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Abstract: We develop a stylized college admission model to analyze the effects of
need-blind admission policy which requires admission decisions to be independent of
applicants’ financial needs. We show that the need-blind admission policy enhances
needy students’ enrollment if financial aid offers are made contingently on the stu-
dent’s need level, but reduces it if they are also made need-blindly. We also analyze
student loan programs and investigate an optimal form of loan program in increasing
the enrollment of needy students: the initial endowment gap of the colleges should be
reduced with the support of the student loan program. (JEL Codes: C72, C78, I23)
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1 Introduction

A majority of US colleges adopt need-blind admission policies, whereby they disregard ap-

plicant’s financial status in admission decisions. According to the survey by the National

Association for College Admission Counseling, 92% of public colleges and 81% of private col-

leges reported so in 2007, albeit down from 98% and 88% in 1994, respectively (Heller, 2008).

Under growing attention on equity and diversity in higher education, this policy is widely

perceived as colleges’ endeavor to construct a more diverse and inclusive student body, en-

couraging applications from students in middle and low income families. However, achieving

diversity also relies on these students finding financial means to support themselves through

the college education, which has been an unrelenting issue given the spiralling tuition fees

of selective colleges.

Many colleges announce that they meet the demonstrated needs of admitted students

fully through their need-based financial aid programs. Yet, few colleges are able to do so

with their own scholarships or grants (that need not be repaid) and students often seek other

∗We are grateful to William Thomson and Youngwoo Koh for their helpful comments and suggestions as
well as the participants at a seminar of the Korean Econometric Society (Micro), the 2022 Conference on Mech-
anism and Institution Design, and the 21st annual SAET conference. This work was supported by the National
Research Foundation of Korea Grant funded by the Korean Government (NRF-2019S1A5A2A01047656).
Emails: ejheo@uos.ac.kr; i.park@bristol.ac.uk
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funding sources, such as federal student loans or work-study programs.1 Colleges adopting

need-blind admission policies may be in particularly stretched situations with their schol-

arship budget, as they extend admission offers to all qualified applicants regardless of their

financial needs. Consequently, these colleges cannot offer sufficient scholarships to all admit-

ted students and some students end up turning down the admission offers when they have no

external funding or have to borrow excessively. Such cases are called admit/deny, as students

are admitted but in effect denied due to inadequate financial aid. Despite well-intentioned

policies, admit/deny cases may undermine the colleges’ effort and create inefficiency.

As such, the impact of need-blind policies may hinge on how the college’s financial aid

programs are run in connection with other available funding sources. Insofar as the colleges

are fundamentally interested in their academic standing, they may use any discretion allowed

in making financial aid offers strategically both relative to rival colleges and across applicants,

influencing the demography of enrolling students in directions tricky to predict. Taking into

account how colleges will respond, federal agencies may also want to design student loan

programs to promote their goal. To better understand what need-blind admission policies

may achieve, therefore, all these aspects need to be studied in tandem.

We develop and analyze a stylized economic model equipped for comparing admission

outcomes under alternative policies, with a view to deriving useful economic insights and pol-

icy implications. Specifically, two competing colleges make admission and financial aid offers

to maximize the average academic ability of incoming students given fixed capacity and bud-

get constraints. They observe (unbiased estimates of) academic abilities and demonstrated

financial needs of all applicants but not their preferences over the two colleges.

We consider different regimes by varying restrictions on which characteristics of appli-

cants the colleges may base their decisions on. By a need-blind regime we refer to envi-

ronments in which colleges may base their admission decisions on the applicant’s academic

ability but not on their financial need level (hence, the term “need-blind”). We divide this

regime into two categories depending on whether their financial aid decisions should also be

need-blind or not. We compare these cases with the benchmark case where the colleges make

their decisions without any restriction, which we call the need-aware regime (as the colleges

base their decisions on the applicant’s need level as well as their academic ability), to study

if and when need-blind admission policies enhance needy students’ enrollment. We also asso-

1The amount of loan that a student can bear varies with his/her current economic status, because it should
be repaid and an excessive loan might also lower the graduation rate. Surprisingly, there is no rule in the US
that mandates colleges to abide by to claim that they meet the full demonstrated need. For instance, colleges
calculate the cost of attendance (COA) using their own measures, and this cost can be an underestimation of
the actual cost. The composition of the financial aid package also matters even when the demonstrated need
is fully met, as explained above. Currently, there are only a handful of colleges that commit no-loan policy
to all admitted students.
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ciate this analysis to the federal student loan programs operated by the U.S. Department of

Education (DoED, henceforth). We analyze the effect of the current student loan program

and provide a policy implication in designing optimal student loan programs.

To this end, we start with the baseline model where there are no external funding sources.

A fraction of the applicant pool are students who need no financial support, hence only need

an admission offer to enroll in a college. We call them non-needy students. All other students

are in need of positive levels of financial support and should receive a full scholarship from

the college in order to enroll (as there is no external funding), in addition to an admission

offer. We call them needy students. Each student enrolls in a college if he/she can, in the

preferred one if possible. Each college tries to fill its capacity with students of a highest

possible average ability subject to its scholarship budget constraint and relevant restrictions

of the regime under consideration.

As the intuition suggests, we show that colleges adopt cutoff admission rules in equilib-

rium, whereby they extend admission offers to all students above a certain cutoff ability level.

The cutoff level may differ depending on the student’s financial need level in the need-aware

regime but must be the same regardless in the need-blind regime. All non-needy students

above the cutoff can enroll without receiving any scholarship, but colleges have to expend

their scholarship budgets to accommodate any needy student in the amount equal to the

student’s financial need.

In the need-aware regime, the equilibrium admission cutoff turns out to be higher for

needy students than for non-needy students, increasing linearly in their need level as they

become more “costly” to accommodate. This implies that the average amount of scholarships

offered to all needy students above the cutoff schedule is lower than the ex ante mean need

level of the initial pool of all needy students. The exact equilibrium cutoff schedule is

determined by binding capacity and budget constraints.

In the need-blind regime, on the other hand, the colleges have to apply the same admission

cutoff to all students. If they have to make financial aid offers need-blindly as well, there

is no other option but to ration scholarships randomly with the same probability across all

need levels. Then the average amount of scholarships offered to needy students is equal

to the ex ante mean need level of all needy students, thus higher than that in the need-

aware regime. Given a fixed budget, therefore, the total number/measure of needy students

accommodated is smaller than that in the need-aware regime. This in turn means that the

colleges lower the admission standard to admit more non-needy students to fill the capacity,

by setting the common admission cutoff below the level set for non-needy students in the

need-aware regime.

Consider the alternative case that colleges may make scholarship offers conditioning on
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the applicant’s need level. Then they still have to ration scholarships among admitted needy

students but they may do so cost-effectively by offering scholarships to students with lowest

need levels above the common cutoff until the budget is depleted, insofar as the average

ability above the cutoff remains the same across need levels. We show that they indeed

do this in equilibrium, that is, each college offers scholarships to all needy students up to

a certain threshold need level so long as they meet its admission cutoff. The college with

a larger scholarship budget can reach out farther to needy students, hence sets a higher

admission cutoff and a higher threshold need level. We show that the total needy students

accommodated in this regime is larger than that in the need-aware regime. This is because

scholarships are allocated in effect to maximizes the enrollment of needy students in this

regime treating the common cutoff level as the minimal admittable ability, whereas in the

need-aware regime they are allocated to equalize the marginal contribution (to average ability

of enrolling students) of scholarship money spent across all need levels.

As such, admit/deny incidents are unavoidable under need-blind admission regimes, be

they random or concentrated on highly needy students depending on whether scholarship

offers are also need-blind or not. The match inefficiency is another issue that may affect

needy students, particularly when scholarship offers are also need-blind and made randomly:

some students admitted by both colleges may receive financial support only from their less

preferred college and enroll there. Then, swapping the colleges for such students would bring

about a Pareto improvement. Such misaligned outcomes may also arise in other regimes when

the colleges have different budgets, but those incidents are inherent to the asymmetry of the

colleges leading to different admission cutoffs between colleges and Pareto-improving swaps

are not possible.

Next, we extend our analysis to environments where external funding is available, e.g., in

the form of federal student loans. Students may now enroll in a college without receiving a

full scholarship provided that they can take out a loan. Knowing this, the colleges adjust their

scholarship offers accordingly. We study how such external funding affects the enrollment

of needy students and thereby, how such funding may be designed to best promote it. We

focus on the need-blind regime where financial aid may be need-dependent because needy

students’ enrollment is greatest in this environment as explained above.

Federal student loans are not limitless and their availability is a policy variable because

the federal student loan programs are largely managed by the DoED in the U.S. We examine

and characterize the DoED’s optimal design of student loan programs, assuming that it

aims to maximize the total enrollment of needy students given a fixed budget of federal

loan.2 Formally, we introduce a function representing the availability of student loans,

2The fixed total amount of loan is interpreted as the annual federal budget allotted to the federal student
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which specifies the probability with which a loan application gets approved depending on

the amount sought. Taking this function as given, the colleges choose their admission cutoffs

and scholarship allocations and the applicants take out a loan when needed and decide where

to enroll.

We first analyze the case in which the availability function is a single step function,

so that loan applications are approved for sure up to a certain threshold amount but no

higher amount is approved. In equilibrium, the colleges offer partial scholarships, inducing

the applicants to make up the rest with a loan, and use the saved budget to recruit more

qualified applicants with greater financial needs. Specifically, the colleges behave as if the

students’ need levels are reduced by the threshold loan amount, and the result above without

external funding applies with need levels adjusted as such.

When the two colleges have identical scholarship budgets, they set the same admission

cutoff and threshold need level as if one half of the federal budget was their own. This

equilibrium outcome maximizes the enrollment of needy students among all loan availability

functions. For colleges with similar budgets, therefore, this observation justifies the student

loan program currently adopted by the DoED: there is a maximum credit limit for each

applicant, depending on the student’s school year and dependency status, and a student

loan up to this limit is guaranteed.3

If they have different budgets, however, a single step function no longer maximizes the

enrollment of needy students. In fact, we find that single-step loan programs exacerbate the

imbalance of the two colleges originating from their asymmetric budgets. As explained above,

in this case the college with a larger budget sets both a higher admission cutoff and a higher

threshold need level than the other, thus admitting less non-needy students and reaching out

farther to more needy students in equilibrium. Since the amount of loan that needy students

take out increases with their need level up to the loan threshold, this means that the total

loan taken out by the students enrolling in the better-endowed college is larger than that of

the other college. As student loans are some sort of “subsidy” to the colleges that relaxes

their budget constraints without imposing any burden on them, the better-endowed college

receives more subsidy from the DoED under single-step loan programs. This aggravates the

imbalance of the two colleges, which in turn hampers the total enrollment of needy students

as will be elaborated in our analysis.

This suggests that federal loan programs need be designed to abate the initial endowment

gap between colleges, in order to enhance the enrollment of needy students. We discuss how

loan programs. In 2021, for instance, $94 billion is requested for the student loans (excluding consolidation
loans), according to the DoED’s Fiscal Year 2021 Budget Request. For more details and various plans of
federal student loan programs, see the “Student Loan Policies” section of the report.

3These limits are specified in the guideline of the Federal Student Aid, available at https://studentaid.gov/
understand-aid/types/loans.
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the federal loan programs can be modified in this direction. In particular, we fexplain how

the current program may be augmented with a suitably designed “matching loan” scheme

to help achieve the goal by reducing the endowment gap.

College admission has been the subject of both theoretical and empirical studies. How-

ever, to our knowledge, comparison of need-blind and need-aware admission policies and

the role of financial aid systems have not been studied hitherto. For instance, Epple et

al. (2006) present a general equilibrium model of college admissions where colleges deter-

mine optimal price-discrimination strategies as well as their educational expenditures, uti-

lizing all attributes of students including their economic status. Hence, they do not study

need-blind admission regimes. The comprehensive nature of their model renders it difficult

to characterize equilibrium analytically; instead, they provide its structural estimation.

Another line of research on the topic focuses on college admission games where appli-

cants are sorted and matched to the colleges under various specifications, abstracting from

endogenous educational investment/expenditures. Kim (2010), for example, analyzes the

effects of early decision admissions as a device to screen student’s income for colleges that

officially adopt need-blind admission policy. Without financial aid considerations, Avery

and Levin (2010) analyze early decision/action, Chade et al. (2014) consider frictions with

non-negligible application fees, and Che and Koh (2016) study the impact of enrollment

uncertainties on admission strategies. Our analysis also stands on this line but we focus on

the impact of need-blind policy in relation to internal and external financial aid systems.

On the other hand, centralized mechanisms for college admissions have been widely stud-

ied in the market design literature, which stems from the seminal work by Gale and Shapley

(1962). In recent studies, financial aid has been incorporated to these matching mecha-

nisms, and relevant stability concepts have been tested (Abizada (2016), Afacan (2020),

Biró et al. (2020)). Nevertheless, applicants’ economic backgrounds and different admission

standards remain to be addressed.

