then, there is a sequence ൛𝜃 ∈ Θൟ
∈ℕ  converging to 𝜃  such that ℓ൫𝜃൯ −

ℓ(𝜃) = 0. After dividing both sides of the last display by ฮ𝜃 − 𝜃ฮ, this implies 

∇ℓ(𝜃∗)′𝑞 = 0, 𝑤ℎ𝑒𝑟𝑒 𝑞: = ൫𝜃 − 𝜃൯/ฮ𝜃 − 𝜃ฮ . The sequence ൛𝑞 ∈ 𝕊ൟ
∈ℕ 

converges to a limit 𝑞 ∈ 𝕊  (passing to a subsequence if necessary) because 

𝕊 is compact.  As 𝜃  approaches 𝜃 , 𝑞  approaches 𝑞  and ∇ℓ(𝜃∗)′𝑞 

approaches ∇ℓ(𝜃)′𝑞 = 0. But this implies  

0 = 𝑞′𝔼[∇ℓ(𝜃)∇ℓ(𝜃)ᇱ] 𝑞 = 𝑞′ℐ(𝜃) 𝑞, 

Where the second equality follows from observing that 𝔼[∇ℓ(𝜃)] = 0. Hence, 

ℐ(𝜃) must be singular. 

We now verify the converse. Let 𝜃  be a regular point of the Fisher matrix. 

Suppose that ℐ(𝜃) has constant rank 𝑟 < 𝐾 in a neighborhood of 𝜃. Consider 

the eigenvalue 𝑣ఏబ  associated to one of the zero eigenvalues of ℐ(𝜃) . Since 

𝑣ఏబ
′ℐ(𝜃)𝑣ఏబ

= 0, we have that, for all 𝜃 in a neighborhood of 𝜃,  

𝑣ఏ′ℐ(𝜃) = 0. 

Since ℐ(𝜃) has constant rank and 𝜃 → ℐ(𝜃)  is continuous, the function 𝜃 → 𝑣ఏ 

is continuous in a neighborhood of 𝜃 . Consider now the curve 𝛾: [0, 𝑡ଵ] → Θ 

defined as the solution to the differential equation 
ௗఊ(௧)

ௗ௧
=𝑣ఊ(௧) with initial condition 

𝛾(0) =  𝜃. The log density function is differentiable in 𝑡  with  

𝑑ℓ(𝛾(𝑡))

𝑑𝑡
= 𝑣ఊ(௧)∇ℓ(𝛾(𝑡)) 
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By the preceding display this is zero for all 0 ≤ 𝑡 ≤ 𝑡ଵ . Thus, 𝑡 → ℓ(𝛾(𝑡)) is 

constant and 𝜃 is not locally identifiable.  

 

Proof of Lemma 2.2. Write 

𝜌(𝜃) =
ଵ

ଶ
ቛ𝑓ఏ

ଵ/ଶ
− 𝑓ఏబ

ଵ/ଶ
ቛ

మ(ఓ)

ଶ

=
ଵ

ଶ
∫ ቀ𝑓ఏ

ଵ/ଶ
− 𝑓ఏబ

ଵ/ଶ
ቁ

ଶ

𝑑𝜇=1-∫ 𝑓ఏ
ଵ/ଶ

𝑓ఏబ

ଵ/ଶ
𝑑𝜇. 

From the last expression, notice that 𝜌(𝜃) = 0 if and only if 𝑓ఏ
ଵ/ଶ

= 𝑓ఏబ

ଵ/ଶ and 

𝜌(𝜃) = 1 if and only if 𝑓ఏ
ଵ/ଶ

𝑓ఏబ

ଵ/ଶ
= 0. To verify that 𝜌(𝜃) does not depend on 

the choice of the dominating measure, we need additional notation. Let 𝑔ఏ and 
𝑔ఏబ

