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Abstract
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exposure on individuals’ human capital and health outcomes in older age. We compare
individuals who were exposed to the London smog in December 1952 whilst in utero
or in infancy to those born after the smog and those born at the same time but in
unaffected areas. We find that those exposed to the smog have substantially lower
fluid intelligence and worse respiratory health, with some evidence of a reduction in
years of schooling.
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1. INTRODUCTION

There is a growing literature on the contemporaneous effects of exposure to air pollution

on individuals’ human capital and health outcomes (for a review see e.g., Graff Zivin and

Neidell, 2013). There is relatively little empirical evidence, however, on the much longer-

term and cumulative effects of early-life pollution exposure, despite the fact that the early-

life environment has been shown to be crucial in shaping individuals’ health and economic

outcomes in older age. The literature on the so-called “Developmental Origins of Health

and Disease” (DOHaD) hypothesis – proposing that circumstances early in life can have

life-long, potentially irreversible impacts on individuals’ health and well-being – explores the

importance of the prenatal as well as early childhood environment and has mainly focused

on the longer-term effects of (adverse) nutritional, health and economic environments (for a

review, see e.g., Almond and Currie, 2011a; Almond and Currie, 2011b; Almond et al., 2018;

Conti et al., 2019).1

The relative lack of studies on the very long-term effects of early life pollution exposure is

likely to be at least partially driven by a general absence of high quality historical pollution

data. Indeed, most studies that explore the effects of early-life pollution exposure investigate

the immediate effects on child birth outcomes (see e.g., Chay and Greenstone, 2003; Currie

and Neidell, 2005; Almond et al., 2009; Currie, 2009; Jayachandran, 2009; Currie and Walker,

2011; Knittel et al., 2016; Sanders and Stoecker, 2015; Arceo et al., 2016; Hanlon, 2018; Jia

and Ku, 2019; Rangel and Vogl, 2019), with only few exploring potential effects in childhood

or early adulthood (see e.g., Reyes, 2007; Bharadwaj et al., 2017; Almond et al., 2009;

Sanders, 2012; Black et al., 2013; Isen et al., 2017) and even fewer focusing on outcomes in

older age (Bharadwaj et al., 2016; Ball, 2018a). As such, ignoring potential long-term effects

1For example, research has explored the importance of maternal physical health (Behrman and Rosen-
zweig, 2004; Almond, 2006; Almond and Mazumder, 2005), maternal mental health (von Hinke et al., 2019),
maternal health behaviours (Nilsson, 2017; von Hinke et al., 2014), maternal nutrition (van den Berg et al.,
2021), the economic environment (Van den Berg et al., 2006; Banerjee et al., 2010), the early life health en-
vironment (Bleakley, 2007; Case and Paxson, 2009; Cattan et al., 2021), or the home environment (Carneiro
et al., 2015).
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of pollution may lead to a substantial underestimation of the total welfare effects caused by

exposure to environmental toxins.

We overcome the lack of historical pollution data by relying on reduced form analyses.

More specifically, we examine the effect of early life exposure to the London smog: a severe

pollution event that affected London residents between 5 and 9 December 1952. Although

pollution levels in London are currently much lower than in the 1950s, the high levels recorded

at the time are similar to the levels currently reported in industrialising economies such as

India and China, so our study is relevant in particular to those settings. During the smog,

pollution from residential and industrial chimneys, vehicle exhausts and coal burning became

trapped under a layer of warm air due to a thermal inversion, which caused a thick smog to

form over London. We investigate the long-term effects of exposure to this smog event by

studying individuals’ human capital and health outcomes in older age. The data we use is the

UK Biobank: a large population-based cohort of approximately 500,000 individuals living

in the United Kingdom. It includes rich data on individuals’ later life health and economic

outcomes, linked to administrative records. Using participants’ eastings and northings of

birth, our identification strategy exploits spatio-temporal variation in exposure to the London

smog across birth dates and locations using a difference-in-difference approach. In other

words, we compare individuals who were exposed to the smog in early life to those living in

unaffected regions as well as to those conceived after the smog, whilst controlling for local

area-specific trends in the outcomes of interest across birth cohorts.

This paper has three main contributions. First, most of the literature that explores the

effects of pollution exposure focuses on child birth outcomes. Whilst it is important to better

understand the effects on, e.g., infant mortality, it is one of the most extreme consequences

of exposure to environmental toxins. Indeed, those who survive pollution exposure may be

affected in other ways, with potential scarring reducing individuals’ human capital and health

potential. We investigate the effects on years of schooling, fluid intelligence, respiratory

disease, and COVID-19 hospitalisations/mortality. Finding strong evidence of such longer-
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term effects would therefore indicate that any pollution impacts are much larger than what

would be suggested by the literature focusing on the effects of pollution on birth outcomes,

such as infant mortality.

Second, we provide new empirical evidence in support of the DOHaD hypothesis. There

is a large and growing literature in economics estimating the causal developmental origins of

later life economic and health outcomes. These have shown the consequences of many adverse

circumstances, but generally lack evidence on the longer-term effects of pollution exposure.2

We contribute to this literature by exploring the very long-term effects of early life exposure

to pollution, investigating individuals’ outcomes at age ∼60. Our identification is similar

to Bharadwaj et al. (2016) and Ball (2018a), who also focus on the long-term effects of the

London smog on asthma and employment outcomes respectively. In fact, to our knowledge,

these are the only two studies that investigate the effects of early-life pollution exposure on

individuals in older age. An additional advantage of our data and setting is that it allows us

to identify the gestational ages that are most sensitive to pollution.3 This builds on studies

examining the long-term effects of other relatively short-term events, such as the Ramadan

(see e.g. Almond and Mazumder, 2011) and the Dutch Hunger Winter (Lumey et al., 2011;

Bijwaard et al., 2021). In addition, our setting allows us to provide evidence on the human

capital and health effects of pollution in a high pollution setting that is similar to current

pollution levels in several industrialising countries, where evidence on the effects of pollution

2The literature focusing on the contemporaneous effects of pollution exposure mainly shows large impacts
on respiratory and cardiovascular disease as well as mortality, but also on brain health and cognitive decline
(see e.g., Zhang et al., 2018; Bishop et al., 2018). The literature suggests that high pollution concentrations
affect lung function and cause irritation and inflammation of the respiratory system. Small pollution particles
can penetrate deeply into the lung tissue and interfere directly with the transfer of oxygen to the blood.
Both the elderly and the young are at increased risk of air pollution; the latter because their organs are
still developing (EPA, 2021) and because they inhale more air per body mass than adults (Laskin, 2006).
In addition, because small particles can be passed through the placenta to the developing foetus, this can
directly affect the oxygen available to the foetus, and with that, its development.

3With just 42 individuals exposed in utero and 15 in infancy in Bharadwaj et al. (2016), sample sizes do
not allow for the analysis of trimester-specific effects. Although Ball (2018a) uses large samples, the analyses
use individuals’ year of birth, implying it is not possible to look at gestation effects. An advantage of our
data is that we have large samples as well as information on the year and month of birth. This means we
have more power to detect even relatively small effects on later life outcomes, and we are able to explore the
importance of exposure at different gestational ages.
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remains limited (Greenstone and Jack, 2015).