The rest of the paper is organized as follows. In Section 2, we define the model and

introduce admission and financial aid rules. In Section 3, we present our results under need-

aware and need-blind policies, assuming that scholarships are the only source of financial

aid. We extend this analysis in Section 4 by introducing federal student loans, followed by a

discussion of an optimal design of student loan programs. Section 5 includes a few concluding

remarks. Appendix contains deferred proofs.
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2 Model

There are two selective colleges A and B, each with an enrollment capacity of measure 1/2

and a respective budget of MA,MB > 0 for financial aid. The two selective colleges can

accommodate one half of all students in a student pool S of measure 2.4

Each student i ∈ S is characterized by his preference/taste τi ∈ {A,B} for colleges; his

academic ability vi ∈ V ≡ [0, 1]; and financial status yi ∈ Y ≡ [y, y] where y < 0 and y = 1

by normalization. The three characteristics are distributed independently of one another, as

well as across students, according to a commonly known distribution described below.

Each student i is equally likely to prefer college A to college B (i.e., τi = A) and the

other way around (τi = B). We divide S into two groups of students SA and SB of measure 1

each, where students in SA prefer college A and students in SB prefer college B.

In each group Sc where c = {A,B}, student i’s academic ability, vi, and financial status,

yi, are distributed, respectively, according to atomless (cumulative) distribution functions

GV and GY with full support. A student with a higher vi is more able academically. A

student’s financial status yi, if positive, specifies this student’s financial need, namely, the

amount of financial aid that he must secure to be able to enroll in either college, should he be

admitted. A student with yi ≤ 0 does not need financial aid, thus only needs an admission

offer to enroll in a college. We say a student i is needy if yi > 0 and non-needy otherwise.

Negative financial status levels yi ∈ [y, 0] are used solely for expositional ease of representing

a positive mass of non-needy students by a continuous distribution GY , thus are equivalent

strategically. We use G(v, y) = GV (v) ·GY (y) to denote the cdf of (vi, yi) when convenient.

At the application stage, each student knows his characteristics (vi, yi) and the colleges

observe them correctly.5 The student’s taste τi is his private information and cannot be

credibly communicated. Application is costless, hence all students apply to both colleges.

Based on the commonly known distribution G, each college c ∈ {A,B} decides on an

admission policy that dictates whom to offer a place and how much financial aid to offer based

on the student’s characteristics (vi, yi). An admission policy consists of (i) an admission rule,

α : V × Y → {0, 1}, that specifies whether to offer admission (α(v, y) = 1) or not (α(v, y) =

0)6 and (ii) an aid rule, β : Y → ∆(<+), that specifies a probability distribution β(y)

4We may assume that a third, non-selective college (least preferred by all students) absorbs all the re-
maining students, but this third college would play no role in our analysis.

5The academic ability vi can be interpreted as a weighted sum of GPA, SAT and other relevant activities,
which is perceived as unbiased estimate of the applicant’s academic ability. The financial status yi is submitted
to the Free Application for Federal Student Aid (FAFSA) and the accuracy of these data is verified through
income tax returns and W-2 statements and so on.

6We adopt a technical convention of treating admissions rules equivalently if the sets of student character-
istics to which they extend admissions to, α−1(1), differ only by a measure 0 set. This is innocuous because
such admission rules are strategically equivalent regardless of the other college’s strategy.
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over amounts of financial aid to offer. Colleges are not allowed to offer a financial aid that

exceeds each student i’s financial need, max{0, yi}, and therefore, β(y) ∈ ∆([0,max{0, y}]).
Thus, when we say that a needy student receives a full scholarship, the amount equals to his

financial need.

An admission policy is need-blind if α depends only on v and not y, and need-aware if it

depends on both v and y. Note that the financial aid rule, β, may depend on the student’s

financial status but not on his academic ability. This is because we focus on financial

aid schemes that go through the Free Application for Federal Student Aid (FAFSA) and a

student’s financial status is basically the only relevant information verified in this process.

A student i is said to have secured a place in college c ∈ {A,B} if he has received an

admission offer and obtained a financial aid equal to his need yi if yi > 0 from college c

and/or external sources to be detailed later. If he secures a place in both colleges, he enrolls

in his preferred college; if he secures a place in just one college, he enrolls in that college. In

line with Avery and Levin (2010) and Kim (2010), we assume that each college must fill up

their capacity exactly with these students. The objective of each college is to maximize the

average academic ability of the incoming students subject to its scholarship budget constraint

under any admission/aid regime specified.

We formalize the situation above as the following game between the two colleges:

1) Each college c ∈ {A,B} chooses an admission policy (subject to the restrictions of the

admission regime under consideration) and extends admission and financial aid offers

to all students according to it.

2) Each student enrolls in the (preferred) college he secured a place in, if any.

3) The payoff of college c is the average academic ability of the students who enroll in

college c if such students fill up its capacity, 1/2, exactly.

A Nash equilibrium is admission policies of the two colleges that are mutual best responses

in the game described above. We characterize and compare Nash equilibria of this game

under several different admission regimes which place different restrictions on admission

policies the colleges may adopt.

The average academic ability of all incoming students of the two colleges is maximized

when they (together) recruit the top one half of students in academic ability in the entire

student pool S (of measure 2) so that they fill up the capacities of both colleges. These are

all students with vi ≥ v∗ regardless of their financial status and taste, where v∗ is the ability

level such that GV (v∗) = G(v∗, y) = 1/2. By denoting the average need level of all needy

students (i.e., with yi > 0) in the entire student pool S by

ñ ≡
∫ y

0

y

1−GY (0)
dGY ,
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the total budget needed to support all needy students with ability above v∗ in SA (or in SB)

is (1−GY (0))(1−GV (v∗)) · ñ.

If the budget of each college c ∈ {A,B} is sufficiently large to fund all such students in Sc,

the college can fill up its capacity with students of ability above v∗, offering full scholarships

to all those who need financial aid.7 As will become clear in the sequel, this is the unique

equilibrium outcome in every regime we will consider. To avoid such triviality, we assume

that MA and MB are not sufficiently large to warrant such an ideal outcome:

Assumption 1. MA,MB < (1−GY (0))(1−GV (v∗)) · ñ.

As their budgets are insufficient to fill the capacity by supporting all needy students with

abilities above the ideal cutoff v∗, the colleges need to admit more non-needy students (i.e.,

with yi≤0) by lowering the academic standard for them. We aim to characterize and compare

the extent to which they have to “favor” non-needy students as such (at the detriment of

needy students) in different admission regimes, with a view to providing policy implications.

For an equilibrium to exist, each college must be able to fill its capacity with its scholar-

ship budget. We ensure that this is possible for both colleges with any scholarship budget

by assuming that there are enough non-needy students to fill both colleges, i.e., GY (0) ≥ 1/2.

Also, to warrant that equilibrium is unique in all regimes we consider (so that unambiguous

comparison of outcomes is possible between them), we impose an additional assumption on

GY below:

Assumption 2. GY (0) ≥ 1/2 and GY (y)/y is non-increasing in y ∈ (0, 1),

The latter assumption means that financial needs are not highly concentrated at high levels.

It is a relatively mild condition because, for GY (y)/y to increases, GY (y) must increase

at a rate exceeding both GY (y)/y > 1
2y and 1 at some y, thus a sufficient condition is

gY (y) ≤ max{ 1
2y , 1} for y ∈ (0, 1). This is satisfied unless gY (·) swings sharply at some

levels of y, since a uniform distribution on (0, 1) would mean gY (y) ≤ 1/2 given GY (0) ≥ 1/2.

Assumption 2 warrants unique equilibrium for every possible scholarship budgets the two

colleges may have, thus can be relaxed significantly once their budgets are fixed.

We close this section with a useful lemma. We say that an admission rule α is a cutoff

(admission) rule if there is a “cutoff schedule” x : Y → V such that α(v, y) = 1 if and only

if v > x(y). That is, an admission offer is made to everyone with academic ability above a

certain cutoff x(y) that may depend on their financial status. By the next lemma, we consider

only cutoff rules as equilibrium admission rules, which facilitates presentation greatly.

7To be precise, in equilibrium college A gets the top measure 1/2 of students in academic ability in SA and
college B gets the same students in SB with ability above v∗.
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Lemma 1 In every equilibrium of the admission regimes that we consider, each college

adopts a cutoff admission rule.

The proof is provided in Appendix, but the intuition is clear: each college can enhance the

average ability of incoming students by admitting students at the top end of academic ability

subject to its capacity and budget.

3 College Admissions with No External Funding

In this section, we assume that there are no external sources of financial aid other than

scholarship from the colleges’ budget. Hence, a needy student i may enroll in a college

only if he receives a full scholarship as well as an admission offer from the college. Section 4

extends the analysis to the cases where external funding sources exist to which needy students

may resort.

3.1 Need-aware regime

In the need-aware regime, colleges adopt admission rules that may depend on both a student’s

ability vi and need yi. By Lemma 1, college c sets different ability cutoff levels for different

yi’s, which we depict by a measurable function xac : Y → V , where the superscript a refers

to the need-aware admission regime. To facilitate the exposition we explain the equilibrium

heuristically in the main text, deferring a formal proof to Appendix.

We first characterize an equilibrium for the symmetric budget case whereby the colleges

have identical budgets; then we explain how the equilibrium changes for the asymmetric

budget case. Since there is no other funding source, an admission offer to any needy student

is pointless unless accompanied by a full scholarship, because without it, the student cannot

enroll even with an admission offer. Hence, we assume without loss in the current regime

that colleges offer full scholarships to all needy students whom they extend admission offers

to.

Thus, an equilibrium is a pair of cutoff schedules (xaA, x
a
B) that are mutual best responses

subject to filling the college’s capacity without breaking the budget constraint. An equilib-

rium is symmetric if xaA = xaB, i.e., the two colleges adopt the same cutoff schedule and thus,

make offers to the same set of students, i.e., those above the common cutoff schedule. In

such equilibria, all such students enroll in their favorite college and each college c fills its

capacity only with students in Sc.

As will be shown below, the equilibrium is unique and symmetric when the colleges have

the same budget MA = MB = M . In identifying this (and subsequent) equilibrium, the

following “solo (optimization) problem” proves useful.
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Solo problem. A single college (without a rival college), say A, chooses an admission

policy over a student pool, SA in the current case, to maximize the average ability of incoming

students subject to its capacity and budget constraints:

max
x:Y→V

∫
x(y)<v
y<y<y

v dG subject to

∫
x(y)<v
y<y<y

1 dG =
1

2
and

∫
x(y)<v
0<y<y

y dG ≤M. (1)

Due to insufficient budget (Assumption 1), it is straightforward to verify that the budget

constraint binds at the solution, which we take for granted in the sequel. Note that taste

parameter τi is moot in this problem because every student will enroll if offered a place.

Let xa be a cutoff schedule that solves the optimization problem (1), which we call a

“solo-optimal policy”. To characterize this, we solve the Lagrangian problem of (1) written

as

max
x(y)∈[0,1],y∈Y

µ,λ

∫
x(y)<v
y<y<y

v dG+ µ
1

2
+ λM −

∫
x(y)<v
y<y<y

(µ+ λmax{0, y}) dG

where µ and λ are multipliers for the capacity and budget constraints, respectively. The first

order conditions (FOC) are:

[µ− x(y)]g(x(y), y) = 0 ⇔ µ = x(y) if y ≤ 0,

[µ+ λy − x(y)]g(x(y), y) = 0 ⇔ µ+ λy = x(y) if y > 0 and x(y) < 1,

}
(2)

∫
x(y)<v
y<y<y

1 dG =
1

2
, and

∫
x(y)<v
0<y<y

y dG = M (3)

where g(v, y) denote the density functions of G(v, y) = GV (v) ·GY (y).

By the conditions in (2), to maximize the average ability of incoming students, college A

admits all non-needy students above a constant cutoff, say xa(y) = µa > 0 for all y ≤ 0;

and all needy students above the cutoff that increases linearly at a rate, say λa > 0, in their

financial need y > 0, i.e., xa(y) = µa + λay, until xa(y) reaches the maximal ability 1.

It is clear that the solo-optimal cutoff level should be the same for all non-needy students

because they are equivalent strategically; moreover, this cutoff is positive (µa > 0) because

the total enrolling students would exceed the capacity if µa = 0 given GY (0) ≥ 1/2.

It is also intuitive that the cutoff increases in y > 0, because otherwise the college may

swap students of higher ability and lower needs with those of lower ability and higher needs

without breaking the budget. To see, in addition, that xa(y) must increase linearly in y > 0

heuristically, suppose to the contrary that there are y′, y′′ > 0 such that y′′ = 2y′ and

xa(y′′) − µa 6= 2(xa(y′) − µa), say xa(y′′) − µa > 2(xa(y′) − µa). Then, the college could

admit another student with financial need yi = y′′ (whose ability is xa(y′′) at the margin) by

releasing two students with yi = y′ (whose ability is xa(y′)) to satisfy the budget constraint,
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and admit another non-needy student (whose ability is xa(0) = µa) to fill capacity, thus

enhancing the average ability because xa(y′′) + xa(0) > 2xa(y′). As such, linearity of xa(y)

captures that the marginal value of substituting scholarship spending across need levels is

exactly balanced out by its implication on the non-needy student intake to meet the capacity.