 denote, respectively, the densities of 𝑃ఏ  and 𝑃ఏబ
 relative to a dominating 

measure 𝜐 different from 𝜇. Let ℎఏ  and ℎఏబ
 denote, respectively, the densities 

of 𝑃ఏ and 𝑃ఏబ
 relative to the measure 𝜇 +  𝜐. Let 𝑚 and v denote, respectively, 

the densities of 𝜇  and 𝜐  relative to 𝜇 +  𝜐 . We have ℎఏ = 𝑓ఏ𝑚 = 𝑔ఏ𝑣  and 

ℎఏబ
= 𝑓ఏబ

𝑚 = 𝑔ఏబ
𝑣. Hence, and ൫𝑓ఏ𝑓ఏబ

൯
ଵ/ଶ

𝑚 = ൫𝑔ఏ𝑔ఏబ
൯

ଵ/ଶ
𝑣 and 

∫൫𝑔ఏ𝑔ఏబ
൯

ଵ/ଶ
𝑑𝜐 = ∫൫𝑔ఏ𝑔ఏబ

൯
ଵ/ଶ

𝑣𝑑(𝜇 +  𝜐) = ∫൫𝑓ఏ𝑓ఏబ
൯

ଵ/ଶ
𝑚𝑑(𝜇 +  𝜐) =

∫൫𝑓ఏ𝑓ఏబ
൯

ଵ/ଶ
𝑑 𝜇,  

which completes the proof. 
 

Proof of Lemma 2.3. The set of minimizers argmin௫ఢ𝒞𝑓(𝑥) is non-empty because 

we have assumed that 𝑖𝑛𝑓 𝑓 = min௫ఢ𝒞𝑓(𝑥). Define the lower semi-continuous (lsc) 

regularization of 𝑓(𝑥) as 

𝑓ም(𝑥): = 𝑙𝑖𝑚𝑖𝑛𝑓௫→௫ f(x), 𝑥𝜖𝒞. 

Define the extended value extension of 𝑓(𝑥) as 

𝑓ሚ(x)=൜
𝑓(𝑥) 𝑖𝑓 𝑥𝜖𝒞
∞  𝑖𝑓  𝑥 ∉ 𝒞

. 

Since f is convex relative to 𝒞, 𝑓ሚ is a proper lsc convex function. It follows, from 

Rockafellar and Wets (1998, Theorem 2.6), that argmin௫ఢ𝒞 𝑓(𝑥) =

argmin௫ఢℝ಼  𝑓ሚ(𝑥) is convex. 

We now characterize the diameter of argmin௫ఢ𝒞𝑓(𝑥)  in terms of its support 

function. To avoid clutter in the notation, denote 𝑋∗: =  argmin௫ఢ𝒞𝑓(𝑥). For any 
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two points x and 𝑥, let 𝑑(𝑥, 𝑥) = ‖𝑥 − 𝑥‖ଶ denote their Euclidean distance. The 

diameter of 𝑋∗ is defined as 

𝑑𝑖𝑎𝑚(𝑋∗): = 𝑠𝑢𝑝௫,௫∈∗
 𝑑(𝑥, 𝑥). 

For the case when 𝑋∗ is unbounded, it suffices to note that 𝑑𝑖𝑎𝑚(𝑋∗) = ∞ and 

𝑠𝑢𝑝∈𝕊𝜔∗
(𝑞) =  ∞. Consider now the case when 𝑋∗ is bounded. We first derive 

a lower bound on 𝑑𝑖𝑎𝑚(𝑋∗) in terms of the width function. Denote the upper 

bound of the width function by 𝜔ഥ: = 𝑠𝑢𝑝∈𝕊𝜔∗
(𝑞). Let 𝑞∗ ∈ 𝕊 be a direction 

such that 𝜔∗
(𝑞∗) = 𝜔ഥ. On each of the supporting hyperplanes perpendicular to 𝑞∗, 