Our third contribution is that we explore heterogeneity of treatment effects with respect

to three important sources of variation. First, we build on a recent literature in social science

genetics, directly modelling human capital and health outcomes as a function not only of

individuals’ environments (‘nuture’), but also of their genetic predisposition to these out-

comes (‘nature’) as well as the ‘nature-nurture’ interaction. This acknowledges the major

role that genetic variation has been shown to play in shaping individuals’ life outcomes (see

e.g. Turkheimer, 2000; Polderman et al., 2015), and allows nature and nurture to interact

and jointly contribute to individuals’ human capital and health formation, as highlighted in

the medical (see e.g., Rutter, 2006) as well as economics and social science literature (see

e.g., Cunha and Heckman, 2007). Indeed, finding evidence of such ‘gene-environment inter-

play’ provides a strong argument against ideas of genetic (or environmental) determinism.

As such, we examine whether – and to what extent – one’s genetic variation can protect

against, or exacerbate, the effects of such adverse events. There is a large literature inves-

tigating the importance of gene-by-environment interactions (G×E), with relatively recent

contributions from economics and social science (see, for example, Biroli, 2015; Bierut et al.,

2018; Barth et al., 2020; Ronda, 2020). However, most existing studies tend to use endoge-

nous environments, where it is not always clear how to interpret the main effects as well

as the G × E interaction effect (Biroli et al., 2021).4 We address this issue by exploiting

the London smog as a natural experiment, ensuring that the environment is orthogonal to

observed and unobserved individual characteristics. Hence, we add to only a handful of

relatively recent studies that exploit exogenous variation in the environment within a G×E

setting, allowing us to identify the causal environmental impact within a G×E framework.5

4Indeed, the coefficient on the genetic component may partially capture environmental circumstances
due to ‘genetic nurture’ (that is: parental genotypes can shape the offspring environment, and since the
offspring’s genetic variation is inherited from the parents, this may partially capture such environments; see
e.g., Belsky et al., 2018; Kong et al., 2018), and the coefficient on the environmental circumstances may pick
up variation driven by genetics due to gene-environment correlation (that is: the fact that individuals with
a genetic predisposition to a specific trait can be more commonly found in certain environments).

5Other studies that exploit exogenous variation in the environment include, e.g., Fletcher (e.g., 2012),
Schmitz and Conley (2016a), Schmitz and Conley (2016b), Fletcher (2018), Barcellos et al. (2018), Pereira
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The second source of heterogeneity we explore is gender. Since the literature suggests that

male foetuses are generally frailer than female foetuses, we explore whether the long-term

effects of pollution differ by gender due to either scarring or differential selection. Finally,

we investigate whether there is a social gradient in the effect of pollution exposure. For this,

we characterise the local area that individuals are born in with respect to the social class

and run our analysis separately for individuals in high and low social class areas.

Our findings indicate large effects of both prenatal and childhood smog exposure on

later life fluid intelligence and – to a slightly lesser extent – years of education. We also

find a robust increase in the probability of being diagnosed with respiratory disease, but no

differences in rates of COVID-19 hospitalization or mortality. Furthermore, these effects are

generally larger for individuals exposed in the first and second trimester of pregnancy, with

overall reduced effect sizes for those exposed in the last trimester.

Our heterogeneity analysis shows that the negative effects of being exposed to the smog

prenatally and in early childhood are generally stronger for those with a high genetic pre-

disposition to the outcome. For respiratory disease, for example, this suggests that the res-

piratory health of individuals who are genetically predisposed is more vulnerable to severe

pollution events compared to the health of individuals how are not genetically predisposed.

Furthermore, we show that the effect on years of schooling is driven by women, both for

prenatal and early childhood exposure, whereas there is no clear gender-difference in the

longer-term effects on fluid intelligence or respiratory disease. Using the gender ratio as the

outcome, we find no evidence of gender differences in survival, suggesting that the differential

gender effects are driven by scarring rather than selection.

Finally, we find a strong social gradient in long-term pollution effects, with individuals

born in lower social class areas (as proxied by a high proportion of the population being either

in semi-skilled or unskilled occupations) being substantially more affected; similar to e.g.,

et al. (2020), and Biroli and Zünd (2021), with Muslimova et al. (2020) exploiting exogenous variation in
both genetic variation and environmental circumstances. See Pereira et al. (2021) for a recent review of this
literature.
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Jans et al. (2018). This in turn suggests either that the higher social classes were better able

to avoid highly polluted areas, or that the health stock of lower class individuals is simply

more vulnerable to adverse early life shocks. As Londoners at the time were not aware

of the potential health risks of (severe) pollution, and there is little evidence of avoidance

behaviour in the early 1950s, the former is perhaps less plausible, though we cannot say this

with certainty.

The rest of the paper is structured as follows. Section 2 provides the background to the

London smog and Section 3 describes the data used in our analysis. We set out the empirical

strategy in Section 4, and discuss the results in Section 5. We explore the sensitivity of our

findings in Section 6 and conclude in Section 7.

2. BACKGROUND: THE LONDON SMOG

On 4 December 1952, an anticyclone led to a temperature inversion over London, causing the

cold air to be trapped under a layer of warm air. The resulting fog, in combination with higher

than usual coal smoke (due to the slightly colder temperature at the time) from residential

and industrial chimneys, the pollution from vehicle exhausts (e.g. steam locomotives, diesel-

fuelled buses) and other pollution (e.g. coal-fired power stations), formed a thick smog.6

With very little wind, it was not dispersed and led to an unprecedented accumulation of

pollutants over the next five days, from 5–9 December 1952.

Wilkins (1954) discusses the severity of the London smog in terms of changes in concen-

trations of black smoke and sulphur dioxide (SO2), with the historical measurements from

that paper presented in Figure 1.7 This shows two interesting features. First, there is a rapid

rise in both black smoke and SO2 concentrations between 5 and 9 December, with average

concentrations rising to three to four times their usual level, after which they returned to

6The coal that was used domestically immediately after the war was of poor quality, with increased
amounts of sulphur dioxide compared to the better quality coals that were mainly exported to pay off World
War II debts.

7Both black smoke and SO2 are released into the atmosphere via fuel combustion, such as coal burning.
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pre-smog levels. Second, there is substantial regional variation in pollution within London,

indicated by the grey dashed lines, each representing a different measurement station. Note,

however, that the black smoke concentrations shown here are likely to be underestimated.

Indeed, the smoke filters that measured the pollution were so overloaded that concentrations

were more likely to be around 7-8 mg/m3 in the worst polluted areas of London (Warren

Spring Laboratory, 1967).

Figure 1: Pollution and mortality during the London smog of December 1952.

(a) Black smoke (b) Sulphur Dioxide (SO2)
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Historical measurements of pollution (black smoke and SO2) from stations in London in
December 1952. Each of the gray dashed lines represents the pollution measurements by
a specific station. The dotted black line indicates the daily mean across all stations. The
number of deaths in the Greater London area is overlaid with a solid black line. Pollution is
digitised from Table I in Wilkins (1954) while deaths are digitised from Table VIII in Logan
et al. (1953).