We are now ready to pin down the solo-optimal policy. For µ ≤ v∗, let λ(µ) > 0 be

the solution to the latter equation of (3) when x(y) = µ for y ≤ 0 and x(y) = min{µ +

λ(µ)y, 1} for y > 0, that is, the budget constraint binds when the said cutoff rule x(y) is

adopted. This strategy under-fills capacity at µ = v∗ due to Assumption 1, and as µ decreases

from v∗, binding budget constraint implies that λ(µ) increases and the enrollment of needy

students increases continuously as well as that of non-needy students, eventually over-filling

the capacity before µ hits 0 because GY (0) ≥ 1/2. Therefore, there is a unique solution to

the set of FOC’s listed above, denoted by (µa, λa) where µa ∈ (0, v∗). Consequently, the

solo-optimal policy (which exists as shown in Appendix) must be the cutoff strategy

xa(y) =

{
µa ∈ (0, v∗) for y ≤ 0

min{µa + λay, 1} for y ∈ [0, ȳ] where λa > 0.
(4)

Lemma 2 There exists a unique solo-optimal policy that solves the optimization prob-

lem (1), which is xa(·) in (4) where µa and λa solve (3).

Remark 1: The solo problem (1) is written for the need-aware regime with SA as the

student pool, but an analogous solo problem can be defined in other regimes (to be specified

later) and also for student distributions G that are not independent between the two traits

v and y. In particular, if the student pool gets larger due to more students (of certain

distribution of characteristics) being added, it is straightforward to see that the solo-optimal

policy for the need-aware regime continues to be the unique cutoff strategy of the form (4)

as described in Lemma 2. This observation will be used in the subsequent sections.

Having characterized the solo-optimal policy as above, we now show that both colleges

adopting it constitutes a unique equilibrium when the colleges have identical budgets. If

both adopt the solo-optimal policy, (4), each college c ∈ {A,B} gets all students above the

cutoff xa(y) who favor the college (i.e., in group Sc), as illustrated in Figure 1(a). To verify

optimality, consider a deviation from xa, say by college A. Due to the capacity constraint,

this means that college A lowers its cutoff from xa over some range in Y and raises the

cutoff from xa over some other range in Y : that is, college A newly admits some students

from both SA and SB over the former range and denies some students from SA over the

latter range. If this deviation were beneficial, the college could have done even better in the

solo problem (1) by newly admitting the students only from SA over the former range and

raising the cutoff only half way over the latter range so that both the capacity and budget

12
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Figure 1: An equilibrium under the need-aware regime: (a) The right (left) half of the

diagram depicts SA (SB) where the horizontal axis measures y ∈ [y, ȳ] increasing in the right (left) direction

and the vertical axis measures v ∈ [0, 1]. When MA = MB , both colleges set an identical admission cutoff line

xa(·) that varies over [0, y]. Each student above these cutoff lines receives admission offers from both colleges

and enrolls in college A (B) if he is in SA (SB). The solid-gray area depicts needy students enrolling in A

and the blue-dashed area non-needy students enrolling in A. A symmetric description applies to college B

and all students enrolling in college B are populated in the gray-dashed area. (b) When MA > MB , college B

has a lower cutoff for non-needy students than college A; and the cutoff lines of the colleges intersect at a

point. The solid-gray area depicts needy students enrolling in college A and the blue-dashed area non-needy

students enrolling in A; all students enrolling in college B are populated in the gray-dashed area.

constraints are satisfied; but this would be in contradiction to xa being a solo-optimal policy

that solves the problem (1).

The analysis extends straightforwardly to the case of asymmetric budgets, that is, MA >

MB without loss of generality. In any equilibrium of this case, say (xaA, x
a
B), college A

optimally chooses xaA in the knowledge that the students in SB who will get offers from

college B according to xaB will enroll in college B, but any other student will enroll in college A

if given admission (with full scholarship). By definition, therefore, xaA is the solo-optimal

policy that solves (1) when M = MA and G is redefined8 to accommodate all students in SA

and those in SB who do not get admission from the rival college B according to xaB; and xaB

is the solo-optimal policy in a symmetrical situation. Since the earlier characterization of the

solo-optimal policy is valid for this situation as well (cf. Remark 1), the Lagrangian problem

for college c is (1) with M replaced by Mc and G modified as described above. Consequently,

the solution is in the same form as (4) but college-specific (i.e., not symmetric), which we

write as

xac (y) =

{
µac ∈ (0, v∗) for y ≤ 0

min{µac + λacy, 1} for y ∈ [0, ȳ].
(5)

Therefore, a strategy profile (xaA, x
a
B) is an equilibrium if each xac is the solo-optimal policy

8To be precise, the redefined G is a “measure” (rather than a distribution) because the full measure exceeds
1; the redefined density function is g(v, y) = gV (v)gY (y) if v ≥ xaB(y) and g(v, y) = 2gV (v)gY (y) otherwise.
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in this sense.

Lastly, we characterize how the equilibrium admission policies, xaA(y) and xaB(y), differ

due to different scholarship budgets as follows:

xaA(0) > xaB(0), λaA < λaB, and xaA(ŷ) = xaB(ŷ) < 1 at some ŷ ∈ (0, ȳ) (6)

as illustrated in Figure 1(b). The first inequality reflects that the college with a larger bud-

get, A, is more selective with non-needy students because it can afford to take in more needy

students by providing financial support. Both colleges gradually toughen their admission

standards for students with larger financial needs (owing to their limited scholarship bud-

gets), but the “better-endowed” college allocates its budget relatively more evenly across

different need levels by increasing the admission cutoff level more slowly (the second in-

equality); as a result, it reaches out to and takes in more severely financially constrained

students than its less well-endowed rival (the third condition).

We summarize the findings on the need-aware regime in the next lemma, including the

uniqueness of equilibrium (proved in Appendix). For comparison with other regimes later,

we note that the average need level of incoming needy students, which determines the size of

needy students enrollment, is lower than the ex-ante average ñ as stated in part (b) below.

Lemma 3 In the need-aware regime where MA > MB, there is a unique equilibrium

(xaA, x
a
B). In this equilibrium, each college c ∈ {A,B} adopts a cutoff strategy xac (y) where

(a) xac (y) is constant for y ∈ [y, 0] and increases at a constant rate λc > 0 for y ≥ 0 until it

reaches 1, in such a way that xaA(y) crosses xaB(y) from above at some ŷ∈(0, ȳ);

(b) the average need level of all needy students who enroll in either college is

ña :=

∫
v>min{xaA(y),xaB(y)}

0<y<y

y dG∫
v>min{xaA(y),xaB(y)}

0<y<y

1 dG
< ñ;

(c) the total measure of needy students enrolling in either college is MA+MB
ña ;

(d) in the limit case when MA = MB, the equilibrium is symmetric, i.e., xaA = xaB = xa,

where xa is the solo-optimal policy (4).

3.2 Need-blind regime

Under the need-blind admission regime, each college must apply the same admission standard

to all students regardless of their financial status. Thus, each college c ∈ {A,B} sets the

same admission cutoff level for all y ∈ Y , which we denote by xc ∈ [0, 1], that is, x(y) ≡ xc.
Each college c also decides how to allocate scholarships to the admitted needy students

by choosing an aid rule βc. As mentioned already, any scholarship short of their need is
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useless since there is no other source of financial aid; thus, it is innocuous to assume that

the colleges either offer a full scholarship equal to the student’s need y, or no scholarship.

Hence, abusing notation slightly, we use βc(y) to denote the probability with which college

c offers a full scholarship to students with need level y > 0.

Since the colleges cannot fill their capacity with the ideal admission cutoff level v∗ due to

insufficient budget (Assumption 1), they set an admission cutoff xc below v∗ to admit more

non-needy students. However, all needy students above the same cutoff receive admission

offers as well (due to need-blind admission), pushing up the measure of students holding

admission offers above the college’s capacity. The colleges then have to ration the scholarships

to only some of these needy students, leaving the remaining needy students with no option

but to turn down the admission offers.

Below we first consider a need-blind aid scheme that does not discriminate students on

the basis of their need level. That is, βc(y) remains the same for all y > 0. As both admission

and financial aid decisions are made irrespective of the applicants’ financial need, we call

such environment the fully need-blind regime. We analyze this regime as a preliminary one

that ideally complies with the non-discrimination principle on all accounts of the admission

process. In the subsequent sections, we also explain why this regime is hardly seen in practice.

Alternatively, an aid scheme can be need-dependent, whereby βc(y) may vary with y. We

refer to such environments as the need-blind admission with need-dependent aid regime. We

characterize the unique equilibrium that prevails in each regime.

(I) Fully need-blind regime: In this regime, there is no way to satisfy the budget

constraint but to randomize awarding full scholarships across all needy students above the

admission cutoff. Hence, each college c chooses a single admission cutoff xc ∈ [0, 1] for all

students and a fixed aid probability βc(y) ≡ bc ∈ [0, 1] for all needy students, that is, the

college offers each needy student who clears the cutoff xc a full scholarship with probability bc

and no scholarship with probability (1 − bc). We use the superscript r to denote variables

under this regime, as scholarship offers are randomized.

As in the previous regime, the equilibrium is symmetric if the two colleges have identical

scholarship budgets but asymmetric otherwise. We describe and analyze the general case of

asymmetric budgets below, which includes the symmetric case in the limit.

Let {(xrc, brc)}c=A,B be an equilibrium in this regime where the scholarship budgets are

MA > MB. Each college selects (xrc, b
r
c) to maximize the average ability of incoming students,

while meeting the capacity and budget constraints, in the knowledge that the students who

prefer the rival college will go there if given admission offers from that rival college (along

with full scholarship for needy students).

All non-needy students who meet the higher cutoff enroll in their preferred college, while
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Figure 2: An equilibrium under the fully need-blind regime: (a) The needy students
enrolling in college A are populated over two shaded areas: those in SA above the common cutoff xr who
receive a full scholarship from college A (with probability br; in the dark-solid area) and those in SB above
the cutoff with a full scholarship from college A only (with probability br(1− br); in the light-solid area). All
non-needy students enrolling in colleges A and B, respectively, are populated in the blue-dashed area and in
the gray-dashed area. (b) The areas are analogous with brA > brB .

those who meet only the lower cutoff enroll in that college. Hence, the college that sets a

higher admission cutoff takes in less non-needy students than the other college and thus,

should take in a larger measure of needy students to fill the capacity. This requires a larger

budget because the average scholarship bill for each needy student enrolled is the same at

the unconditional mean need level, ñ, due to random allocation.

This means, as expected, that the better-endowed college, A, sets a higher admission

standard in equilibrium, i.e., xrA > xrB. The less well-endowed college, by setting a lower

admission cutoff, issues admission offers to a larger set of needy students and thus, should

offer scholarships more sparingly, i.e., brA > brB. In the limit when the colleges have identical

budgets, the differences disappear and we have xrA = xrB and brA = brB. Figure 2(a) illustrates

the equilibrium for the symmetric case and Figure 2(b) for the asymmetric case.

To pin down the equilibrium values precisely, we list the equilibrium conditions below:

GY (0)(1−GV (xrA)) + MA
ñ = 1

2 (7)

2GY (0)(1−GV (xrB))−GY (0)(1−GV (xrA)) + MB
ñ = 1

2 (8)

(1−GY (0))(1−GV (xrA))[brA + (1− brB)brA] = MA
ñ (9)

(1−GY (0))(1−GV (xrA))[brB + (1− brA)brB] + (1−GY (0))(GV (xrA)−GV (xrB))brB = MB
ñ . (10)

The condition (7) is the capacity constraint for college A: GY (0)(1−GV (xrA)) is the measure

of non-needy students in SA above the cutoff and MA/ñ is the measure of needy students

it supports. The condition (8) is the corresponding constraint for college B who takes in all

non-needy students above the cutoff xrB except those who enroll in college A. Conditions (9)

and (10) are the budget constraints for colleges A and B, respectively. Note that all needy
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students above xrA get admission offers from both colleges, and enroll in their preferred

college if offered scholarships from them, but enroll in the less preferred college if offered

scholarships from that college only. All needy students with ability above xrB but below xrA

get admission offers only from college B and enroll there if also offered scholarships.

The condition (7) determines xrA uniquely, then condition (8) determines xrB uniquely.

With xrA and xrB determined as such, conditions (9) and (10) constitute a simultaneous

equation system that determines brA and brB uniquely. The findings in the fully need-blind

regime are summarized in the next lemma.

Lemma 4 In the unique equilibrium under the fully need-blind regime where MA > MB,

(a) the colleges set admission cutoffs xrA and xrB characterized by (7) and (8) and offer a full

scholarship to each needy student with probabilities brA and brB characterized by (9) and

(10), where xrA > xrB and brA > brB;

(b) the average need level of all needy students who enroll in either college is ñr = ñ;

(c) the measure of all needy students enrolling in either college is MA+MB
ñ ;

(d) in the limit case when MA = MB, the equilibrium is symmetric, i.e., xrA = xrB that solves

(7) and brA = brB that solves (9).

(II) Need-blind admission with need-dependent aid regime: We now consider

the other case in which each college c may make scholarship offers based on the student’s

financial need (although it chooses a single admission cutoff xc that applies to all). We use the

superscript d to denote variables under this regime, as scholarship offers are need-dependent.

Once again, we describe and analyze the general case of asymmetric budgets with MA >

MB below, which includes the symmetric equilibrium of the symmetric budget case in the

limit. Let {(xdc , βdc )}c=A,B be an equilibrium in this regime where βdc (·) is an aid rule that

specifies the probability of offering full scholarship contingently on the need level y > 0.

As before, each college c selects (xdc , β
d
c ) optimally in the knowledge that it can attract any

student except for those who prefer the rival college and will secure a place there according

to the equilibrium strategy. With G̃c denoting the distribution of such students,9 therefore,

(xdc , β
d
c ) is the solution to the solo problem with G̃c replacing G under the restrictions of the

current regime.

