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1. Introduction

It is well-known that spillovers arise in corporate finance through firm com-

petition and/or agglomeration. Typically, a firm-level outcome, such as sales or

investment, depends not only on the firms’ own treatment status, but also on the

fraction of firms treated in the same industry and/or region. Berg, Reisinger and

Streitz (2021), BRS21 hereon, develop a model to measure spillover effects using

the group-level treatment intensity of an intervention. The group-level treatment

intensity can be approximated by either the group-level average treatment or by

the leave-one-out treatment average.1 Little is known about which of the two prox-

ies one should use. This paper compares the implications of using each of these

two proxies. This comparison yields, first, a justification for using the leave-one-out

treatment average proxy and, second, it provides empirical researchers with a simple

test for the diagnosis of the bias induced by spillovers.

We show that, when the treatment is randomly assigned, choosing the leave-

one-out average treatment proxy has two advantages. First, this choice simplify the

formula for bias arising from the spillover effects, thereby, facilitating its diagno-

sis. Second, it clarifies the definition of the average spillover effect on the treated,

thereby, facilitating its interpretation. These advantages justify the use of the leave-

one-out average treatment as the preferred proxy, for both theoretical developments

and in empirical applications.

We propose a straightforward statistical test for the diagnosis of the bias induced

by the spillover effects. It consists on performing a heteroskedatic-robust Wald test

for the null hypothesis of equal average spillover effects on the treated and untreated

groups versus the alternative hypothesis of different average spillover effects. If this

null hypothesis is rejected, the ordinary least square estimator of the treatment

1There is a growing literature considering the presence of spillover effects between treated
and untreated firms in empirical corporate finance (see e.g. Huber, 2018; Beck, Da-Rocha-Lopes
and Silva, 2021; Breuer, Hombach and Muller, 2019; Doerr, 2021; Gopalakrishnan, Jacob and
Mohapatra, 2021). These papers use either the group-level average treatment or the leave-one-out
average treatment as a proxy for the treatment intensity. See Section 4 for a summary of these
applications.
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effect in the model ignoring spillovers is biased. We illustrate the implementation

of the test in the context of measuring the effect of credit supply contractions on

firms’ employment decisions.

The rest of the paper proceeds as follows. In Section 2, we present BRS21’s

framework to handle spillover effects in empirical research. Section 3 contains the

main result and a discussion about the advantages of using the leave-one-out treat-

ment average as a proxy for the treatment intensity. Section 4 presents an illustra-

tion of the implications of our result. Section 5 concludes. The Appendix contains

auxiliary calculations.

2. Econometric Framework

BRS21 analyze workhorse models of firm interactions leading to the following

specification capturing spillovers effects on corporate finance. Let yig denote an

outcome, such as investments, debts, sales or employment, for firm i belonging to

group g. Group g typically represents an industry or region. Assume that yig is

determined by

yig = ϕ(dig, fig, digfig), (1)

where ϕ(·) is an unknown function, dig is a treatment indicator variable for unit i in

group g that is equal to one if treatment is received, and zero otherwise, and fig is

the group-level treatment intensity. The empirical specification of fig is the object

of study in this paper.

The available data are a sample {yig, dig, si}ni=1, where the group variable si ∈

{1, .., g, .., G} records the group corresponding to firm i. The estimands of interest

are:

• the average direct effect:

∆ := E(yig|dig = 1, fig = 0)− E(yig|dig = 0, fig = 0)
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• the average spillover effect on the treated:

∆T := E(yig|dig = 1, fig = 1)− E(yig|dig = 1, fig = 0)

• the average effect at the average intensity:

∆A := E[yig|dig = 1, fig = E(dig)]− E[yig|dig = 0, fig = E(dig)]

There are, at least, two alternative models to estimate these estimands of inter-

est. The first model, see BRS21 (Section 4), is:

Spillover Model with Group-Level Average Treatment:

yig = β1 + β2dig + βTdigd̄ig + βC(1− dig)d̄ig + εig, (2)

d̄ig := n−1g

n∑
j=1

djg1(sj = g)1(si = g) (3)

where for ng :=
∑n

i=1 1(si = g) denotes the number of firms in group g, and d̄ig is

the group-level average treatment.2 This model uses d̄ig as a proxy for the group-

level treatment intensity fig. Under assumptions A1-A4 described in BRS21 and,

for the convenience of the reader, replicated in the Appendix, this model delivers

the approximations: ∆ ≈ limc→0{β1 + β2 + βT c} − β1 = β2 and ∆T ≈ βT .