Levels of smoke and sulphur dioxide were measured at the time. However, as discussed in

Wilkins (1954), it is likely that there were increases in tar, carbon monoxide (due to severe

traffic congestion), carbon dioxide (due to a strong correlation with sulphur dioxide) and

sulphuric acid (due to the oxidation of sulphuric dioxide).

Although Londoners were used to such smogs, the one in December 1952 was worse than

any event Londoners had experienced before. Due to the dramatically reduced visibility, all
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public transport other than the London Underground was suspended, most flights to London

Airport were diverted, ambulance services stopped, and – with its penetration into indoor

areas – concerts, theatres and cinema screenings were cancelled. Outdoor sporting events

were also cancelled (see, e.g., BBC, 1952).

Despite this, Londoners got on with everyday life, potentially since the health conse-

quences of extreme pollution were unknown. However, medical statistics that were published

in the following weeks showed a substantial increase in mortality, with an estimated 4,000

deaths caused by the smog. Indeed, the right vertical axis of Figure 1 presents the daily

number of deaths over the period of the smog, depicted as the solid black line. This shows

around 300 daily deaths before the smog, increasing to ∼900 at its peak, after which is

reduced; a similar inverse U-shaped pattern as the pollution data (Logan et al., 1953).

Subsequent calculations showed that 90% of the excess deaths were among those aged

45 and over (Ministry of Health, 1954). There was also an increase in mortality among

newborns and infants, as well as foetal loss (Hanlon, 2018; Ball, 2018b), but these capture a

relatively small proportion of the total increase. However, also in the months after the Lon-

don smog, mortality exceeded normal levels.8 About half of all excess deaths were attributed

to bronchitis or pneumonia, with other increases observed in respiratory tuberculosis, lung

cancer, coronary disease, myocardial degeneration and other respiratory disease (Logan et

al., 1953).

3. DATA

Our primary dataset is the UK Biobank, a prospective, population-based cohort that contains

detailed information on the health and well-being of approximately 500,000 individuals living

in the United Kingdom. Recruitment and collection of baseline information occurred between

8Although an initial government report suggested these deaths were caused by influenza, there was no
influenza outbreak in 1952, and Bell et al. (2004) find that only an extremely severe influenza epidemic could
account for the excess deaths during this period. More recent analysis indeed suggests that the smog caused
up to 12,000 deaths (Bell and Davis, 2001).
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2006 and 2010, when participants were 40–69 years old. The data include information

on demographics, physical and mental health, health behaviours, cognition, and economic

outcomes, obtained via questionnaires, interviews, and measurement taken by nurses. It

has also been linked to GP and hospital records, as well as the National Death Registry.

Furthermore, samples of blood, urine and saliva have been collected, and all individuals

have been genotyped. Bycroft et al. (2018) give a detailed description of the sample.

We are interested in the long term economic and health consequences of short term

variation in the early-life pollution environment. We focus on a range of outcomes, informed

by previous literature on the effects of pollution. First, we build on the literature that shows

medium-to-long term effects of early life pollution exposure on economic outcomes (see e.g.,

Almond et al., 2009; Ball, 2018a), investigating the effects on educational attainment and

fluid intelligence. Educational attainment is defined based on individuals’ qualifications9 ,

and fluid intelligence is a score based on problem solving questions that require logic and

reasoning ability, independent of acquired knowledge.

Next, we build on the literature showing pollution effects on individuals’ health (see e.g.,

Currie and Walker, 2011), and explore the effects on respiratory disease. The contempora-

neous effects of air pollution on respiratory disease are well-known. Less is known, however,

about the potential long term effects of early life exposure. Indeed, since air pollution dis-

proportionally affects individuals with compromised lung function, and much of the burden

in adulthood is believed to be due to poor development (rather than accelerated decline) in

lung function (see e.g. Lancet, 2019), early life pollution is a natural exposure to consider in

the development of respiratory disease. We create a dummy variable to indicate whether the

individual has been diagnosed with respiratory disease from the administrative hospitalisa-

tion data and mortality records that have been merged into the UK Biobank, distinguishing

between chronic and acute respiratory conditions.10 Furthermore, due to the links between

9Table A.1 in Appendix A shows the mapping between qualifications and years of education, using a
similar definition as in, e.g., Rietveld et al. (2013), Okbay et al. (2016), and Lee (2018).

10The hospitalisation data include all diagnoses in ICD-10 coding. We use ICD-10 J00-J99 to identify
respiratory disease as diagnosis or cause of death. ICD-10 [J40–J47] and [J09, J1, J20–J22] are used to
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respiratory disease and severe COVID-19 (Aveyard et al., 2021), we additionally use a binary

indicator for being hospitalised with, or having died from, COVID-19.11

Using participants’ eastings and northings of birth, we assign each individual one of

the 1472 Local Government Districts of birth across England and Wales.12 This spatial

information, in combination with temporal information on individuals’ year-month of birth,

allows us to identify individuals who were exposed to the smog at different time points during

the intrauterine and early childhood period. We split our sample along the time dimension

by considering whether the prenatal period precedes, overlaps, or follows the smog event on

December 5-9th, 1952. This allows us to define three groups: (i) those exposed to the smog

during childhood (i.e., those born before the smog), (ii) those exposed to the smog in utero,

and (iii) those conceived after the smog event and therefore not exposed.13

We split our sample along the spatial dimension by identifying the geographical areas

in and around London that were exposed to high pollution during the smog. To do so,

we overlay the reduced visibility and sulphur dioxide measurements from Wilkins (1954)

onto a district-level shapefile. This is shown in Figure 2, where the solid black outlines

indicate the areas with high and low reduced visibility and the dotted outline indicates

the area with high sulphur dioxide measurements.14 We define “high exposure” districts as

identify chronic and acute respiratory conditions, respectively.
11We use ICD-10 emergency codes U071 and U072 to identify COVID-19 related hospitalisations and

deaths.
12Our districts are defined based on the 1951 shapefiles from Vision of Britain (Southall and Aucott,

2009).
13Note that we do not observe gestational age at birth. Hence, we assume that the prenatal period cover

the nine months before the year-month of birth. The exact birth date cutoffs are as follows. Exposed in
childhood: 1950-Dec to 1952-Nov. Exposed in utero: 1952-Dec to 1953-Aug. Not exposed: 1953-Sep to
1956-Dec. We drop those born after December 1956 for two reasons. First, depending on their month of
birth in 1957, individuals may have been directly affected by an educational reform – the raising of the
school leaving age – which has been shown to have affected individuals’ longer-term education as well as
health outcomes (see e.g. Harmon and Walker, 1995; Davies et al., 2018), though note that the evidence on
the health effects are more mixed (see e.g., Clark and Royer, 2013). Second, the first Clean Air Act allowed
local authorities to create Smoke Control Areas; areas that prohibited all smoke emissions. The first orders
of such Smoke Control Areas were announced in 1957 (Fukushima, 2021). By dropping all births in 1957
onwards from our analysis, we avoid our estimates potentially capturing reductions in pollution due to the
Smoke Control Areas.