As will be verified later, the college with a larger budget sets a higher admission cutoff

here as well, that is, xdA ≥ xdB. Thus, all non-needy students in SA above the cutoff xdA

enroll in college A, and all other non-needy students above the cutoff xdB enroll in college B.

All needy students above the cutoff xdA get admission offers from both colleges. College A

9Formally, G̃c is defined by a density function g̃c(v, y) = (2 − βd
c′(v, y))g(v, y) if v ≥ xdc′ where c′ is the

rival college of c and βd
c′(v, y) = 1 for y ≤ 0, and g̃c(v, y) = 2g(v, y) if v < xdc′ .
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can recruit them by offering scholarships unless they prefer college B and get a scholarship

from B which happens with probability βdB(y) where y is their need level. Since βdB(y) is

independent of the student’s ability, the ability distribution of students that college A can

recruit by offering scholarships is the same as the initial distribution conditional on xi > xdA,

irrespectively of the need level y. Therefore, college A must allocate scholarships most cost-

effectively, i.e., to the least needy students (above the cutoff xdA) until its budget MA is

depleted, say up to a threshold need level denoted by ndA > 0.

Given this, if college B offers scholarships to students who meet its admission cutoff xdB,

they will accept and enroll unless they prefer college A and secure a place there, i.e., unless

their ability is above the higher cutoff xdA and need level below the threshold ndA. Thus,

as before, the ability distribution of needy students that college B can recruit is the same

for every need level below ndA, although it is worse than the initial distribution conditional

on xi > xdB. Hence, college B must allocate scholarships most cost-effectively among needy

students with need levels up to ndA.

However, if college B offered scholarships to students with need levels marginally above

ndA (who don’t get scholarship from college A), they all would enroll and thus their average

ability would be higher. Hence, college B might find it optimal to offer scholarships up to a

certain need level strictly below ndA, then jump discontinuously and offer to those marginally

above ndA. We show that this is not the case in equilibrium so long as the financial needs

are not too concentrated in the sense of Assumption 2,10 because then the jump is too large

to be beneficial (as shown in Appendix). Consequently, college B also allocates scholarships

most cost-effectively until its budget MB is depleted, say up to a threshold ndB.

In equilibrium, therefore, each college c ∈ {A,B} sets an admission cutoff xdc and offer

full scholarships to all needy students above their cutoff up to a threshold need level denoted

by ndc > 0, where xdc and ndc solve∫
xdc≤v≤1

y≤nd
c

1 dG̃c =
1

2
and

∫
xdc≤v≤1

0<y≤nd
c

y dG̃c = Mc, (11)

i.e., the binding capacity constraint and budget constraint, respectively. We represent an

equilibrium in this regime by {(xdc , ndc)}c=A,B, i.e., in terms of the upper threshold need level

ndc for scholarship offers (in lieu of aid rule βdc ).

To verify which college sets a higher admission cutoff, recall that the college with a

higher cutoff takes in less non-needy students, hence should recruit a larger measure of

needy students. This requires a higher threshold need level for scholarship offers and thus, a

larger scholarship spend by the college. Therefore, the college with a larger budget, A, sets

a higher ability cutoff as asserted earlier, and also a higher threshold need level.

10This is the only place where the second part of Assumption 2 is used.
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Figure 3: An equilibrium under the need-blind admission policy with need-
dependent aid regime: (a) All students enrolling in college A are populated in the gray-solid area

(needy students) and the blue-dashed area (non-needy students). A symmetric description applies to col-

lege B and all students enrolling in college B are populated in the gray-dashed area. (b) The gray-solid area

depicts all needy students enrolling in A; the blue-dashed area depicts all non-needy students enrolling in A;

and all students enrolling in B are populated in the gray-dashed area.

The equilibrium is illustrated in Figure 3(b) for the case that MA > MB, where xdA > xdB

and ndA > ndB as deduced above. The differences in equilibrium cutoffs and threshold levels

arise because a larger budget bestows an advantage on college A in that it can impose a

higher admission standard and support students with higher needs. Unsurprisingly, this

advantage weakens as the difference in budget gets smaller:

xdA (xdB) increases (decreases) as MA increases while keeping MA +MB constant. (12)

Note also that as xdB decreases, the total enrollment of non-needy students increases, hence

that of needy students decreases. In the limit when the colleges have identical budgets, the

equilibrium is symmetric, i.e., (xdA, n
d
A) = (xdB, n

d
B), as illustrated in Figure 3(a). The next

lemma summarizes the findings in the need-blind admission with need-dependent aid regime,

including the uniqueness of equilibrium (proved in Appendix).

Lemma 5 In the unique equilibrium under the need-blind admission with need-dependent

aid regime where MA > MB,

(a) each college c ∈ {A,B} sets ability cutoff at xdc and offers full scholarships to students

with need levels yi ∈ (0, ndc ], where xdA, x
d
B, n

d
A and ndB jointly solve the four equations in (11)

for c = A,B, and satisfy xdA > xdB, ndA > ndB, and (12);

(b) the average need level of all needy students who enroll in either college is

ñd =

∫ 1
xdA

∫ nd
A

0 y dGY dGV +
∫ xdA
xdB

∫ nd
B

0 y dGY dGV∫ 1
xdA

∫ nd
A

0 1 dGY dGV +
∫ xdA
xdB

∫ nd
B

0 1 dGY dGV

< ñ = ñr;
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(c) the measure of all needy students enrolling in either college is MA+MB

ñd ;

(d) in the limit case when MA = MB, the equilibrium is symmetric, i.e., (xdA, n
d
A) = (xdB, n

d
B)

that solves (11) when G̃c is replaced by G.

3.3 Does need-blind admission benefit needy students?

We come to the question that initially motivated our analysis: Does need-blindness help needy

students in college admissions? Based on the findings in Sections 3.1–3.2, we compare the

equilibrium outcomes under three regimes, namely, need-aware regime (NA), fully need-blind

regime (NBr), need-blind admission with need-dependent aid regime (NBd). The result is

clear as below regarding the total enrollment of needy students.

Proposition 1 In equilibrium the total enrollment of needy students is highest in NBd,

then in NA, and lowest in NBr.

In the fully need-blind regime, the colleges have to allocate scholarships completely ran-

domly among all needy students above the admission cutoff. In the other two regimes, they

may use discretion in allocating scholarships for a more efficient use of budget to the extent

allowed in each regime, resulting in a larger total enrollment of needy students than in NBr

(which is evident from parts (b) and (c) of Lemmas 3–5).

The comparison is more complex between the regimes NA and NBd, and we explain it

for the case of symmetric budgets (where the equilibrium is also symmetric). In NBd regime,

as illustrated in Figure 2(a), each college sets an admission cutoff xd (=xdA =xdB) and fully

supports all needy students up to a threshold need level nd (= ndA = ndB) as a result of

maximizing xd subject to filling the capacity by supporting needy students above the cutoff

most efficiently for the given budget. In NA regime, each college sets cutoff levels that start

from xa(0) for non-needy students and increase linearly in the student’s need level y > 0

as illustrated in Figure 1(a). If the starting cutoff level xa(0) was equal to (or higher than)

xd, the colleges would take in the same (or smaller) set of non-needy students in NA than

in NBd, thus they should take in a larger measure of needy students in NA than in NBd

to fill the capacity. However, this is impossible given the fixed total budget because, as the

cutoff level increases with need level in NA, the colleges admit students of higher need levels

in place of students of lower need levels compared with what they do in NBd. This leads

us to conclude that xa(0) < xd must hold, implying a smaller total enrollment of non-needy

students in NBd than in NA, hence a larger total enrollment of needy students in NBd. This

result extends to the case of asymmetric budgets as well (as shown in Appendix).

Therefore, need-blind admission policies are effective in promoting the enrollment of

needy students only when financial aid schemes are not need-blind. Need-blind aid schemes
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force the limited budget be allocated evenly across all levels of financial need, keeping the

average amount of support for a needy student large at the ex-ante average need level, ñ.

To meet the capacity given such a heavy burden on the college’s budget, the colleges have to

admit more non-needy students by lowering the admission standard. Due to need-blindness,

however, the lower standard also applies to needy students and a larger number of needy

students get admission offers. The colleges then have to ration scholarships more severely to

these students to meet the budget constraint, which exacerbates admit/deny incidents.

Such random rationing of financial support also creates Pareto inefficient matches be-

tween students and colleges: students above the ability cutoff levels of both colleges may

end up receiving aid offers only from their less preferred college and enrolling there. Since

the distributions of characteristics (vi, yi) of such students are identical between the two col-

leges, swapping the colleges for these students would increase the welfare of students without

affecting either college’s utility or constraints. When the colleges have asymmetric budgets,

such misaligned matches may also arise in the other regimes: some students in SA end up

enrolling in college B and vice versa in the need-aware regime and the need-blind admission

with need-dependent aid regime. However, unlike the fully need-blind regime, no swap is

possible among those qualified at the respective colleges: those in SA enrolling in college B

are of lower abilities than those in SB enrolling in A as illustrated in Figures 1(b) and 3(b).

Therefore, no eligible Pareto improvement can be made in these regimes.

Given that admit/deny incidents are unavoidable under need-blind admission policies as

discussed above, we may also compare the “distributions” of admit/deny incidents. These

incidents are spread out evenly among all needy students if the financial aid scheme is also

need-blind, while concentrated on the students with large financial needs (i.e., those with

needs above the threshold nd) when the aid scheme is need-dependent, and the distribution of

needy students accommodated in the need-aware regime in between. Therefore, more diverse

accommodation across different need levels comes at the cost of reduced total enrollment of

all needy students (cf. Proposition 1). Certainly, fairer and more diverse representation is

desirable. However, it is unclear how to measure and compare the desirability of different

degrees of diversification (which may also depend on the initial distribution GY in our con-

text). Therefore, we abstract from it in the current paper and focus on the level of total

enrollment of all needy students achievable in different regimes.

Summarizing, the fully need-blind regime performs poorly in all respects, except that it

gives some highly needy students more chance to enroll, and it is also clear that the average

ability of incoming students is lowest in the fully need-blind regime. This could explain why

we hardly find this regime in practice, even if it is a system that ideally complies with the

non-discrimination principle all the way in the admission process. In contrast, the need-blind
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admission with need-dependent aid regime is most effective in promoting the enrollment of

needy students among the considered environments. In the next section, we focus on this

regime and extend the analysis by introducing availability of external fund.

4 Need-blind Admission with External Fund

In the previous section, we analyzed equilibria under different regimes when a needy student

can enroll in a college only if he receives a full scholarship offer. In practice, however, financial

packages take more complicated forms and primarily combine (i) scholarship (or grant)

funded by the college’s budget and (ii) federal student loan. A student may enroll in a college

as long as the combined amount of (i) and (ii) covers his financial need. Scholarships impose

a financial burden on the college, but student loans fall on students’ shoulders to repay. We

refer to such student loans as external funding to distinguish them from scholarships paid

out of the college’s budget. In this section, we examine the need-blind admission with need-

dependent scholarship regime when such external funding is available. We first introduce a

function that formalizes the availability of external funding.

• Availability of external funding: A function f : (0, y]→ [0, 1] specifies the proba-

bility f(z) of obtaining an amount z of external funding when sought.

Here, z is the amount of external funding sought, not the student’s financial need. The

availability function f is common to all needy students subject to the constraint that a

student cannot take out a loan in excess of his financial need yi minus any scholarship

offered.11

Although no restriction is imposed on f a priori, in practice f may take a specific func-

tional form. Broadly speaking, the current federal student loan program adopts f in the

form of a step function with a single threshold: there exists a threshold z̄ ∈ [0, y] such that

f(z) = 1 for each z ≤ z̄ and f(z) = 0 for each z > z̄. That is, federal students loans are guar-

anteed up to a fixed credit line for each applicant, but no higher amount than this threshold

is possible.12 We start by analyzing the admission problem with such a step function f .

11This constraint is based on a general rule in the packaging of need-based financial aid: the total financial
aid, including scholarship and student loans, must not exceed a student’s financial need (Chapter 7 “Packaging
Aid” of the 2020-2021 Federal Student Aid Handbook, available at https://fsapartners.ed.gov/knowledge-
center/library).

12The U.S. Office of the DoED explicitly indicates that “the maximum amount you can borrow each year
in Direct Subsidized Loans and Direct Unsubsidized Loans ranges from $5,500 to $12,500 per year, depending
on what year you are in school and your dependency status” (studentaid.gov/understand-aid/types/loans).
No other apparent criteria is indicated for approval in the guideline.
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Figure 4: An equilibrium under the need-blind admission policy with partial
scholarship in the asymmetric budget cases: The light-solid area depicts needy students

enrolling in A receiving no scholarship; the dark-solid area depicts needy students enrolling in A receiving

partial scholarship in the amount of (yi − z∗) from A; the blue-dashed area depicts non-needy students

enrolling in college A. The gray-dashed area depicts those enrolling in B with analogous scholarships from B.

4.1 Partial scholarship scheme

With student loans available, colleges use their limited budget more sparingly to recruit more

qualified, needy students: they may offer partial scholarships to admitted students, inducing

them to take out loans for the remaining amounts. Specifically, we consider the need-blind

admission with need-dependent aid regime when external funding is available according to

a single-step function f . Taking this function as given, the colleges choose their admission

cutoffs and scholarship allocations and the applicants seek loans when needed and decide

where to enroll. We assume MA > MB in what follows, setting aside the symmetric budget

case as a limit.