there is a point in 𝑐𝑙(𝑋∗).  Hence, 𝜔ഥ ≤  𝑑𝑖𝑎𝑚(𝑋∗).  We now derive an upper 

bound on 𝑑𝑖𝑎𝑚(𝑋∗) in terms of the width function. There are points 𝑥∗ and 𝑥 

in 𝑋∗ such that 𝑑𝑖𝑎𝑚(𝑋∗) = ‖𝑥∗ − 𝑥‖ଶ. Consider now two hyperplanes passing 

each through 𝑥∗ and 𝑥 such that they are perpendicular to 𝑥∗ and 𝑥. These 

hyperplanes are supporting hyperplanes of 𝑋∗, for otherwise we could find two 

points in 𝑋∗ at a distance apart greater than 𝑑𝑖𝑎𝑚(𝑋∗). Hence, 𝜔ഥ ≥  𝑑𝑖𝑎𝑚(𝑋∗). 

We then deduce that 

𝑑𝑖𝑎𝑚(𝑋∗) =  𝜔ഥ = 𝑠𝑢𝑝∈𝕊 𝜔∗
(𝑞) =  𝑠𝑢𝑝∈𝕊 [𝛿∗

(𝑞) + 𝛿∗
(−𝑞)]. 

We finally characterize the support function 𝑞 → 𝛿∗
(𝑞) . Fix 𝑞 ∈ 𝕊 . Since 

𝑓ሚ: ℝ → ℝഥ  is a proper lsc continuous function, it follows, from Rockafellar and 

Wets (1998, Theorem 11.8) that 𝑋∗ = 𝜕𝑓∗(0), whence 𝛿∗
(𝑞) = 𝛿𝝏𝒇∗(𝟎)(𝑞). 

 

Proof of Lemma 3.1. In the text. 

 

Proof of Lemma 3.2. Since the matrix of second derivates of the Hellinger pseudo-

metric function is a positive semi-definite matrix (see Lemma 3.4), it follows from 

Rockafellar and Wets (1998, Theorem 2.14) that Θ is a non-empty convex set. 

Moreover, since 𝜌(𝜃) = 0 if and only if 𝜃 ∼ 𝜃 and otherwise 𝜌(𝜃) > 0, one 

has [𝜃]బ
= 𝑎𝑟𝑔𝑚𝑖𝑛ఏ∈బ

 𝜌(𝜃). Since 𝜌: Θ → [0,1] is a convex function, one is 

justified to claim that [𝜃]బ
 is a non-empty convex subset of Θ. 
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Proof of Lemma 3.3. (If) Assume that ℊ(𝜃) ≥ 0. Consider first the case ℊ(𝜃) =

0 . We have 𝑙𝑛 ቀ1 + 𝑒൫ℐ(𝜃)൯ቁ = 𝑙𝑛 ቀ1 + 𝑑𝑖𝑎𝑚൫[𝜃]బ
൯ቁ  so 𝑒൫ℐ(𝜃)൯ =

𝑑𝑖𝑎𝑚൫[𝜃]బ
൯. Since any non-identifiable point 𝜃 has 𝑑𝑖𝑎𝑚൫[𝜃]బ

൯ > 0, the 

last equality implies that 𝑒൫ℐ(𝜃)൯ > 0.  This is in contradiction with our 

previous observation (see the proof of Lemma 2.1) that any non-identifiable point 

has singular Fisher matrix. We deduce then that ℊ(𝜃) = 0 implies that 𝜃  is 

identifiable. Consider now the case ℊ(𝜃) > 0 . We have 𝑒൫ℐ(𝜃)൯ >

𝑑𝑖𝑎𝑚൫[𝜃]బ
൯ ≥ 0, whence 𝑒൫ℐ(𝜃)൯ > 0 and 𝜃 is locally identifiable. (Only 

if) Assume now that 𝜃 is locally identifiable. We have 𝑑𝑖𝑎𝑚൫[𝜃]బ
൯ = 0 and 

ℊ(𝜃) =  𝑙𝑛 ቀ1 + 𝑒൫ℐ(𝜃)൯ቁ ≥ 0, where the last equality follows from observing 

that the Fisher matrix is positive semi-definite. 