14The sulphur dioxide boundary, based on Wilkins (1954), shows measurements from different stations
with limited geographical coverage, resulting in a boundary with a sharp border,while the visibility boundary
is based on observations recorded by the Meteorological Office at 9am and 6pm throughout the smog event
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those that experienced severe reductions in visibility (i.e., overlap with the two inner solid

boundaries in Figure 2) and/or experienced high sulphur dioxide measurements (i.e., overlap

with the dotted boundary in Figure 2). Districts that only overlap with the outer solid

boundary, indicating the mildest reduction in visibility, are classified as “low exposure”. In

our main analysis, we do not distinguish between the high and low exposure districts but

instead refer to them jointly as “treated” districts. We compare these treated districts to

a set of “control” districts that are defined as other urban districts in England and Wales

with a population density exceeding 400 individuals per km2. In our robustness checks, we

explore the sensitivity of our results to control districts with different population densities, to

excluding the “low exposure” districts, to assigning exposure based on individuals’ reported

birth locations, as well as by defining control districts as other major cities in England and

Wales.15

Our sample selection process is as follows: we only consider the subsample of individuals

born in the years 1950 to 1956, and restrict the sample to those born in either treated or

control districts. Furthermore, we follow the (genetics) literature and restrict our sample to

those of white European ancestry.16 This leaves us with between 26,805–65,060 participants

for the main analysis, depending on the outcome of interest.

Given the potential importance of the weather for exposure to smog, we merge in an

auxiliary dataset on ambient temperature, sunshine, and rainfall. These data are available

from the MET Office in the form of an interpolated grid of measurements (MET Office,

2022). We use a grid resolution of 25km and assign measurements to individuals by linking

their location of birth, as measured in eastings and northings, to its nearest grid point.

We merge in the weather data at individuals’ birth location for the period of the smog.

(Wilkins, 1954).
15The control districts used in the main analysis are shown on a map in Figure A.1, Appendix A, and

colourised according to their population density. The data on population density is from Vision of Britain
(Southall, 2011). Ball (2018a) argues that the only other city with unusually high pollution at the time of
the London smog was Leeds. We therefore drop Leeds in all our analyses. All city boundaries are defined
according to 1951 district shapefile.

16Because genetic variation differs by ancestry, this accounts for population stratification; a form of genetic
confounding. We discuss the genetic data as well as its interpretation in more detail in Appendix D.
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Figure 2: Visibility and pollution measurements during the London smog.
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The geographic boundaries of the London smog based on the maps in Wilkins (1954). The
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dioxide measurements. The map classifies the districts into ‘high exposure’ (dark gray), ‘low
exposure’ (light gray), and ‘unexposed’ (white) districts. City of London is approximately
at the center of the map.

For ambient temperature, we assign the minimum temperature measured during the smog,

while for sunshine and rainfall, we use the average. The weather measurements capture

additional local conditions that, linked to individuals’ eastings and northings of birth, vary

within districts.17

Table 1 presents the descriptive statistics, showing that 44% of the sample is male and

individuals, on average, have 13.3 years of education. Individuals’ fluid intelligence is a

continuous score, standardised to have mean zero and unit variance. 9.2% of our sample

has been diagnosed with respiratory illness; for 7.6%, this is an acute condition, and for

1.5%, it is chronic. Finally, 0.7% of our sample has been either hospitalized or has died with

COVID-19 as primary or secondary cause.

17Figure A.2 in Appendix A shows the monthly time series of weather conditions (temperature, sunshine
and rainfall) for our sample of interest, distinguishing between the districts that are exposed to the London
smog (treated) and the control districts. As mentioned in the introduction, this shows a slightly lower
temperature in exposed districts at the time of the smog. However, the difference between treated and
control districts is minimal (less than 0.5◦C). Hence, these do not suggest any notable differences in weather
conditions between the district types.
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Table 1: Descriptive statistics for the main outcomes and variables.

(1) (2) (3)
Mean Std. dev. Obs.

Male 0.443 0.497 65,081
Educational attainment 13.318 2.274 64,702
Fluid intelligence 0.000 1.000 26,934
Respiratory disease 0.092 0.290 64,944
– Acute 0.076 0.266 64,941
– Chronic 0.015 0.120 64,941
COVID-19 0.007 0.081 65,081

Columns: (1) sample mean, (2) sample standard devia-
tion, (3) number of observations. The availability of the
variables varies and hence also the number of observations
in column (3).

4. EMPIRICAL STRATEGY

To investigate the long term effects on human capital and health outcomes of early life

pollution exposure, we exploit spatio-temporal variation in the exposure to the London smog

across birth dates and locations using a difference-in-difference approach. We distinguish

between those born inside and outside of the exposed London area (spatial variation) while

also considering the timing of birth relative to the smog event (temporal variation). Our

main specification is:

Yijt = αj + γt + τkt+ βIUE
IU
i × Li + βCHE

CH
i × Li + δXi + εijt, (1)

where Yijt denotes the outcome of interest for individual i, born in district j at year t. Thus,

αj denote district fixed effects, and γt are year of birth fixed effect. We additionally include

administrative-county-specific time (year-month) trends, denoted by τkt.
18 The vector Xi in-

18We do not include district-specific trends in our main analysis, as with over 1400 districts, some only
include few individuals. Instead, with ∼230 administrative counties, we observe a larger number of indi-
viduals in each administrative county-year and we include trends specific to these geographical regions. In
our sensitivity analysis in Appendix B, however, we show that our results are generally robust to including
administrative county-specific year (as opposed to year-month) trends, district-specific year or year-month
trends, and not including any trends.
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cludes weather conditions during the smog, gender, and month-of-birth dummies to account

for weather effects, gender differences, and seasonality in the outcome. The indicators EIU
i

and ECH
i are dummy variables that are equal to one for individuals who are exposed to the

London smog in utero and in early childhood (i.e., <age 2) respectively, while Li is a binary

variable that indicates whether the individual is born in an area of London that was exposed

to the smog (i.e., in treated districts). Hence, our identification strategy compares individ-

uals’ outcomes Yijt for those exposed at different ages (i.e., in utero and in early childhood)

to those conceived after the London smog in treated districts, relative to others born at the

same time, but in districts unaffected by the smog. The parameters of interest are therefore

βIU and βCH which parameterise, respectively, the long-term effects of being exposed to the

smog in utero and in early childhood, relative to non-exposed cohorts, accounting for any

administrative county-specific trends in Yijt, time and district fixed effects. We use robust

standard errors, clustered by district throughout.

An important issue in the above specification is potential foetal selection. Indeed, there

is evidence of increased mortality among newborns and infants (Ministry of Health, 1954),

as well as foetal loss (Hanlon, 2018; Ball, 2018b). Although these effects were relatively

small as the smog mainly affected deaths among the elderly (Ministry of Health, 1954),

they do affect our analysis and interpretation. More specifically, assuming that the smog

increased mortality among relatively frail infants, leaving the stronger ones to survive, this

may have led to an improvement in average cohort-level human capital and health outcomes

for those exposed in the affected districts. This, in turn, suggests that our estimates may be

underestimates of the effects of interest.