Given a step function f with a threshold z̄, any student with need yi > 0 is assured

of external funding up to the amount min{yi, z̄}. Therefore, each college minimizes its

scholarship spending on a needy admitted student by offering no scholarship if his financial

need, yi, is less than z̄ and a partial scholarship in the amount of (yi− z̄) if it exceeds z̄. The

colleges then may allocate the saved scholarship budget to students whose needs are higher,

so as to increase the admission cutoff within the constraints.

That is, due to the external funding available up to a threshold amount z̄, the colleges

behave as if every student’s financial need is reduced by z̄. Therefore, the equilibrium with

the step function f is equivalent to the equilibrium obtained earlier in Section 3.2 (B) for

the need-blind admission with need-dependent financial aid regime where every student i’s

financial status is redefined as y′i = yi − z̄.13

13As before, if the budget of each college Mc is enough to support all needy students above the ideal cutoff
v∗ in this manner, the ideal outcome prevails where all students with ability above v∗ in Sc enroll in college c.
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Let {(x∗c , n∗c)}c=A,B denote an equilibrium with this federal loan program. By the result

of the Section 3.2 (B), x∗A > x∗B and n∗A > n∗B where n∗B > z̄ because the colleges can admit

students without scholarship offer up to the need level yi = z̄, as illustrated in Figure 4.

More non-needy students enroll in college B than A because the admission cutoff level is

lower for B. In terms of needy students, those in Sc with (vi, yi) ∈ (x∗A, 1) × (0, n∗B) enroll

in each college c; those in SA ∪ SB with (vi, yi) ∈ (x∗A, 1)× (n∗B, n
∗
A), denoted by S̃A, enroll

in college A and those in SA ∪ SB with (vi, yi) ∈ (x∗B, x
∗
A) × (0, n∗B), denoted by S̃B, enroll

in college B.

Note that the students in S̃A are not only of a larger measure but receive a larger federal

loan on average than those in S̃B. Therefore, a larger fraction of the total federal loan budget

is used to help college A—the better-endowed college—recruit needy students. This means

that the current federal student loan program exacerbates the disadvantage of the less well-

endowed college as college B is in effect receiving a smaller amount of federal “subsidy” in the

form of student loans. When the colleges have an identical budget so that the disadvantage

is irrelevant, however, a federal loan program with a single threshold turns out to be optimal

in maximizing the total enrollment of needy students as discussed below.

4.2 Optimal availability of external funding

The availability of student loans is an important policy variable of the DoED and other

relevant public sectors in higher education. Each year, a fixed fiscal budget is assigned to

student loan programs so that students are offered low interest rates and various repayment

plans. For the fiscal year 2021, for instance, $94 billion has been requested by the DoED for

student loan programs. In addition to the total budget, the manner in which student loans

are made available is an important policy instrument.

In this section, we discuss how to design availability of student loans when the DoED,

given a fixed budget F , aims to maximize the total enrollment of needy students in selective

colleges. Recall that we represent availability of student loans by a function f : (0, y]→ [0, 1]

where f(z) is the probability of securing a student loan in the amount of z. If the budget

F is large enough, it is easy to see that a step function f exists that implements the ideal

outcome in which precisely those students with abilities above v∗ enroll in one of the two

colleges, which clearly maximizes the total enrollment of needy students. For this outcome,

the grand total of scholarship and student loan budgets, MA +MB +F , should be sufficient

to meet the financial needs of all students in S with ability above v∗, or equivalently,

(1−GY (0))(1−GV (v∗))ñ ≤ MA +MB + F

2
.

Below we consider the cases where the colleges’ budgets are not large enough for this ideal outcome to prevail.
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We assume below that this is not the case, so that the ideal outcome cannot be induced

in equilibrium. We first identify an upper bound of possible enrollment of needy students in

this case. Recall from (12) that, in the current regime without external funding, the total

equilibrium enrollment of needy students is largest when the two colleges have the same

budget (i.e., when MA = MB) conditional on the combined scholarship budget, MA +MB,

being a constant. Moreover, if the two colleges coordinate to maximize the enrollment of

needy students over SA ∪ SB with their combined budget, each of them adopts the solo-

optimal policy as if each had one half of the combined budget.

Consequently, in a hypothetical situation where the two colleges have at their disposal

the grand total of financial budgets across the two colleges and the DoED, MA + MB + F

(i.e., without being constrained by a loan availability function f), the maximal possible

enrollment of needy students is achieved when the two colleges set the solo-optimal policy

for a scholarship budget of MA+MB+F
2 each: that is, they set the same need-blind cutoff level

x∗ and fund all needy students above x∗ with needs below a threshold n∗ such that they fill

their capacity and exhaust the entire budget, or equivalently, x∗ and n∗ solve (11) when Mc

and G̃c are replaced by MA+MB+F
2 and G, respectively: that is,

GY (n∗)(1−GV (x∗)) =
1

2
and (1−GV (x∗))

∫ n∗

0
y dGY =

MA +MB + F

2
. (13)

The enrollment of needy students in this outcome provides an upper bound of those achiev-

able when the DoED budget F is available through any availability function f .

We now verify that, if the colleges have symmetric budgets (MA = MB), this outcome can

be induced as the unique equilibrium under the need-blind admission with need-dependent

aid regime if a federal loan program of a total budget F is available according to a carefully-

chosen step function f . With x∗ and n∗ identified as above, we find z̄∗ (< n∗) that satisfies

(1−GV (x∗))

∫ n∗

z̄∗
(y − z̄∗ )dGY = MA = MB (14)

and let f be a step function with a threshold z̄∗. Then, by the analysis in Section 4.1 and

Lemma 5(d), both colleges set their admission cutoffs at x∗ and offer scholarships in the

amount of (yi − z̄∗) to all admitted students with yi ∈ [z̄∗, n∗]. Thus, all needy students

above the cutoff whose needs are lower than n∗ enroll, funded either by a combination of

college scholarship and federal loan if their needs exceed the threshold z̄∗ or solely by a

federal loan otherwise. Therefore, among all f ’s, the maximum enrollment of needy students

is obtained by using the step function f with a threshold z̄∗.

As such, when the colleges have symmetric budgets, the current federal loan program

imposing a maximum credit limit for each applicant works well for the DoED. However,
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this observation does not extend to the case of asymmetric budgets because then a single-

threshold loan program exacerbates the disadvantage of the less well-endowed college as

explained earlier. Yet, the total equilibrium enrollment of needy students should be close to

the upper bound identified above so long as the scholarship budget disparity is small.

As the scholarship budget disparity (i.e., MA−MB) gets larger, not only the enrollment

of needy students falls further from the upper bound, but also the disadvantage of the less

well-endowed college gets exacerbated more severely. What kind of alternative loan programs

may help enhance the enrollment of needy students?

Recall from (12) that, absent any external funding, the total enrollment of needy students

is maximized when the two colleges have balanced scholarship budgets. This is because, since

the degree of “favoring” non-needy students is determined by the lower admission cutoff, the

total enrollment of needy students is bound by how far the college with a smaller budget can

reach out to needy students. When federal loans are available, the extent to which a college

can reach out is augmented by the total amount of loans taken out by the students enrolling

in that college. Therefore, federal loan schemes may be more effective in promoting the

enrollment of needy students if they are designed in such a way that the less well-endowed

college gets a larger share of the total loan, abating the endowment gap between the colleges.

If the DoED is free to allocate the total loan budget F in any manner between the

two colleges (so that they can use the allocated fund as if it is their own budget), it will

split F to minimize the endowment gap: the entire budget F will be given to B if F is

less than the initial gap, (MA −MB); otherwise, it will be allocated so as to equalize the

financial aid budgets between the two colleges at MA+MB+F
2 each. The same result can also

be obtained by introducing college-specific single-step availability functions, fA and fB, with

suitably chosen threshold levels. Albeit simple, these schemes may be deemed draconian and

discriminatory across colleges.

Matching financial aid offers

We discuss another, non-discriminatory federal loan scheme that may reduce the budget

gap between the colleges. Drawing on the practice that some colleges “match” financial aid

packages offered to their prospective students by competing colleges,14 below we consider

a special federal loan budget reserved for such matching financial aid offers, to be run in

conjunction with a standard loan program with a single-step availability function.

Recall that under single-threshold loan programs, the less well-endowed college, B, ends

up recruiting more of less needy students who take out smaller amounts of loans, receiving

a smaller fraction of the federal loan budget. On the flip side, helped by a larger fraction of

14For example, Cornell University announced in 2010 to match the need-based financial aid for admitted stu-
dents if they are also accepted to other competing schools (https://news.cornell.edu/stories/2010/12/cornell-
matches-financial-aid-offered-peer-schools).
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it, the other college gets to recruit the students of higher ability with higher levels of need

regardless of their tastes over colleges (cf. Figure 4). The idea behind a special loan program

is to alleviate this imbalance by helping college B tap into the subset of these students who

prefer college B through matching federal loans.

Formally, a limited budget of Fm (≤F ) is set aside for a matching loan program, which

students may apply for if they are admitted to both colleges but with a full financial package

from only one (presumably, their less preferred) college, while the standard loan program

with a single threshold is run with the remaining budget (F−Fm) as explained in Section 4.1.

A matching loan, if approved, tops up the insufficient scholarship offer made by one of the

colleges to fully meet the applicant’s financial need. A condition for approval is that the

amount of the initial (insufficient) scholarship be no lower than any other scholarship offered

by the same college (which we assume is verifiable). This condition is needed to prevent

abusive use of the matching loan program, as explained below. If the total amount of

applications exceeds Fm, matching loans are allocated randomly.

Consider the case that F ≥ MA −MB.15 Recall the ability cutoff x∗ and the threshold

need level n∗ of the solo-optimal policy when each college has MA+MB+F
2 as its budget,

determined by (13), which gives the maximal possible enrollment of needy students subject

to MA +MB +F being the grand total of budgets. We show that this outcome is achievable

with a matching loan program of a specific budget Fm, together with a standard loan program

of a suitably chosen threshold z∗.

In equilibrium (cf. Figure 5), the two colleges set their admission cutoff levels identically

at x∗A = x∗B = x∗, and college A offers financial aid in the same way as before up to the

threshold need level n∗A = n∗, i.e., fully in federal loans for students with yi ≤ z∗ and by

combining a scholarship of (yi − z∗) and a maximal federal loan of z∗ for students with

yi ∈ (z∗, n∗]. College B also offers full financial packages analogously but only up to a lower

need level n∗B ∈ (z∗, n∗], and makes insufficient aid offers to students with yi ∈ (n∗B, n
∗]

composed of z∗ amount of loan and (n∗B − z∗) amount of scholarship. The students in SB

with insufficient aid offers from college B apply for matching loans successfully, taking out

(yi − n∗B) amount of additional loan. Consequently, all students with vi ≥ x∗ and yi ≤ n∗

enroll in their preferred college.

Note that x∗ and n∗ are chosen to satisfy the aggregate capacity and budget constraints,

hence each college’s capacity constraint is also satisfied given symmetry. Additionally, each

college’s budget constraint needs to be satisfied in equilibrium:

15We defer the case of F < MA −MB to Appendix A2, where the DoED allocates the entire budget to
a matching loan program (Fm = F ), inducing college B to receive all of it through matching loans to the
students enrolling there. This minimizes the budgetary gap between the two colleges.
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Figure 5: Matching financial aid offers when F > MA −MB: The dark-gray area depicts

needy students who enroll in B with matching aid offers; the light-gray area depicts needy students enrolling

in college B with partial scholarship in the amount of max(yi − z∗, 0) from B; the blue-dashed area depicts

non-needy students enrolling in B; those enrolling in A are populated in the gray-dashed area.

∫
x∗≤v≤1
z∗≤y≤n∗

(y − z∗) dG = MA and

∫
x∗≤v≤1
z∗≤y≤n∗

(min{y, n∗B} − z∗) dG = MB.

The equilibrium value of z∗ is determined by the first equation, then n∗B is determined by

the second. Finally, the matching loan budget is determined as Fm =
∫
x∗≤v≤1
n∗B<y<n

∗
(y−n∗B) dG.

Now we verify that the strategies of the two colleges described above are mutual best

responses. Note that, no matter how B may deviate, all students in SA with yi < n∗ enroll in

college A, each with a federal loan in the amount of min{yi, z∗}. Hence, college B’s share of

the total federal loan in the presumed equilibrium is the maximal it can get by any deviation.

Since x∗ and n∗ constitute the solo-optimal policy when college B has the sum of this share

of federal loan and MB as its own budget, there is no beneficial deviation for B.

Turning to college A, for beneficial deviation it has to set a higher admission cutoff, say

x′ > x∗, and fill its capacity by recruiting students with yi > n∗ or those in SB with yi < n∗.

It cannot recruit students in SB with yi < n∗ because either they secure a place in college B

with initial admission offers (if yi < n∗B) or they would get matching loans (if yi ∈ (n∗B, n
∗]).