In randomized experiments, with treatment drawn independently from observ-

ables and unobservable variables, one has that the treatment indicator dig is inde-

pendent of the group variable si. This motivates the second model, which is:

2Without loss of generality, one can weight djg in (3) to reflect the market share of treated firm
in competition models, the share of R&D expenses of treated firms in agglomeration models, or
the share of employment of treated firms in local demand spillover models.
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Spillover Model with Leave-one-out Average Treatment:

yig = γ1 + γ2dig + γTdigd̃ig + γC(1− dig)d̃ig + ζig, (4)

E(ζig|d1g, .., dng, s1, .., sn) = 0, (5)

dig and djg are independent and identically distributed for all i 6= j ∈ {1, .., n},

(6)

dig and sj are independent for all i, j ∈ {1, .., n}, (7)

where

d̃ig := (ng − 1)−1
∑
j 6=i

djg1(sj = g)1(si = g) (8)

is the group-level average treatment excluding firm i itself.3 We call d̃ig the leave-

one-out treatment average. In the Spillover Model with Leave-one-out Average

Treatment, the treatment is allocated as in the simple randomization procedure,

i.e., ζig is mean-independent of (djg, sj) for any i, j, dig is independent of sj for any

i, j, and djg and dig are independent and identically distributed for any i 6= j. In

particular, Assumption (7) restricts the dependence between the treatment indicator

variable dig and the group variable si. Since dig and si are both observed, this

restriction is testable and hence should not be taken as a disadvantage with respect

to the Spillover Model with Group-Level Average Treatment. The Spillover Model

with Leave-one-out Average Treatment uses d̃ig as a proxy for fig and it delivers the

approximations

∆ ≈ γ2, ∆T ≈ γT and ∆A ≈ γ2 + (γT − γC)E(dig).

Note that the approximations for ∆ and ∆A coincide if the average spillover effects

3The usual rank restriction, e.g., rankE(xix
>
i ) = 3 for x>i = (1, dig, digd̃ig, (1 − dig)d̃ig), is

assumed to hold.
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are homogeneous, i.e., γT = γC .

Comparison. Two differences arise when comparing the two Spillover Models.

First, the proxies for the group-level treatment intensity, and consequently the ap-

proximations to the estimands of interest, do not necessarily coincide. Second, while

the treatment in model with the Leave-one-out Average Treatment is allocated as

in the simple random assignment procedure, in the model with the Group-Level

Average Treatment it is not clear whether treatment is allocated as in the simple

random assignment procedure or as in a more sophisticated randomization proce-

dure. Little is known about whether these differences are relevant and, if indeed

they are, whether one should use the Group-Level Average Treatment or the Leave-

one-out Average Treatment. The next section spells out two advantages of using the

Leave-one-out Average Treatment over the Group-Level Average Treatment when

treatment is allocated as in the simple randomization procedure described in (5)-

(7). These advantages illustrate, first, the relevance of the choice of the proxy for

treatment intensity and, second, the benefits obtained from the rigorous modeling

of the treatment allocation procedure.

3. Main Result

Consider the model ignoring spillovers:

Baseline Model:

yig = α1 + α2dig + ξig, E(ξig|d1g, .., dig, .., dng) = 0, i = 1, .., n. (9)

To describe the advantages of using the Leave-one-out Average Treatment, we now

compare the biases arising from estimating γ2 and β2 using the ordinary least squares

estimator α̂2 of the coefficient α2 in the Baseline Model.

BRS21 (Proposition 1) prove the following result:

Lemma 1 The bias of the baseline estimator α̂2 for the estimand β2 defined in the
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Spillover Model with Group-Level Average Treatment is:

E(α̂2)− β2 = (βT − βC)E(dig) + βT
V (d̄ig)

E(dig)
+ βC

V (d̄ig)

1− E(dig)
. (10)

We show in the Appendix that:

Proposition 1 The bias of the baseline estimator α̂2 for the estimand γ2 defined in

the Spillover Model with Leave-one-out Average Treatment is:

E(α̂2)− γ2 = (γT − γC)E(dig). (11)

The expression in Proposition 1 is simpler to interpret than the one in Lemma

1: α̂2 is an unbiased estimator of γ2 (and, on the proviso that ∆ = γ2, an unbiased

estimator of the average direct effect) if and only if the spillover effects on the

treated and the untreated groups are homogeneous, i.e., γT = γC . This is the

first advantage from choosing the Leave-one-out Average Treatment as a proxy for

Group-level Treatment Intensity. Consequently, from the characterization of the

bias in Proposition 1, the following statistical test can be performed to confirm that

the baseline estimator is a biased estimator of the average direct effect.