Our specification implicitly assumes that individuals who were born in districts that were

affected by the London smog would have had similar trends in their outcomes of interest

in the absence of the smog compared to those born in districts that were not affected. We

explore this common trend assumption empirically in Appendix C. Since those born prior to

the smog may have been exposed in early childhood, we should find common trends among
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those conceived after the smog in treated and control districts. Indeed, we find no evidence

to suggest that those born treated districts have differential trends in our outcomes of interest

compared to those born control districts.

The fact that the London smog only lasted five days additionally allows us to explore the

gestational ages that are most sensitive to pollution exposure. This identification exploits

the fact that the period of pollution exposure is substantially shorter than the length of

gestation. To do this, we replace EIU
i in Equation 1 with three binary variables indicating

the trimester in which the individual was exposed to the London smog.

5. RESULTS

5.1. The London smog

We start by examining the long-term impact of pollution exposure on human capital out-

comes. Columns (1) and (2) of Table 2 show the estimates from Equation 1 for years of

education and fluid intelligence respectively. We find no strong differences in the outcomes

among individuals exposed to the London smog prenatally or in early childhood in control

districts compared to those conceived afterwards. However, within treated districts, we find

a reduction in fluid intelligence for those exposed in utero as well as in childhood. The

latter show the largest negative effects, with 0.16 standard deviations lower fluid intelligence

score compared to those born at the same time in control districts. Being exposed in utero

reduces fluid intelligence by 0.11 standard deviations. Looking at the estimates for years

of education, we find that they are of a similar magnitude, but they are not significantly

different from zero at conventional levels.

We now turn to the long-term consequences of pollution on health outcomes. Table 3,

Column (1) presents the estimates from Equation 1 for respiratory disease. This shows an

increase in the prevalence of respiratory disease for those exposed to the smog prenatally.

More specifically, those in utero during the smog and born in the exposed areas are 2 percent-

age points more likely to be diagnosed with respiratory disease compared to those conceived
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Table 2: Difference-in-Difference estimates comparing treated to control districts defined
as urban England and Wales.

Dependent variable:

(1) (2)
Educational
attainment

Fluid
intelligence

Treated × In utero −0.100 −0.112∗∗

(0.089) (0.051)
Treated × Childhood −0.135 −0.158∗∗

(0.088) (0.068)
In utero −0.003 0.008

(0.054) (0.036)
Childhood −0.014 −0.051

(0.120) (0.074)

Observations 64,681 26,877
R2 0.08 0.067

Columns: (1) educational attainment in years, (2)
standardised fluid intelligence score. Includes fixed-
effects for district, month of birth, and year of birth.
Also controls for year-month linear time trends by
administrative county. Urban England and Wales
are defined as districts that had a population density
above 400 individuals per km2 in 1951. Standard
errors are clustered by district. (*): p < 0.1, (**):
p < 0.05, (***): p < 0.01.

after the smog. Considering that the overall incidence of respiratory disease is 9% in the

sample, this is a large effect, similar to a 22% increase. Columns (2) and (3) distinguish

between respiratory hospitalisations due to, respectively, acute and chronic causes. We find

that acute conditions are the main drivers of hospitalisations, while there is no effect of in-

trauterine pollution exposure on chronic respiratory conditions. Next, we examine whether

the negative effect on respiratory disease translates into COVID-related deaths or hospital-

izations in Column (4). With coefficients that are close to zero and with relatively large

standard errors, we find no evidence of increased COVID-related morbidity or mortality.

Next, we examine the impact of the timing of exposure relative to individuals’ gestational

age. For brevity, we here only report the estimates for outcomes that indicated some sug-
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Table 3: Difference-in-Difference estimates comparing treated to control districts defined
as urban England and Wales.

Dependent variable:

(1) (2) (3) (4)
Respiratory,

any
Respiratory,

acute
Respiratory,

chronic COVID-19

Treated × In utero 0.020∗ 0.019∗∗ −0.002 0.000
(0.011) (0.009) (0.004) (0.003)

Treated × Childhood −0.007 −0.004 −0.005 −0.001
(0.012) (0.011) (0.005) (0.003)

In utero −0.005 −0.009 0.004 0.000
(0.006) (0.006) (0.003) (0.002)

Childhood −0.008 −0.015 0.008 −0.001
(0.014) (0.012) (0.006) (0.004)

Observations 64,923 64,920 64,920 65,060
R2 0.018 0.018 0.013 0.013

Columns: (1) ever experienced a (primary) respiratory hospitalisation, (2)-(3)
splits (1) into acute and chronic causes of respiratory hospitalisation, (4) oc-
curence of hospitalisation or death due to COVID-19. Includes fixed-effects for
district, month of birth, and year of birth. Also controls for year-month linear
time trends by administrative county. Urban England and Wales are defined as
districts that had a population density above 400 individuals per km2 in 1951.
Standard errors are clustered by district. (*): p < 0.1, (**): p < 0.05, (***):
p < 0.01.

gestion of intrauterine effects. Table 4 shows the estimates for Equation 1, where we replace

the indicator for in utero exposure, EIU
i , with three indicators for the relevant trimesters.

For years of education, this suggests that second trimester exposure is the most important

and reduces education by 0.2 years on average, with third trimester and childhood exposure

also showing negative effects, though these are not significantly different from zero. For fluid

intelligence, we find the largest effects for first trimester exposure, reducing slightly with

gestational age. Similarly, the intrauterine effect on respiratory disease, shown in columns

(3) and (4), is mainly driven by exposure in the first and, to a lesser extent, the second

trimester.
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Table 4: Trimester effects. Difference-in-Difference estimates comparing treated to control
districts defined as urban England and Wales.

Dependent variable:

(1) (2) (3) (4) (5)
Educational
attainment

Fluid
intelligence

Respiratory,
any

Respiratory,
acute

Respiratory,
chronic

Treated × In utero, 1. tri. 0.064 −0.147∗∗ 0.032∗ 0.032∗∗ 0.000
(0.134) (0.073) (0.018) (0.014) (0.007)

Treated × In utero, 2. tri. −0.220∗ −0.120∗ 0.019 0.022 −0.006
(0.118) (0.068) (0.016) (0.014) (0.006)

Treated × In utero, 3. tri. −0.144 −0.068 0.009 0.003 0.000
(0.121) (0.089) (0.015) (0.014) (0.005)

Treated × Childhood −0.143 −0.155∗∗ −0.008 −0.005 −0.005
(0.088) (0.069) (0.012) (0.011) (0.005)

In utero 1. tri. −0.007 −0.009 −0.004 −0.008 0.005
(0.063) (0.047) (0.008) (0.007) (0.003)

In utero 2. tri. −0.049 0.006 0.003 −0.004 0.006
(0.061) (0.040) (0.009) (0.008) (0.004)

In utero 3. tri. 0.084 0.042 −0.023∗∗∗ −0.020∗∗∗ −0.002
(0.081) (0.051) (0.008) (0.007) (0.003)

Childhood 0.066 −0.008 −0.027∗ −0.029∗∗ 0.002
(0.134) (0.080) (0.015) (0.013) (0.007)

Observations 64,681 26,877 64,923 64,920 64,920
R2 0.08 0.067 0.018 0.018 0.013

Columns: (1) educational attainment in years, (2) standardised fluid intelligence score, (3) ever experienced
a (primary) respiratory hospitalisation, (4)-(5) splits (3) into acute and chronic causes of respiratory hospi-
talisation. Includes fixed-effects for district, month of birth, and year of birth. Also controls for year-month
linear time trends by administrative county. Urban England and Wales are defined as districts that had a
population density above 400 individuals per km2 in 1951. Standard errors are clustered by district. (*):
p < 0.1, (**): p < 0.05, (***): p < 0.01.