Hence, it should recruit students with higher needs yi > n∗ by offering a scholarship of

(yi − z∗) (because they cannot use the matching loan program). This is more costly than

recruiting any student in the presumed equilibrium, hence it must save its own scholarship

budget in recruiting some students with lower need levels yi < n∗. The only potential way

to do so is offering insufficient scholarships to students with yi ∈ (z∗, n∗B] so that they apply

for matching loans, but for this it must not offer scholarships of any higher amount to any
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student with yi > n∗B, either.16 As this implies that college A would be unable to recruit

students with yi > n∗ (defeating its purpose), there is no beneficial deviation for A, either.

This verifies that the two colleges’ strategies constitute an equilibrium.

5 Concluding Remarks

Need-blind admission policy prevails in the US college admissions and many expect it to

enhance economic diversity of campus demographics. It is true under this policy that colleges

do not screen applicants by “ability to pay” in their admission decisions, but we have seen

that they can still use financial aid packaging in the selection process. In this paper, we

thereby analyze admission policies in combination of feasible financial aid systems and find

that for the need-blind admission policy to increase the enrollment of needy students, the

accompanying financial aid offers need be made contingently on the student’s need level. This

equilibrium characterization extends with suitable modifications to the cases with external

funding, such as the federal student loan programs. An interesting policy implication here

is that, the current federal student loan programs may exacerbate the disadvantage of less

well-endowed colleges, reducing the total enrollment of needy students.

We have analyzed the strategic interactions of the colleges assuming that they take the

admission regime as given rather than as a part of their choices. We believe that their deci-

sions on which regime to adopt are made at a different level than their normal operational

decisions such as admission and financial aid offers, for instance, to promote their social re-

sponsibility or to conform to changing social norms. Insofar as need-blind admission policies

have been adopted to promote diversity in college education, our analysis provides a theo-

retical investigation on whether and how such a change in landscape may indeed generate

the intended outcome.

Lastly, to get a sense of how need-aware/blind policy has changed the student body in

practice, we take a quick look at a few colleges that made a shift from one admission policy

to the other in recent years. Those colleges include Wesleyan University and Macalester

College, which switched from need-blind system to need-aware system in 2012 and 2006,

respectively, and Vassar College switched the other way in 2007. A large number of colleges,

such as Amherst College and Williams College, have kept their need-blind policy for the

years covered, while Colby College has been adopting the need-aware policy.

A widely used proxy for economic diversity at the moment is the share of federal Pell

Grant recipients in the undergraduate program.17 In Table 1, we calculate this measure

16This is where the condition is needed that for a matching loan to be approved, the initial (insufficient)
scholarship amount needs to be largest among all scholarships offered by the relevant college.

17Typically, students qualify for the Pell Grant when they are from households with annual income below
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Table 1: Share of Pell Grant recipients

Non-profit
4-year
Private

Wesleyan
University

(NB→NA)

Macalester
College

(NB→NA)

Vassar
College

(NA→ NB)

Colby
College
(NA)

Amherst
College
(NB)

Williams
College
(NB)

2003-2004 27.9% 13.7% 13.1% 11.4% 8.5% 15.3% 10.6%

2007-2008 26.8% 12.1% 14.4% 10.4% 7.6% 17.9% 14.6%

2011-2012 35.8% 18.9% 15.4% 24.3% 10.6% 21.7% 20.2%

2015-2016 36.4% 18.8% 15.6% 24.1% 10.6% 25.2% 20.0%

Source: NCES 2019-487 (the second column), the Common Data Set of each college and the IPEDS (undergraduate enrollment)

and the Pell Grant distribution data by institution (the number of Pell Grant recipients of each college)

available at https://www2.ed.gov/finaid/prof/resources/data/pell-institution.html

every four years for the aforementioned selective colleges. The table also presents the overall

share of recipients in the non-profit 4-year private college group, which subsumes these five

colleges.18

As can be seen, non-profit 4-year private colleges exhibit an overall increase of 8.5%

during 2003-2016. For Wesleyan, Macalester and Colby, the measure increases rather slowly,

falling behind the overall trend. In contrast, Vassar had a sharp increase of 12.7%, while the

rest of the need-blind institutions, Amherst and Williams, made an increase comparable to

the overall trend, 9.9% and 9.4%, respectively. This observation is broadly consistent with

our finding that the enrollment of needy students is higher when need-blind admissions are

combined with appropriate aid schemes, than in the need-aware regime. Obviously, more

careful empirical investigation should follow to test our theoretical findings, which we leave

open for future research.

$50,000 US. The Pell Grant is not institutional, so it is a sort of monetary subsidy to these applicants. All of
our arguments carry over by modifying a student i’s need to be yi net of any federal grant of this kind.

18The share of Pell Grant recipients is not a perfect measure to represent characteristics of the needy
student group, but rich data sets are available on this measure, and the DoED, policymakers, and the media
regard it as a proxy of enrollment of low-income students. For instance, the DoED publishes a series of annual
reports on the distribution of Pell Grant funds by institutions since 1999; the US news also publishes rankings
of colleges in regards to “economic diversity” by using this measure.

30



Appendix

Appendix A1. Deferred proofs

Proof of Lemma 1.

We prove the lemma for the need-aware regime here. The proof can be adapted to other

regimes straightforwardly. Since an admission offer to a needy student is useless without

a full scholarship, we represent each college’s strategy by an admission rule and take it for

granted that a full scholarship is also offered to every needy student who gets an admission

offer.

Consider an equilibrium in which the strategy of one of the colleges, say college A, is α.

Let Q = α−1(1) = {(v, y) ∈ V ×Y |α(v, y) = 1} be the set of student characteristics to which

college A extends admissions to. Consider the following process: Divide Y into k subintervals

of equal length as [y, y +
(ȳ−y)

k ], (y +
(ȳ−y)

k , y +
2(ȳ−y)

k ], · · · , (y +
(k−1)(ȳ−y)

k , y +
k(ȳ−y)

k ]. For

each subinterval Jkj = (y +
j(ȳ−y)

k , y +
(j+1)(ȳ−y)

k ], let

vkj = sup{v ∈ V |G(Q ∩ (V × Jkj )) = G(Q ∩ ([v, 1]× Jkj ))}

where G(Z) is the G-measure of Z ⊂ V × Y ; and define xk(y) = vkj for all y ∈ Jkj . Then,

using the sequence k = 2, 22, · · · , define

x(y) = lim
n→∞

x2n(y), ∀y ∈ Y

which is well-defined (because x2n(y) is non-decreasing in n for each y) and straightforwardly

verified to be a measurable function. Let X = {(v, y) ∈ V × Y |v ≥ x(y)}.
By construction, G(X) ≥ G(Q). If G(X) = G(Q), the admission rule α and the cutoff

rule x are strategically equivalent (cf. footnote 6). Below we show G(X) = G(Q).

Suppose to the contrary that G(X) > G(Q). Then, there is a rectangle L = [v′, v′′] ×
[y′, y′′] ⊂ V ×Y , such that G(L∩X)−G(L∩Q) > 0. Note that it is impossible that for each

and every (v, y) in the interior of L there is ε > 0 such that G(([v, v + ε]× [y − ε, y]) ∩X) =

G(([v, v+ ε]× [y− ε, y])∩Q), because if so we would have G(L∩X) = G(L∩Q). Hence, by

taking an appropriate point in the interior of L as the vertex replacing (v′, y′′) if necessary,

we may assume that

(A1) G(([v′, v′ + ε]× [y′′ − ε, y′′])∩X)−G(([v′, v′ + ε]× [y′′ − ε, y′′])∩Q) > 0, ∀ε > 0.

Divide I = [v′, v′′] and J = [y′, y′′] into k ∈ N equidistant grids so that L is divided into

k2 identical rectangles called “cells”. Let Ik denote the lowest grid of I and Jk denote the

highest grid of J . As k →∞, G(Ik × J) +G(I × Jk)→ 0. For all large enough k, therefore,

there is a cell composed of neither the grid Ik nor Jk, denoted by `k, such that

(A2) G(`k ∩X)−G(`k ∩Q) = mk > 0 and `k ∩ (Ik × J) = `k ∩ (I × Jk) = ∅.

31



Fix a sufficiently large k for which (A2) holds. By (A1), we also have

(A1’) G(`∗ ∩X)−G(`∗ ∩Q) > 0 where `∗ = Ik × Jk = [v′, v′ + v′′−v′
k ]× [y′′ − y′′−y′

k , y′′].

If G(`∗ ∩ Q) = 0, there is an interval J ′ ⊂ Jk such that G(([0, v′] × J ′) ∩ Q) > 0 because

otherwise, G(`∗∩X) would have been 0 according to the construction of x(·) and X described

above. By redefining as `∗ = [0, v′]×J ′ in this case (with some abuse of notation), therefore,

there is a rectangle `∗ = I ′ × J ′ such that

(A3) G(`∗ ∩Q) > 0 where maxy{(v, y) ∈ `k} ≤ min J ′ and max I ′ ≤ minv{(v, y)∈ `k}.

Finally, we modify α in a way to increase the payoff of college A. Denoting `k = I ′′ ×
[y′k, y

′′
k ], modify α so that αε(v, y) = 1 for all (v, y) ∈ I ′′× [y′k, y

′
k + ε] for ε ≥ 0. As ε increases

from 0 to (y′′k −y′k), the measure of new students with characteristics in `k in S who enroll in

college A (relative to the initial equilibrium) continuously increases from 0 to some positive

number no lower than mk
2 .

On the other hand, denoting `∗ = I ′ × [y′∗, y
′′
∗ ], modify α so that αη(v, y) = 0 for all

(v, y) ∈ I ′ × [y′∗, y
′
∗ + η] for η ≥ 0. As η increases from 0 to (y′′∗ − y′∗), the measure of

students with characteristics in `∗ in S who cease to enroll in college A (relative to the

initial equilibrium) continuously increases from 0 to some positive number no lower than
1
2G(`∗ ∩Q).

Therefore, we can find ε > 0 and η > 0 such that the measure of students who enroll in

college A are the same after α has been modified in the two ways described above. Since

those who newly enroll are more able and less needy than those who cease to enroll by (A3), it

follows that the modified admission rule is feasible and increases the payoff of college A, i.e.,

it is a beneficial deviation, contradicting the presumed equilibrium. Therefore, we conclude

that G(X) = G(Q) and thus, the equilibrium strategy of college A is strategically equivalent

to the cutoff rule x described above. The same holds for college B analogously. �

Proof of Lemma 2.

It remains to prove that the solution to the optimization problem (1) exists. We say

that an admission rule x is feasible if it satisfies the two constraints of (1); and is effectively

increasing if it is weakly increasing in y on a subset Ỹ ⊂ Y with m(Ỹ ) = m(Y ), where

m is the Lebesgue measure. Any effectively increasing x can be transformed to a (weakly)

increasing rule by redefining x(y) = inf{x(y′)|y′ ∈ Ỹ ∩ (y, ȳ]} for all y 6∈ Ỹ . Clearly, the two

rules are strategically equivalent. Hence, below we identify any effectively increasing rule

with the increasing (and right-continuous) rule obtained as such. We start by showing that

(A4) if a feasible x is not increasing, there is another feasible rule that “dominates” x

in the sense that the average ability of enrolling students is strictly higher under the latter

rule than under x.
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If a feasible x is not increasing, then x(y′) > x(y′′) if y′ ∈ Y ′ and y′′ ∈ Y ′′ for some

ŷ ∈ (y, ȳ) and Y ′ ⊂ [y, ŷ) and Y ′′ ⊂ (ŷ, ȳ] with m(Y ′) > 0 and m(Y ′′) > 0. One can reduce

x(y) slightly for y ∈ Y ′ and raise x(y) for y ∈ Y ′′ slightly while keeping intact the G-measure

of {(y, v)|y ∈ Y ′ ∪ Y ′′, v ≥ x(y)}, so that the students who would enroll given the modified

x fills the capacity exactly. Since the newly enrolling students are more able and less needy

than those who cease to enroll, the modified x dominates the initial x, establishing (A4).

Let va denote the supremum of the value of the objective function in (1) among all

feasible increasing admission rules. Any feasible increasing admission rule that achieves va,

if exists, is a solution to (1). We show below that such a rule exists.

Consider a sequence of feasible increasing admission rules {xk}k such that the correspond-

ing sequence of values converges to va. For each ` = 2, 3, · · · , let Γ` = {y + j(ȳ − y)/` | j =

0, 1, · · · , `} be the grid points that divide Y into ` subintervals of identical lengths. Since V

is compact, for every ` = 2, 3, · · · , one can recursively construct a subsequence of {xk}k such

that xk(y) converges to, say xa(y), at every y ∈ ∪2≤`′≤`Γ`′ . For any y ∈ Γ` for some ` <∞,

the limit value xa(y) is well-defined. For every other y ∈ Y , one can construct an infinite

sequence {yl} that converges to y from above where each yl ∈ Γ` for some `. Since {xa(yl)}l
is a non-increasing sequence bounded below, it has a limit value which we denote by xa(y).

Note that xa : Y → V defined above is an increasing admission rule and there is a

subsequence of {xk}k that converges to xa in the following metric: the distance between two

admission rules x and x′ is
∫
Y |x(y) − x′(y)|dy. Since the value of the objective function in

(1) is continuous in this metric, xa achieves the supremum va and thus is a solution to (1). �

Proof of Lemma 3.