Corollary 1 Empirical researchers can check that the baseline estimator α̂2 is bi-

ased for the average direct effect ∆ by performing a heteroskedastic-robust Wald test

for the null hypothesis H0 : γT − γC = 0 versus the alternative H1 : γT − γC 6= 0

based on the ordinary least squares estimator of γT , γC from the Spillover Model with

the Leave-one-out Average Treatment.

This check complements, by providing a rigorous statistical test for confirming the

presence of bias, the three-step heuristic guidance suggested by BRS21 (Section 5)

for the diagnosis the bias of the baseline estimator. One could use the homoskedastic-

only Wald test in this check if, instead of the mean-independence assumption (5), one
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would assume that ζig is independent of the treatment indicator variables d1, .., dn

and the group indicator variables s1, .., sn.

Since E[yig|dig = 1, d̃ig = E(dig)] = γ1 + γ2 + γTE(dig) and E[yig|dig = 0, d̃ig =

E(dig)] = γ1 + γCE(dig), one has E(α̂2) = ∆A and the following Corollary holds.

Corollary 2 The baseline estimator α̂2 is unbiased for the average effect at the

average intensity ∆A.

Note that, in general, the average effect at the average intensity is not equal to

the sum of the average direct effect and the average spillover effect on the treated,

which should prevent one from interpreting the baseline estimator as an unbiased

estimator of the aggregation of the average direct effect and the average spillover

effects (see e.g., Biswas and Zhai, 2021).

The second advantage from choosing the Leave-one-out average Treatment proxy

comes from the interpretation of the approximation γT to the average spillover effect

on the treated ∆T . Consider the case of a group g with two firms and only i is treated

so d̄ig = 1/2 and d̃ig = 0. In this case, there is no spillover effect on the treated, which

is not reflected in the difference E(yig|dig = 1, d̄ig = 1/2)−E(yig|dig = 1, d̄ig = 0) =

βT/2 obtained from the Spillover Model with the Group-Level Average Treatment.

Compare this result with E(yig|dig = 1, d̃ig = 0) − E(yig|dig = 1, d̃ig = 0) = 0

obtained from the Spillover Model with the Leave-one-out Average Treatment. This

suggests that γT approximates the average spillover effect on the treated ∆T that we

are looking for, while βT approximates something else. Another way of interpreting

this difference is that Spillover Model with the Group-Level Average Treatment

counts ’twice’ the effect of dig (by including it in β2dig and in d̄ig in βTdigd̄ig), while

the Spillover Model with the Leave-one-out Average Treatment counts only once the

effect of dig (by including it in γ2dig and excluding it from d̃ig in γTdigd̃ig).
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4. Illustration

We now illustrate the use of the previous results in the context of applications inves-

tigated in the empirical literature. The aim is to show the advantages of using the

leave-one-out average treatment proxy to diagnose the bias on the baseline estimator

induced by the spillover effects.

There is a growing empirical literature seeking to incorporate spillovers to their

baseline models. These papers differ on their modeling of spillovers in two dimen-

sions. They either use the group-level average treatment or the leave-one-out treat-

ment average as a proxy for the treatment intensity, and they either assume homo-

geneous or heterogeneous effects for the group of treated and untreated firms. The

table below summarizes these differences among already published papers.

Table I: Proxies Employed in Applications

Spillover Effects ↓ / Proxy → Group-level Average Leave-one-out Average

Homogeneous Doerr (2021); Breuer et al. (2021) Beck et al. (2021); Huber (2018)

Heterogeneous Gopalakrishnan et al. (2021) BRS21

Our results can be apply to any of these papers. We choose the application in BRS21

because the careful execution of the study lends itself to extension by applying the

result in Proposition 1 (and its Corollaries).