5.2. Treatment effect heterogeneity

We next explore potential heterogeneity of treatment effects. For this, we investigate three

sources of variation: heterogeneity with respect to individuals’ genetic predisposition, gender,

and socio-economic status. We discuss each in turn.

5.2.1. Genetic heterogeneity

To directly incorporate the genetic component into the analysis, we construct variables mea-

suring individuals’ ‘genetic predisposition’ to the outcomes of interest. We do this by running

our own tailor-made Genome-Wide Association Study (GWAS) for each of the outcomes on

UK Biobank participants born in the years outside our analysis sample (i.e., 1934–1949 and
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1957–1970), as well as those born in districts that are not defined as either treated or con-

trol districts during the study years 1950-1956.19 We use the summary statistics from this

GWAS to construct so-called polygenic scores (also known as polygenic indices), measuring

one’s ‘genetic predisposition’ to the relevant outcome, for those in the (independent) analysis

sample covering the birth cohorts 1950–1956. We do the latter using LDpred2, a Bayesian

genetic risk prediction method (Vilhjálmsson et al., 2015; Privé et al., 2020). For ease of

interpretation, all polygenic scores are standardised to have mean zero and unit variance in

the analysis sample.

To investigate the extent to which one’s genetic variation may protect or exacerbate the

effects of early life pollution exposure, Table 5 estimates the main difference-in-difference

analysis distinguishing between individuals with a high versus low genetic predisposition to

the outcome, defined as having a polygenic score above or below the median, shown in Panel

(a) and (b) respectively. Note that the polygenic score is specific to the outcome of interest.

For example, the polygenic score in Columns (1) and (2) of Table 5 is the best linear genetic

predictor for education and fluid intelligence, respectively. This shows that the zero effect

of the smog on educational attainment conceals substantial genetic heterogeneity. More

precisely, the negative effect is substantially larger for those with a high polygenic score for

education, for both prenatal and childhood exposure, with the estimates being close to zero

for those with a polygenic score below the median.

To explore what may be driving the negative effect on educational attainment for those

with a high polygenic score, Table A.2 in Appendix A examines the effects of pollution

exposure on the probability of reaching different levels of qualifications. This shows that the

negative effect of pre- and post-natal pollution exposure for those with a high polygenic score

is driven by a reduction in the probability of obtaining an upper secondary qualification (i.e.,

A-levels, university/college degrees, and professional qualifications), and – correspondingly

– a higher probability of exiting the education system with lower secondary qualifications

19See Appendix D for an introduction to genetics, an explanation of the genetic terms used here, as well
as more detail on the construction of the ‘genetic scores’.
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(O-levels, CSEs, GCSEs), or no qualifications. This suggests that pollution exposure reduces

the human capital potential, in particular among those with a high genetic potential.

There is little difference between the estimates for individuals with high and low polygenic

scores for fluid intelligence, with both showing a negative effect of smog exposure, though

with the smaller sample sizes, they are not significantly different from zero. Furthermore,

we find that the effects of prenatal smog exposure on respiratory disease, in particular acute

respiratory conditions, are larger for those with a high polygenic score, suggesting that the

respiratory health of individuals who are genetically predisposed is more vulnerable to severe

pollution events.20

5.2.2. Heterogeneity by gender

We next investigate whether the effect of exposure to the smog is similar for men and women.

Table 6 presents the estimates for our main outcomes of years of education, fluid intelligence

and respiratory disease, with Panel (a) and (b) presenting the estimates for women and men,

respectively. This shows that the negative effect of smog exposure on years of education in

the full sample is largely driven by women, with much smaller effect estimates for men. In

particular, women who were exposed to the smog prenatally and in childhood have 0.12 and

0.24 fewer years of education respectively, compared to those not exposed and relative to

women born in control areas. For fluid intelligence and respiratory disease, we do not see

large differences between men and women, though the estimates are not always significantly

different from zero due to the reduced sample sizes and with that, larger standard errors.21

5.2.3. Heterogeneity by socio-economic status

Finally, we explore potential treatment effect heterogeneity with respect to socio-economic

status. Although the UK Biobank does not include data on individuals’ (or parental) socio-

20Our genetic heterogeneity analysis is robust to the use of polygenic scores constructed from an alternative
GWAS, obtained from the polygenic index repository (Becker et al., 2021).

21In Table A.3, we model the gender ratio as the outcome of interest to explore whether the smog caused
differential mortality by gender. We find no gender differences, suggesting that the differential effects in
Table 6 are driven by scarring rather than selection.
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Table 5: Heterogeneity across genetics. Difference-in-Difference estimates comparing
treated to control districts defined as urban England and Wales.

Dependent variable:

(1) (2) (3) (4) (5)
Educational
attainment

Fluid
intelligence

Respiratory,
any

Respiratory,
acute

Respiratory,
chronic

Panel (a) – High polygenic score
Treated × In utero −0.249∗∗ −0.090 0.019 0.034∗∗ −0.007

(0.107) (0.073) (0.017) (0.015) (0.007)
Treated × Childhood −0.197∗ −0.153 −0.015 0.002 −0.011

(0.118) (0.095) (0.019) (0.018) (0.008)
In utero −0.010 0.020 −0.016∗ −0.016∗ 0.009∗∗

(0.076) (0.050) (0.010) (0.008) (0.004)
Childhood −0.168 −0.054 −0.007 −0.012 0.011

(0.164) (0.095) (0.020) (0.020) (0.010)

Panel (b) – Low polygenic score
Treated × In utero 0.096 −0.087 0.022 0.005 0.003

(0.152) (0.084) (0.014) (0.013) (0.005)
Treated × Childhood −0.010 −0.113 0.007 −0.004 0.001

(0.161) (0.104) (0.016) (0.014) (0.005)
In utero −0.016 −0.027 0.007 −0.002 −0.002

(0.068) (0.047) (0.008) (0.008) (0.004)
Childhood 0.111 −0.037 −0.006 −0.015 0.006

(0.152) (0.113) (0.018) (0.016) (0.006)

Columns: (1) educational attainment in years, (2) standardised fluid intelligence score, (3) ever
experienced a (primary) respiratory hospitalisation, (4)-(5) splits (3) into acute and chronic causes of
respiratory hospitalisation Panels: (a) subsample with above-median polygenic score. (b) subsample
with below-median polygenic score. Includes fixed-effects for district, month of birth, and year of
birth. Also controls for year-month linear time trends by administrative county. Urban England
and Wales are defined as districts that had a population density above 400 individuals per km2 in
1951. Standard errors are clustered by district. (*): p < 0.1, (**): p < 0.05, (***): p < 0.01.

economic position at birth, and because individuals’ socio-economic position in adulthood

is endogenous to the smog exposure, we merge the 1951 UK Census to the UK Biobank,

allowing us to characterize the local area of birth in terms of its socio-economic composition

relative to other areas in England and Wales. As such, we create measures of social class

at the district level, indicating the share of different social classes defined according to

individuals’ occupation. This allows us to classify individuals as being born into different

social class environments. To identify ‘high social class’ districts, we focus on districts with

an above-median share of social classes I and II (including professional, managerial, and
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Table 6: Heterogeneity across sex. Difference-in-Difference estimates comparing treated to
control districts defined as urban England and Wales.