A large part of the proof concerns the existence and uniqueness of equilibrium, and the

properties (a)–(d) will be proved in the process. We start with some preliminaries. Consider

the solo problem (1) of college A where G is replaced by G̃A that comprises all students in

SA and those in SB who do not get admission offer from college B according to xaB in the

form of (5).19 The solo problem (1) of college B is defined symmetrically. We refer to this

problem as the solo problem with G̃c for c = A,B.

It was proved in the proof of Lemma 2 that a solution to the solo problem (1) exists. This

proof clearly extends to the case that the distribution G on (v, y) need not be independent

between v and y (because this condition is needed nowhere in the proof). Hence, a solution

exists to the solo problem with G̃c and this solution is in the form of (5) as verified in the

main text. In the need-aware regime where MA ≥ MB, by definition, a strategy profile

(xaA, x
a
B) is an equilibrium if each xac solves the solo problem with G̃c appropriately specified.

19G̃A is defined by the density function g̃A(v, y) = g(v, y) if v ≥ xaB(y) and g̃A(v, y) = 2g(v, y) if v < xaB(y).
g̃B(v, y) is defined symmetrically.
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Existence of equilibrium.

In light of the above, we define a strategy as (µ, λ) ∈ [0, 1]×<+ where µ is the cutoff level

for non-needy students and λ is the rate at which it increases in y. Let λ̄ > 0 be such that

college B exhausts its scholarship budget MB when it admits and fully supports every needy

students in SA ∪SB with v ≥ λ̄y. Since each college’s budget binds in every equilibrium, we

restrict strategies to (µ, λ) ∈ Σ := [0, 1]× [0, λ̄].

Given a strategy (µ, λ) ∈ Σ of the rival college, let BRc(µ, λ) ∈ Σ denote the optimal/best

response of college c ∈ {A,B} which is unique by Lemma 2. It is straightforward to see that

BRc(·) is continuous.20 Therefore, BR : Σ2 → Σ2 defined as BR((µA, λA), (µB, λB)) :=

(BRA(µB, λB), BRB(µA, λA)) is a continuous function on a convex and compact domain.

Consequently, Brouwer Fixed Point Theorem dictates that BR has a fixed point, which

constitutes an equilibrium by definition. This establishes existence of equilibrium.

Properties of equilibrium

First consider an asymmetric case that MA > MB and an equilibrium thereof, denoted

by (xaA, x
a
B). Each cutoff strategy xac (y) is in the form of (5).

It is not possible that xaA(y) ≥ xaB(y) for all y ∈ Y owing to binding capacity constraint,

unless xaA(y) = xaB(y) for all y ∈ Y ; nor is xaA(y) ≤ xaB(y) for all y ∈ Y by the same token.

Also impossible is xaA(y) = xaB(y) for all y ∈ Y , because it would imply that the scholarship

bill would be same for the two colleges, contradicting the binding budget constraint in

equilibrium.

Hence, xaA(·) and xaB(·) must cross at some need level ŷ ∈ (0, ȳ) where xaA(ŷ) = xaB(ŷ) < 1.

If xaA(0) < xaB(0), then college A would take in more non-needy students than college B,

hence less of needy students than college B (due to capacity constraint). Moreover, the

average scholarship amount offered for them is lower for college A because the admission

cutoff xaA crosses xaB from below at ŷ. But, this would imply a larger total scholarship bill

for college B than A, contradicting MA > MB. Hence, xaA(0) > xaB(0) must hold. Together

with the earlier observation that xaA(·) and xaB(·) cross at some ŷ ∈ (0, ȳ), this verifies (6)

and establishes part (a) of the Lemma 3. Parts (b) and (c) follow straightforwardly.

Next, consider an equilibrium of the symmetric case that MA = MB = M , again denoted

by (xaA, x
a
B). Unless the equilibrium is symmetric, xaA(·) and xaB(·) must cross at some

ŷ ∈ (0, ȳ) for binding capacity constraint for both colleges, but this would imply unequal

scholarship bills for the two colleges, contradicting binding budget constraints in equilibrium.

20As the rival college’s strategy (µn, λn) converges to (µ, λ), the underlying distribution Gn for the other
college c ∈ {A,B} in solving for its solo-optimal policy converges to the limit distribution, say G∞, in the
sense that Gn(X) − G∞(X) → 0 for any X ⊂ V × Y with a positive Lebesgue measure. Therefore, the
solo-optimal policy BRc(µ

n, λn) must also converge to that when the rival college adopts (µ, λ), BRc(µ, λ),
because otherwise either the capacity constraint or the budget constraint would fail for large enough n.
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Figure 6: Uniqueness of equilibrium when ỹ < y̆ < y̆′

Hence, the equilibrium must be symmetric, i.e., xaA = xaB = xa. Thus, xa must solve the

solo problem with G̃, but this solution only admits students with characteristics (v, y) in a

subset over which the two measures G and G̃ coincide. Therefore, xa must also solve the

solo problem when G̃ is replaced by G, i.e., the problem (1), which is unique in the form of

(4) by Lemma 2. This proves part (d) and the uniqueness of equilibrium when MA = MB.

Uniqueness of equilibrium when MA > MB

Let (xaA, x
a
B) be an equilibrium for the case that MA > MB as per (5), so that xaA crosses

xaB from above at ŷ ∈ (0, ȳ). Suppose there is another equilibrium, denoted by (x̃A, x̃B),

which should also conform to (5) and thus, x̃A crosses x̃B from above at some ỹ ∈ (0, ȳ).

We assume x̃B(0) ≥ xaB(0) without loss, and present the proof presuming the inequality is

strict because the logic extends straightforwardly to the case of equality. It proves useful to

denote x̃(y) := min{x̃A(y), x̃B(y)} and xa(y) := min{xaA(y), xaB(y)}.
It is impossible that x̃(y) ≥ xa(y) for all y, because that would imply the total enrollment

of students (two colleges combined) being strictly higher under (xaA, x
a
B) than under (x̃A, x̃B),

a contradiction. In addition, x̃(y) crossing xa(y) only once (from above) is impossible,

because if it did, given a higher total enrollment of needy students under (x̃A, x̃B) due to

x̃B(0) > xaB(0), the total scholarship bill would also be higher under (x̃A, x̃B), violating the

binding budget constraint in equilibrium. Therefore, x̃(y) must cross xa(y) at least twice,

first from above and second from below. Then, it is clear that x̃(y) crosses xa(y) first at

some y̆ ∈ (0, ŷ) from above, and second at some y̆′ ∈ (ŷ, ȳ).

First, suppose that ỹ < y̆ < y̆′, as illustrated in Figure 6. Given xaB(0) < x̃B(0),

xaA(0) > x̃A(0) should hold for ỹ < y̆ < y̆′. We figure out the enrollment change of needy

students in B under (xaA, x
a
B), relative to (x̃A, x̃B). College B newly takes in the students

in SB above xaB and below x̃B as well as the students in SA below xaA and above xaB excluding

those in SA below x̃A and above x̃B (the gray area in Figure 6(a)(b)). College B releases
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the students in SB above x̃B and below xaB (the black area in Figure 6(b)). Note that the

demonstrated need of the released students is larger than that of a student who are newly

taken in. The measure of needy students who are newly taken in should be larger than that of

the released as college B exhausts its budget in both equilibria. However, the college would

take in more non-needy students because xaB(0) < x̃B(0), violating B’s capacity constraint.

Next, suppose that y̆ < ỹ < y̆′, as illustrated in Figure 7. Then, x̃A(ỹ) = x̃B(ỹ) <

min{xaA(ỹ), xaB(ỹ)} and x̃A(y) > xaA(y) for y > y̆′. Thus, relative to (xaA, x
a
B), college A

releases the students with (v, y) in the area above the graph of xaA and below x̃A, denoted

by r1, and those in SB above xaA and x̃B but below xaB, denoted by r2; and newly takes in

the students in SA above x̃A and xaB but below xaA, denoted by t1, and the union of those

in SA above x̃A but below xaA and xaB and those in SB above x̃A and below xaA and x̃B,

denoted by t2. The scholarships released from r1 and r2 are used to newly support more

of needy students since they support students in t1 and t2 who have lower levels of needs.

If the measure of r2 is not larger than that of t1, the money released from r2 also support

more of needy students (as it can support students in t1), hence college A would take in

more needy students in (x̃A, x̃B). But this would violate capacity constraint because college

A would take in more non-needy students as well by x̃A(0) < xaA(0).

If the measure of r2 is larger than that of t1, on the other hand, it can be shown anal-

ogously that college B newly supports students with higher levels of need in (x̃A, x̃B) with

money released from students with lower levels of need, hence take in less of needy students

than in (xaA, x
a
B). But this would violate B’s capacity constraint because college B would

take in less non-needy students as well by x̃B(0) > xaB(0) and x̃A(0) < xaA(0).

Lastly, consider the remaining case that y̆′ < ỹ. First, suppose that x̃(y) crosses xa(y)

three times, as illustrated in Figure 8(a). Relative to (xaA, x
a
B), in (x̃A, x̃B) the two colleges

release students with (v, y) in the area above the graph of xaB and below x̃B, denoted by r1,

and those above xaA but below x̃A and x̃B, denoted by r2; and newly take in the students
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Figure 7: Uniqueness of equilibrium when y̆ < ỹ < y̆′
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Figure 8: Uniqueness of equilibrium when y̆′ < ỹ

above x̃B but below xaB and xaA, denoted by t1, and those above x̃A but below xaA, denoted

by t2.

If the measure of t2 is larger than that of r2, since the total enrollment of needy students

is larger under (x̃A, x̃B) by xaB(0) < x̃B(0), it would follow that the total scholarship bill is

strictly higher under (x̃A, x̃B), a contradiction. If the measure of t2 is no larger than that of

r2, on the other hand, it would follow that for college A the intakes of both needy students

and non-needy students are smaller under (x̃A, x̃B) than under (xaA, x
a
B), a contradiction to

the capacity constraint.

Next, if x̃(y) crosses xa(y) two times, as illustrated in Figure 8(b). In (x̃A, x̃B), relative

to (xaA, x
a
B), college A releases needy students in SA above xaA and below x̃A as well as

the students in SB above xaA and below xaB excluding those in SB above x̃A and below x̃B

(the gray area in Figure 8(b)). College A takes in less non-needy students by xaA(0) < x̃A(0),

violating its capacity constraint. This completes the proof of the uniqueness of equilibrium. �

Proof of Lemma 5.

Without presuming which college has a larger budget, let A be the college that sets a

higher admission cutoff, i.e, xdA ≥ xdB, in equilibrium. We showed in the main text that

this college offers scholarships to all needy students up to a threshold level which we denote

by nA ∈ (0, ȳ); then the other college, B, should offer scholarships most cost-effectively to

needy students so long as their need levels are below nA. (We drop the superscript from ndc

for notational ease.)

First, we show it impossible in equilibrium that college B offer scholarships up to a

certain need level strictly below the threshold level of college A, say nB < nA, then jumps

and offers to those marginally above nA. Suppose to the contrary that college B did so in

an equilibrium. Then, binding capacity constraints imply that

[GV (xdA)−GV (xdB)]GY (nB) < [1−GV (xdA)][GY (nA)−GY (nB)]. (15)
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We show that the following deviation of college B is beneficial: offer scholarships to those

with needs marginally above nB, instead of those marginally above nA. Let the amount

transferred as such is εnB. Then, no longer recruited is measure εnB
nA

of students with need

level nA, whose average ability is E(v|v > xdB). Recruited instead is measure ε of students

with need level nB. Of these students, a fraction
1−GV (xdB)

1+GV (xdA)−2GV (xdB)
is from SB and their

average ability is E(v|v > xdB), and the remaining fraction
GV (xdA)−GV (xdB)

1+GV (xdA)−2GV (xdB)
is from SA and

their average ability is E(v|xdB < v < xdA) > xdB. Since newly recruited measure of students

is larger by ε(1− nB
nA

), college B can raise xdB to fill the capacity exactly, and by doing so it

releases measure ε(1− nB
nA

) of students with ability marginally above xdB. Then, the expected

gain in enrolling student ability is first-order approximated by

ε
[1−GV (xdB)]E(v|v > xdB) + [GV (xdA)−GV (xdB)]E(v|xdB < v < xdA)

1 +GV (xdA)− 2GV (xdB)
− εnB

nA
E(v|v > xdB)− ε

(
1− nB

nA

)
xdB

≥ ε

1 +GV (xdA)− 2GV (xdB)

(
[1−GV (xdB)]E(v|v > xdB) + [GV (xdA)−GV (xdB)]xdB

−[1 +GV (xdA)− 2GV (xdB)]
nB

nA
E(v|v > xdB)− [1 +GV (xdA)− 2GV (xdB)]

(
1− nB

nA

)
xdB

)

=
ε

1 +GV (xdA)− 2GV (xdB)

(
[1−GV (xdB)]

(
1− nB

nA

)
− [GV (xdA)−GV (xdB)]

nB

nA

)[
E(v|v > xdB)− xdB

]
≥ ε

1 +GV (xdA)− 2GV (xdB)
[1−GV (xdB)]

(
1− nB

nA
− [GV (xdA)−GV (xdB)]

1−GV (xdA)

nB

nA

)[
E(v|v > xdB)− xdB

]
>

ε

1 +GV (xdA)− 2GV (xdB)
[1−GV (xdB)]

(
1− GY (nA)

GY (nB)

nB

nA

)[
E(v|v > xdB)− xdB

]
> 0

where the first inequality is due to E(v|xdB < v < xdA) > xdB, the second inequality is

by GV (xdA) ≥ GV (xdB), the third inequality is by (15), and the last inequality is because
GY (nA)
nA

< GY (nB)
nB

by Assumption 2. Therefore, the presumed equilibrium scholarship allo-

cation of college B is not optimal.