The estimand of interest is the average direct effect of a bank-lending cut (the

bank in the database is Commerzbank) on German firms’ employment growth. Here

yig is the symmetric growth employment rate over the 2008 to 2012 period for firm

i located in county g; dig is a dummy variable that equals one if the fraction of

the firm’s relationship banks that are Commerzbank branches is greater or equal

than .5, and zero otherwise (CBdep(0/1)ic in BRS21’s notation); d̃ig is the average

Commerzbank dependence calculated based on dig of all other firms in the county

(g), excluding firm i itself (CBdep(0/1)ic in BRS21’s notation). For the convenience

of the reader, we reproduce the estimates in the table below (see BRS21, Table 5,

Columns (4) and (6)).
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Table II: Estimates from BRS21

(1) (2)

dig -.028 -.053

(.006) (.017)

digd̃ig .025

(.068)

(1− dig)d̃ig -0.115

(0.038)

Note: The dependent variable is the symmetric growth rate of firm employment from 2008 to 2012. Robust standard errors, clustered

at the county level, are in parenthesis. Source: BRS21 (Table 5).

By comparing the baseline estimate α̂2 = −.028 with γ̂2 = −.053 in Table II,

BRS21 infer that ignoring spillover effects makes the baseline estimator α̂2 biased

for the direct treatment effect ∆. This comparison, however, does not take into

account sampling variability, which, as we are going to show below, can change the

above inference.

Corollary 1 proposes a Wald test to rigorously confirm, by taking into account

sampling variability, that the baseline estimator is biased for the direct treatment

effect. Performing this test is straightforward. It requires to compute the Wald test

statistic:

W =
(γ̂T − γ̂C)2

se2γ̂T + se2γ̂C − 2 ˆcov(γ̂T , γ̂C)
,

where γ̂T and γ̂C are the OLS estimators for the parameters γT and γC in Equa-

tion (4), seγ̂C and seγ̂T are their respective standard errors and ˆcov(γ̂T , γ̂C) is the

covariance estimator. The asymptotic null distribution of the Wald statistic is a

chi-squared distribution with one degree of freedom, from which we can compute

critical values. The Wald test will suggest to reject the null hypothesis (and confirm

that the baseline estimator is biased for the average direct effect) if the realized

value of the Wald test statistic is greater or equal than the critical value.

Table II has all the values to compute the realized value of the Wald test statistic

except for ˆcov(γ̂T , γ̂C). For illustrative purposes, we take two values: a lower bound

10



of zero and an upper bound from the Cauchy-Schwarz Inequality.4 In the case of

the upper bound, the realized value of the Wald statistic is

W =
[.025− (−.115)]2

.0682 + .0382 − 2× .00258
=
.0196

.0009
= 21.77,

while the critical value at the 99% confidence level is cv.90 = 6.63. Since the realized

value of the statistic (W = 21.77) is greater than the 99% critical value (cv.90 = 6.63),

the test indicates that the baseline estimator is biased for the average direct effect.

However, the baseline estimator still is an unbiased estimator for the average effect

at the average intensity (Corollary 2). In the case of the lower bound, the realized

value of the statistic (W = 3.23) is smaller than the 99% critical value (cv.90 = 6.63).

In such a case, Proposition 1 indicates that there is no evidence that the baseline

estimator is a biased estimator of the average direct effect. We conclude that, from

the estimates in Table II, one cannot infer that ignoring spillover effects makes the

baseline estimator biased for the average direct effect. We remark that these results

are not available if one chooses the Group-Level Average Treatment as a proxy for

the Group-Level Treatment Intensity.

5. Conclusion

This paper discusses the choice between two alternative proxies for the Group-

Level Treatment Intensity in the framework introduced by BRS21 to estimate spillover

effects in empirical corporate finance. We show that this choice is relevant for di-

agnosing the existence of bias induced by spillover effects. We highlights that the

Leave-one-out Average Treatment proxy has two advantages over the Group-Level

Average Treatment proxy. First, it simplifies the formula for bias of the baseline

estimator arising from the spillover effects, thereby, facilitating its diagnosis. The

4By the Cauchy-Schwarz Inequality, ˆcov(γ̂T , γ̂C) ≤ seγ̂T × seγ̂C . Note that any other possible
value for ˆcov(γ̂T ) delivers a lower value of the the statistic. The paper by BRS21 does not report
the value for ˆcov(γ̂T ). Empirical researchers have the estimated value of the covariance available
since standard statistical software, such as STATA, produces this value.
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baseline estimator is unbiased for the average direct effect if and only if the spillover

effects are homogeneous in the treated and untreated groups. Second, it clarifies the

definition of the average spillover effect on the treated, thereby, facilitating its inter-

pretation. These advantages justify the use of the Leave-one-out Average Treatment

as the preferred proxy and suggest a straightforward rule to confirm the existence

of the bias of the estimator in the model ignoring spillovers.
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Appendix

Assumptions in BRS21. For the sake of completeness, we now replicate Assump-

tions A1-A4 in BRS21:

A.1 Treatment status fulfills the conditional independence assumption (CIA).