Dependent variable:

(1) (2) (3)
Educational
attainment

Fluid
intelligence

Respiratory,
any

Panel (a) – Female
Treated × In utero −0.118 −0.074 0.020

(0.128) (0.072) (0.013)
Treated × Childhood −0.238∗ −0.152∗ −0.010

(0.130) (0.083) (0.015)
In utero 0.077 −0.028 −0.004

(0.074) (0.048) (0.008)
Childhood 0.127 −0.064 −0.012

(0.149) (0.114) (0.018)

Panel (b) – Male
Treated × In utero −0.084 −0.163∗ 0.022

(0.113) (0.085) (0.017)
Treated × Childhood −0.022 −0.185∗ −0.003

(0.135) (0.105) (0.019)
In utero −0.080 0.055 −0.007

(0.077) (0.051) (0.010)
Childhood −0.159 −0.026 −0.004

(0.175) (0.103) (0.023)

Columns: (1) educational attainment in years, (2) standardised fluid
intelligence score, (3) ever experienced a (primary) respiratory hos-
pitalisation. Panels: (a) female subsample, (b) male subsample. In-
cludes fixed-effects for district, month of birth, and year of birth.
Also controls for year-month linear time trends by administrative
county. Urban England and Wales are defined as districts that had a
population density above 400 individuals per km2 in 1951. Standard
errors are clustered by district. (*): p < 0.1, (**): p < 0.05, (***):
p < 0.01.
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intermediate occupations). Similarly, we use districts with above-median shares of social

classes IV and V to identify ‘low social class’ districts (including partly skilled and unskilled

occupations).

We estimate the main specification for these subsamples and report the results in Table 7.

Panels (a)-(b) show the estimates from the high social class subsample, while Panels (c)-

(d) report those for the low social class subsample. Overall, we find adverse effects of smog

exposure across almost all groups, but with the reduced sample sizes, the standard errors are

larger and they are not always significantly different from zero. However, the larger estimates

among the low social classes suggest that the impact is disproportionally felt among those

born in districts characterized by a lower socio-economic status.

For educational attainment in Column (1), we find large negative estimates among the

lower social classes, and significantly so for childhood exposure, while the effects among

the high social classes are estimated closer to zero. This suggests that the negative, but

insignificant estimate in the main analysis is driven primarily by the lower social classes. For

fluid intelligence in Column (2), we find negative estimates of pre- and postnatal exposure in

all subgroups, though with variation in magnitude and statistical significance. Notably, the

estimates for childhood exposure are larger in low relative to high social class districts, and

they are significantly different from zero in panel (d). Similar to the findings for educational

attainment, these results suggest larger cognitive impacts of pollution for individuals born

in districts characterized by a larger proportion of lower social classes.

Turning to respiratory disease in Column (3), we find, consistent with the main analysis,

that intrauterine exposure increases the incidence of respiratory disease. Furthermore, the

estimates are almost double the size for low compared to high social classes, suggesting a

stronger impact of pollution exposure on the former.
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Table 7: Heterogeneity across SES groups. Difference-in-Difference estimates comparing
treated to control districts defined as urban England and Wales.

Dependent variable:

(1) (2) (3)
Educational
attainment

Fluid
intelligence

Respiratory,
any

Panel (a) – High share of social class I (very high social class)
Treated × In utero −0.034 −0.137∗ 0.018

(0.115) (0.078) (0.013)
Treated × Childhood −0.035 −0.164 −0.001

(0.105) (0.101) (0.014)
In utero −0.070 −0.062 −0.002

(0.094) (0.068) (0.011)
Childhood 0.080 −0.027 0.003

(0.194) (0.136) (0.024)

Panel (b) – High share of social class I and II (high social class)
Treated × In utero −0.039 −0.099 0.020

(0.132) (0.097) (0.015)
Treated × Childhood 0.019 −0.122 −0.009

(0.130) (0.117) (0.016)
In utero −0.103 −0.126 0.005

(0.128) (0.084) (0.015)
Childhood 0.026 −0.150 0.044

(0.238) (0.163) (0.031)

Panel (c) – High share of social class IV and V (low social class)
Treated × In utero −0.260 −0.066 0.047

(0.217) (0.137) (0.033)
Treated × Childhood −0.334∗ −0.226 0.003

(0.189) (0.184) (0.019)
In utero 0.042 0.044 −0.010

(0.085) (0.055) (0.010)
Childhood 0.072 −0.006 −0.021

(0.168) (0.089) (0.023)

Panel (d) – High share of social class V (very low social class)
Treated × In utero −0.142 −0.130∗∗ 0.038∗∗

(0.127) (0.063) (0.017)
Treated × Childhood −0.208∗ −0.280∗∗∗ 0.014

(0.114) (0.086) (0.019)
In utero −0.036 0.050 −0.009

(0.059) (0.038) (0.007)
Childhood −0.124 −0.001 −0.022

(0.139) (0.081) (0.016)

Columns: (1) educational attainment in years, (2) standardised fluid intel-
ligence score, (3) ever experienced a (primary) respiratory hospitalisation.
Panels: (a)-(b) subsamples with individuals born in districts with high shares
of high social classes. (c)-(d) subsamples with individuals born in districts
with high shares of low social classes. Includes fixed-effects for district, month
of birth, and year of birth. Also controls for year-month linear time trends by
administrative county. Urban England and Wales are defined as districts that
had a population density above 400 individuals per km2 in 1951. Standard
errors are clustered by district. (*): p < 0.1, (**): p < 0.05, (***): p < 0.01.
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6. ROBUSTNESS ANALYSIS

We next present a range of sensitivity analyses to explore the robustness of our main findings.

First, we investigate the sensitivity of our estimates to the definition of the treatment and

control group. Second, we explore whether our estimates are robust to different definitions

of the reference group (i.e., those conceived after the smog). Third, we examine whether the

exposure effects differ for exposure in infancy versus early childhood. And fourth, we inves-

tigate the robustness to different specifications of the time trend controls. In all robustness

checks, we run our analyses only on the three main outcomes above: educational attainment,

fluid intelligence and respiratory disease.

6.1. Definition of treated and control districts

We start by exploring the sensitivity of our estimates to the definition of treated and control

districts. For this, we examine (1) alternative definitions of treated districts, and (2) alter-

native definitions of control districts. First, we consider different definitions of the exposed

districts. The results are reported in Table 8. In Panel (a), we start by dropping the districts

classified as low exposure (defined in Section 3). Assuming these districts were less exposed

compared to Central London, excluding them may increase our effect estimates. Panel (a)

indeed shows that dropping low exposure districts results in estimates that are similar or

slightly larger relative to those in the main analysis.