Therefore, the college that sets a lower admission cutoff also offers scholarships to all

needy students up to a threshold level denoted by nB. We showed in the main text that the

college with a larger budget sets both a higher admission cutoff and threshold need level.

Thus, assume MA > MB without loss and consider an equilibrium in which college c

sets (xdc , n
d
c) where xdA ≥ xdB and ndA ≥ ndB. Below we prove uniqueness of equilibrium and

property (12). Then, parts (a), (b) and (c) follow straightforwardly from the discussion in

the main text leading to Lemma 5. For part (d), observe that if xdA 6= xdB, say xdA > xdB, then

ndA > ndB must hold for both colleges to fill their capacity, but this would mean college B takes

in more non-needy students and less of needy students than college A, which is impossible

because the average scholarship amount is lower for college B given the same budget.

Uniqueness of equilibrium. We prove for the case that MA > MB; the proof is simpler if
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MA = MB and is omitted. Suppose there are two equilibria, {(xdc , ndc)}c=A,B and {(x′c, n′c)}c=A,B,

where we assume xdA ≥ x′A. If xdA = x′A then ndA 6= n′A. If ndA > n′A (ndA < n′A, resp.), the

capacity constraint for college A would imply ndB > n′B (ndB < n′B, resp.), but this would vi-

olate binding budget because the total scholarship bill for college A is larger (smaller, resp.)

in {(xdc , ndc)}c=A,B than in {(x′c, n′c)}c=A,B.

Hence, assume xdA > x′A. First, if n′B ≤ ndB then the average amount of scholarship is

lower in {(x′c, n′c)}c=A,B for college B who thus takes in less of non-needy students, which in

turn implies xdB < x′B due to capacity constraint. Then, relative to {(x′c, n′c)}c=A,B, college A

increased cutoff and college B reduced cutoff in {(xdc , ndc)}c=A,B; moreover, college B’s need

threshold is higher in {(xdc , ndc)}c=A,B. Therefore, the total intake of college B is strictly

higher in {(xdc , ndc)}c=A,B, a contradiction to capacity constraint.

Next, suppose n′B > ndB (and xdA > x′A). (i) If x′B ≤ xdB then n′A < ndA (because

n′A ≥ ndA would imply a greater total enrollment across the two colleges in {(x′c, n′c)}c=A,B
than in {(xdc , ndc)}c=A,B, a contradiction); this implies that total needy enrollment is larger

in {(xdc , ndc)}c=A,B, but less (more, resp.) of needy students are accommodated for y < n′A

(y ∈ (n′A, n
d
A), resp.), which in turn means that the total scholarship spend is higher in

{(xdc , ndc)}c=A,B, a contradiction. (ii) If x′B > xdB, again n′A < ndA should hold because other-

wise total scholarship spend would be higher in {(x′c, n′c)}c=A,B by an analogous reasoning

to just above. In {(x′c, n′c)}c=A,B, relative to {(xdc , ndc)}c=A,B, college B releases a group of

needy students with y > ndB and takes in another group of needy students with y > ndB.

Since x′B > xdB and xdA > x′A, the measure of the former group is smaller than that of the

latter group to meet the capacity constraint. However, this would imply that B’s scholarship

spend is higher in {(x′c, n′c)}c=A,B than in {(xdc , ndc)}c=A,B, a contradiction.

Property (12). To see this, suppose MA increased to M ′A and MB decreased to M ′B by

the same amount, accompanied by the changes in equilibrium from {(xdc , ndc)}c=A,B to

{(x′c, n′c)}c=A,B. With a view to reaching a contradiction, suppose that xdB ≤ x′B. If x′A ≤ xdA
then college B has less non-needy students with M ′B and cannot have more needy students

than before because M ′B < MB. Hence, we should have x′A > xdA.

If n′B ≤ ndB, then we should have n′A > ndA to fill capacity for both colleges. Then, relative

to the initial equilibrium, the enrollment of needy students reduced for y < ndA and increased

for y > ndA. This implies that the total enrollment of needy students across the two colleges

decreased (because the total budget across two colleges remain the same), which is impossible

because the total enrollment of non-needy students also decreased (because xdB < x′B).

Next, consider the case that n′B > ndB. Then, we should have n′A > ndA to fill college A’s

capacity. Switching from {(xdc , ndc)}c=A,B to {(x′c, n′c)}c=A,B, college B saved scholarship

budget from the students in SA∪SB with (vi, yi) ∈ (xdB, x
′
B)×(0, ndB) and spent a part of it on
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Figure 9: Proof of Proposition 1

the students in SA∪SB with (vi, yi) ∈ (x′B, x
d
A)×(ndB, n

′
B). The remainder of the saved budget

is “transferred” to college A for the students in SA with (vi, yi) ∈ (xdA, x
′
A)×(0, n′B) and those

in SB with (vi, yi) ∈ (xdA, 1)× (ndB, n
′
B) (these students enrolled in A in {(xdc , ndc)}c=A,B but

switched to B in {(x′c, n′c)}c=A,B). College A received the transfer from college B as described

above and also saved its budget on the students in SA∪SB with (vi, yi) ∈ (xdA, x
′
A)×(n′B, n

d
A).

College A spent all of them to take in the students in SA∪SB with (vi, yi) ∈ (x′A, 1)×(ndA, n
′
A)

(where ndA < n′A). Combining how the scholarship budgets of the two colleges have been

moved from the initial equilibrium to the new equilibrium, we deduce that in net the money

saved from less needy students’ scholarships has been spent to support more needy students.

This implies that the total enrollment of needy students across the two colleges decreased,

which is again impossible because the total enrollment of non-needy students also decreased

(because xdB < x′B).

This establishes (12), completing the proof. �

Proof of Proposition 1

It remains to compare between NA and NBd when MA > MB. Let (xaA, x
a
B) and

{(xdc , ndc)}c=A,B be the equilibrium in NA and in NBd, respectively. Recall that xaA(0) >

xaB(0) as well as xdA > xdB and ndA > ndB. It suffices to show that xaB(0) < xdB for then the

total enrollment of needy students is higher in NBd than in NA.

Suppose, to the contrary, that xaB(0) ≥ xdB. First, consider the case that xaA(0) ≥ xdA, as

illustrated in Figure 9(a). As the equilibrium moves from {(xdc , ndc)}c=A,B to (xaA, x
a
B), we

deduce the following:

(i) The total enrollment of needy students is weakly larger in (xaA, x
a
B) because that of

non-needy enrollment is weakly lower due to xaB(0) ≥ xdB.

(ii) College A newly takes in some students with need levels above ndA (indicated by the

two black areas in Figure 9(a)) because otherwise it would have a lower total enrollment
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than in {(xdc , ndc)}c=A,B, contradicting capacity constraints.

(iii) For there to be a larger total enrollment of needy students in (xaA, x
a
B) as per (i)

above, other needy students with lower need levels must also be newly taken in, which

means that xaB(ndB) < xdA as in Figure 9(a).

(iv) This implies that college A releases some needy students with need levels below ndB

as indicated by gray areas in Figure 9(a);

(v) Since college A newly takes in students with higher need levels as explained in (ii),

collegeA has a strictly lower enrollment of needy students in (xaA, x
a
B) than in {(xdc , ndc)}c=A,B.

(vi) This is a contradiction because A’s non-needy student enrollment is also lower.

Next, consider the case that xaA(0) < xdA. If xaA(ndB) ≤ xdA, given the assumption xaB(0) ≥
xdB, college B takes in less non-needy students as well as less needy students with yi < ndB

in (xaA, x
a
B) than in {(xdc , ndc)}c=A,B; then B cannot fill the capacity in (xaA, x

a
B) because

the money released from needy students with yi < ndB is not enough to fill the capacity by

supporting students with higher need levels yi ≥ ndB, a contradiction.

Suppose xaA(ndB) > xdA. Then, xaB(ndB) < xdA must hold, as illustrated in Figure 9(b),

because otherwise the total scholarship bill of the two colleges combined would be larger

than that in the need-blind equilibrium, leading to a contradiction. When the colleges switch

from {(xdc , ndc)}c=A,B to (xaA, x
a
B), some needy students are released by one college but are

taken in by the other college (as shown in the dark-gray area in Figure 9(b)). Let qAB be

the set of needy students who are supported by A in {(xdc , ndc)}c=A,B but by B in (xaA, x
a
B),

and qBA be the set of needy students who are supported by B in {(xdc , ndc)}c=A,B but by A

in (xaA, x
a
B). Let mAB and mBA be the budgets to support qAB and qBA, respectively.

Next, in (xaA, x
a
B), college A newly takes in needy students in SA with yi ≥ ndA and

vi ≥ xaA(yi) and those in SB with yi ≥ ndA and vi ∈ (xaA(yi), x
a
B(yi)) (denoted by t1 in

Figure 9(b)); college A may release needy students with yi ≤ ndA and vi ∈ (xdA, x
a
B(yi))

(denoted by r1 if exists). Note that students in t1 have larger need levels than those in r1.

Similarly, we find that the needy students who are newly taken in to college B (denoted by

t2) have larger need levels than those released by the same college (denoted by r2).

(i) Suppose mAB > mBA. From {(xdc , ndc)}c=A,B to (xaA, x
a
B), of the money mAB released

from qAB, A transfers the amount mBA to support qBA and the remaining (mAB −mBA) to

support new students in t1. At the same time, B transfers the full amount mBA released from

qBA to support a part of qAB; and of the money released from r2, B transfers (mAB −mBA)

to support the rest of qAB and the remaining money to support new students in t2. Note

that B’s transfer of mBA is simply replacing the same amount of money A transfers back

to support qBA; and B’s transfer of (mAB − mBA) is simply replacing the same amount

of money A transfers out to support new students in t1. Therefore, from the perspective
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Figure 10: Matching financial aid offers when F < MA −MB: z∗ = 0 and A’s admission

cutoff is higher than that of B. The needy students in the dark-gray area request matching aid offers; they

either enroll in B with probability p∗ or enroll in A otherwise. The light-gray area in SB depicts all needy

students enrolling in B after receiving the scholarship yi; all non-needy students enrolling in college B are

populated in the blue-dashed area; and those enrolling in A are populated in the blue-solid area.

of A and B combined, from {(xdc , ndc)}c=A,B to (xaA, x
a
B), of the money released from r2,

(mAB − mBA) is used to support new students in t1 and the rest is used to support new

students in t2; and the money released from r1, if exists, is used to support new students

in t1. Note that the money released is used to support new students of greater need levels,

hence the total enrollment of needy students must be lower in (xaA, x
a
B). This is impossible

because non-needy enrollment is lower in (xaA, x
a
B) as well.

(ii) If mAB < mBA, then B uses mBA released from qBA to support the whole of qAB

and some of t2, and uses the money from r2 to support the rest of t2. Thus, the released

money is used to support more expensive students in (xaA, x
a
B). Since non-needy enrollment

is lower for B in (xaA, x
a
B) as well, this contradicts B’s capacity constraint. �

Appendix A2: Matching financial aid offers when F < MA −MB

For the cases with F < MA−MB, it is optimal for the DoED to set z∗ = 0 so that college B

receives the entire loan subsidy in the form of matching loans. Due to the asymmetric

budget, still, college A cannot set a smaller need threshold n∗A than college B’s threshold,

n∗B. Then, the students in SB populated between these need thresholds and above A’s

cutoff apply for matching aid offers. It follows from F < MA −MB that the total amount

of applications exceeds F (= Fm) and therefore, the DoED randomizes the approval with

probability p∗(< 1), in which case, the applicants get approved with probability p∗ and

enroll in B, whereas they get denied with probability (1 − p∗) and end up enrolling in A.

Altogether, A’s admission cutoff should be higher than B’s cutoff in order to satisfy the
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budget and capacity constraints, as illustrated in Figure 10.

Formally, we have (z∗ = 0, p∗), (x∗A, n
∗
A), and (x∗A, n

∗
B) should satisfy∫

x∗A≤v≤1
y≤y≤n∗A

1 dG+ (1− p∗)
∫
x∗A≤v≤1
n∗B≤y≤n

∗
A

1 dG =
1

2
;

∫
x∗A≤v≤1
y≤y≤n∗B

1 dG+ 2

∫
x∗B≤v≤x

∗
A

y≤y≤n∗B

1 dG+ p∗
∫
x∗A≤v≤1
n∗B≤y≤n

∗
A

1 dG =
1

2
;

∫
x∗A≤v≤1
0≤y≤n∗A

y dG+ (1− p∗)
∫
x∗A≤v≤1
n∗B≤y≤n

∗
A

y dG = MA;

∫
x∗A≤v≤1
0≤y≤n∗B

y dG+ 2

∫
x∗B≤v≤x

∗
A

0≤y≤n∗B

y dG+ p∗
∫
x∗A≤v≤1
n∗B≤y≤n

∗
A

n∗B dG = MB;

p∗
∫
x∗A≤v≤1
n∗B≤y≤n

∗
A

(y − n∗B) dG = F,

where the first two equations are the capacity constraints of the colleges, the next two

equations are the budget constraints of the colleges, and the last equation is the DoED’s

budget constraint.
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