A.2 Outcomes not only depend on the treatment status of an individual firm, but

also on the treatment intensity in an industry (in the case of competition models)

or a region (in the case of spatial models).

A.3 Spillovers occur within industries/regions, but not across industries/regions (i.e.,

we abstract from general equilibrium effects).

A.4 We assume a linear relation throughout the paper.

Auxiliary Calculations. We now derive the formula for the bias in (10). The bias

of the estimator α̂2 is (see Berg et al., 2021, Display (21)):

E(α̂2) = γ2 + γT
C(dig, digd̃ig)

V (dig)
+ γC

C[dig, (1− dig)d̃ig]
V (dig)

, (12)

where V (dig := E(dig)[1−E(dig)] is the variance of dig and, for any random variables

a and b, C(a, b) denotes their covariance. We now observe that

E(digd̃ig) =
(i)
E[E(digd̃ig|s1, .., sn)] =

(ii)
E[d̃igE(dig|s1, .., sn)]

=
(iii)

E[d̃igE(dig)] =
(iv)

E(djg)E(dig) =
(v)
E(dig)

2,

where (i) follows from the Law of Iterated Expectations, (ii) follows from observing

that d̃ig is a function of s1, .., sn and the assumption that dig and djg are independent,

(iii) follows from the assumption that dig and s1, ..., sn are independent, (iv) follows

from observing that E(d̃ig) = E[E(d̃ig|s1, .., sn)] = E[(ng − 1)−1
∑

j 6=iE(djg1(si =

g)1(sj = g)|s1, .., sn] = E(djg), and (v) follows from the assumption that dig and dj
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are identically distributed. Hence,

C(dig, digd̃ig) = E(digd̃ig)− E(dig)E(digd̃ig) = E(digd̃ig)[1− E(dig)] = E(dig)
2[1− E(dig)]

= E(dig)V (dig)

C[dig, (1− dig)d̃ig] = E[dig(1− dig)d̃ig]− E(dig)E[(1− dig)d̃ig]

= E(digd̃ig)− E(digd̃ig)− E(dig)E(d̃ig) + E(dig)E(digd̃ig)

= E(dig)E(dig)
2 − E(dig)

2

= E(dig)E(dig)[E(dig)− 1] = −E(dig)V (dig).

Replacing these expressions back in (11) one obtains:

E(α̂2) = γ2 + γT
E(dig)V (dig)

V (dig)
+ γC

[−E(dig)]V (dig)]

V (dig)
= γ2 + (γT − γC)E(dig).

Wald Test. We now describe the Wald test for confirming the presence of bias in

α̂2 when estimating γ2. Let γ̂ denote the ordinary least squares estimator obtained

from specification (4). Let ˆvar(γ̂) denote a consistent estimator of the variance of

γ̂. Define γ = (γ1, γ2, γT , γC)> and the vector Q = (0, 0, 1,−1). Rewrite now the

null hypothesis H0 : γT − γC = 0 as H0 : Qγ = 0. The Wald statistic is:

W = (Qγ̂)>[Q ˆvar(γ̂)Q>]−1Qγ̂ =
(Qγ̂)2

Q ˆvar(γ̂)Q>
.

Under standard regularity conditions, the distribution of W , when the null hypoth-

esis holds, is approximately a chi-squared distribution with one degree of freedom.5

The Wald test confirms (with significance level α) the presence of bias in α̂2 for es-

timating γ2 when the Wald statistic W is above the (1−α) -quantile of a chi-square

distribution with one degree of freedom.

5This approximation applies when the data do not contain points of high leverage (see, e.g.,
Chesher (1989) for a definition of the leverage of points in regression designs). If the data contain
points of high leverage, the discrepancy between the exact and nominal size of the Wald test can
be substantial and the test can deliver misleading inferences.
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