  

Proof of Lemma 3.4. We now follow Pacini (2022, Lemma 4). Consider first the 

case when 𝜃 is a scalar, i.e., 𝐾 = 1. Write 

𝜌(𝜃) =
ଵ

ଶ
ቛ𝑓ఏ

ଵ/ଶ
− 𝑓ఏబ

ଵ/ଶ
ቛ

మ(ఓ)

ଶ

=
ଵ

ଶ
∫ ቀ𝑓ఏ

ଵ/ଶ
− 𝑓ఏబ

ଵ/ଶ
ቁ

ଶ

𝑑𝜇=1-∫ 𝑓ఏ
ଵ/ଶ

𝑓ఏబ

ଵ/ଶ
𝑑𝜇. 

Differentiating the Hellinger pseudo-metric function 

∇𝜌(𝜃) = −
1

2
න ∇𝑓ఏ𝑓ఏ

ିଵ/ଶ
𝑓ఏబ

ଵ/ଶ
𝑑𝜇 =

1

2
න

ቀ𝑓ఏ
ଵ/ଶ

− 𝑓ఏబ

ଵ/ଶ
ቁ ∇𝑓ఏ

𝑓ఏ
ଵ/ଶ

𝑑𝜇. 

Since the Hellinger pseudo-metric function reaches a minimum at 𝜃 , one has 

∇𝜌(𝜃) = 0 and so 

∇ఘ(ఏ)ି∇ఘ(ఏబ)

(ఏିఏబ)  =
ଵ

ଶ
∫

ቀഇ
భ/మ

ିഇబ

భ/మ
ቁ∇ഇ

(ఏିఏబ)
ഇ
భ/మ 𝑑𝜇. 

By the Lebesgue Dominated Convergence Theorem, the limit  

∇ଶ𝜌(𝜃): = 𝑙𝑖𝑚ఏ→ఏబ

∇𝜌(𝜃) − ∇𝜌(𝜃)

(𝜃 − 𝜃)  
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satisfies ∇ଶ𝜌(𝜃) =
ଵ

ସ
 ℐ(𝜃) 𝑏 ecause the integrand in the preceding display 

converges pointwise 

ቀ𝑓ఏ
ଵ/ଶ

− 𝑓ఏబ

ଵ/ଶ
ቁ ∇𝑓ఏ

(𝜃 − 𝜃)𝑓ఏ
ଵ/ଶ

→
1

4
∇ln 𝑓ఏబ

∇ln 𝑓ఏబ
𝑓ఏబ  

And it is dominated by a sum of integrable functions 

ቤ
ቀഇ

భ/మ
ିഇబ

భ/మ
ቁ∇ഇ

(ఏିఏబ)
ഇ
భ/మ ቤ ≤

ቀഇ
భ/మ

ିഇబ

భ/మ
ቁ

మ

(ఏିఏబ)మ
+

∇ഇ∇ഇᇱ

ഇ
 . 

To extend this argument to the case when 𝜃 is a vector, one applies the argument 

above elementwise to the components of ∇ଶ𝜌(𝜃).   

 

Proof of Theorem 3.1. By Lemma 3.4, 

𝑒൫ℐ(𝜃)൯ = 𝑒൫4∇ଶ𝜌(𝜃)൯ = 𝑚𝑖𝑛∈𝕊 〈𝑞, 4∇ଶ𝜌(𝜃)𝑞〉, 

Where the last equality follows from the Courant-Fisher Theorem characterization 

the smallest eigenvalue of a squared matrix. The claim then follows from Lemma 

2.3 applied to 𝑓 = 𝜌 , 𝒞 = Θ  after noticing, from Lemma 2.2 and 3.4, that 

𝜌: Θ → [0,1] is a continuous convex function. 
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