To reduce measurement error in the exposure classifications, Panel (b) exploits the ac-

tual birth locations of individuals (at a 1 km2 resolution) and assigns exposure based on

the individual’s eastings and northings of birth relative to the pollution boundaries. This

classification is illustrated graphically in Figure 3, showing the actual (rounded) locations

of birth of UK Biobank participants within the London area. Table 8 shows that excluding

individuals born outside the high exposure boundaries, but in districts that are (at least

partially) exposed does not affect our estimates.

Second, our main analysis defines control districts as those with a population density of
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Table 8: Definition of exposure. Difference-in-Difference estimates comparing treated to
control districts defined as urban England and Wales.

Sample:

(1) (2) (3)
Educational
attainment

Fluid
intelligence

Respiratory,
any

Panel (a) – Districts, low exposure dropped
Treated × In utero −0.120 −0.105∗∗ 0.018

(0.095) (0.052) (0.012)
Treated × Childhood −0.147 −0.185∗∗∗ −0.015

(0.090) (0.068) (0.013)
In utero −0.001 0.012 −0.005

(0.054) (0.036) (0.006)
Childhood −0.023 −0.033 −0.007

(0.121) (0.074) (0.014)

Panel (b) – Birth location
Treated × In utero −0.099 −0.100∗∗ 0.020∗

(0.091) (0.051) (0.011)
Treated × Childhood −0.130 −0.136∗∗ −0.005

(0.089) (0.068) (0.013)
In utero −0.004 0.005 −0.005

(0.053) (0.035) (0.006)
Childhood −0.016 −0.057 −0.008

(0.120) (0.074) (0.014)

Columns: (1) educational attainment in years, (2) standardised fluid
intelligence score, (3) ever experienced a (primary) respiratory hospi-
talisation. Panels: (a) exposed districts defined as districts overlapping
with any pollution boundary but districts with low exposure have been
dropped, (b) exposed individuals defined as individuals with birth lo-
cation inside any pollution boundary. Includes fixed-effects for district,
month of birth, and year of birth. Also controls for year-month linear
time trends by administrative county. Urban England and Wales are
defined as districts that had a population density above 400 individuals
per km2 in 1951. Standard errors are clustered by district. (*): p < 0.1,
(**): p < 0.05, (***): p < 0.01.
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Figure 3: Visibility and pollution measurements during the London smog.
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The geographic boundaries of the London smog based on the maps in Wilkins (1954). The
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sulphur dioxide measurements. The map shows the classification of individuals’ birth loca-
tions into ‘high exposure’ (dark gray), ‘low exposure’ (light gray), and ‘unexposed’ (white).
City of London is approximately at the center of the map.

400 individuals per km2. We here investigate the sensitivity of our results to using different

population density thresholds. Figure 4 presents the estimates on the vertical axis obtained

from regressions that define the control districts as those with different population densities,

as indicated on the horizontal axis. The leftmost estimate corresponds to that of our main

analysis. For educational attainment in Panel (a), we find insignificant negative estimates

for exposure to the smog throughout. However, using more densely populated control dis-

tricts, the estimates for prenatal exposure move closer to zero, while those for postnatal

exposure increase in (absolute) magnitude, and the standard errors become larger due to

the reduction in sample size. The estimates for fluid intelligence in Panel (b) increase in

(absolute) magnitude as the control districts become more densely populated, particularly

for childhood exposure. This suggests that the estimates vary somewhat depending on the

definition of the control district. However, they are always negative and significantly differ-

ent from zero. For Panel (c), the effect of prenatal exposure to the smog on the likelihood
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of being diagnosed with respiratory disease is relatively robust to the use of more densely

populated control districts.

Figure 4: Sensitivity of main estimates with respect to the urban density cutoff (population
per km2).
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The vertical bars show 0.90 confidence intervals around the point estimates.

Finally, instead of using population density to define the control districts, we use the

main major cities in England and Wales: Birmingham, Bristol, Cardiff, Leicester, Liverpool,

Manchester, Newcastle, Nottingham and Sheffield. Indeed, one interpretation of our results

is that the treated not only have a pollution shock, but also face an accumulation of pollution

throughout their childhood, which may affect their later-life health. By using specific major

cities only in the control group, we ensure that both the treated and control groups experience

heightened pollution throughout their early lives. Table 9 shows that this reduces the sample

size substantially and with that, increases the standard errors. Despite that, the magnitude

of the estimates are very similar to those reported above. All together, this suggests that

our findings are not very sensitive to the definition of treatment and control districts.
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Table 9: Difference-in-Difference estimates comparing treated to control cities.

Dependent variable:

(1) (2) (3)
Educational
attainment

Fluid
intelligence

Respiratory,
any

Treated × In utero −0.099 −0.177∗∗∗ 0.020∗

(0.105) (0.050) (0.012)
Treated × Childhood −0.133 −0.269∗∗∗ 0.000

(0.099) (0.077) (0.017)
In utero −0.040 0.071 −0.007

(0.083) (0.053) (0.008)
Childhood −0.076 0.005 −0.016

(0.212) (0.130) (0.021)

Observations 27,279 12,509 27,386
R2 0.072 0.042 0.012

Columns: (1) educational attainment in years, (2) standardised fluid
intelligence score, (3) ever experienced a (primary) respiratory hos-
pitalisation, (4)-(5) splits (2) into acute and chronic causes of res-
piratory hospitalisation. The ‘control’ cities are: Bristol, Cardiff,
Leicester, Liverpool, Manchester, Newcastle, Nottingham, Sheffield,
and Birmingham (defined according to 1951 districts). Includes fixed-
effects for district, month of birth, and year of birth. Also controls
for district-specific linear time trends. Standard errors are clustered
by district. (*): p < 0.1, (**): p < 0.05, (***): p < 0.01.

6.2. Definition of the reference group

Our main analysis compares those exposed to the smog in utero or in early childhood to

those conceived after the smog. The latter (reference, or unexposed) group includes those

born between September 1953 and December 1956. We next explore the sensitivity of this

definition by restricting the year-months of birth to be closer to the smog, with that, reducing

our sample size. Figure 5 shows the estimates of interest on the vertical axis, with the

horizontal axis showing the end date used to define those who are not exposed to the smog

(the right-most estimate, December 1956, is our main estimate above).

This shows that our results are relatively stable across the different definitions of the

reference (unexposed) group. As we restrict the reference group to be born closer to the smog
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event in panel (a) (i.e., as we move to the left on the horizontal axis), the effect of childhood

exposure to the smog increases in (absolute) terms, but with the larger standard errors, its

confidence intervals always overlap with zero. The estimate for prenatal exposure remains

around -0.1, but it is insignificantly different from zero throughout. For fluid intelligence

in Panel (b), the estimates for prenatal and childhood exposure to the smog are negative,

and are almost always significantly different from zero, though with slightly more variation

in the estimate for childhood exposure. Finally, in Panel (c), the estimate for the effect of

childhood exposure on the probability of being diagnosed with respiratory disease increases

in (absolute) magnitude and the effect of prenatal exposure reduces as we restrict the size

of the reference group.

Figure 5: Sensitivity of main estimates with respect to the birth date cutoff that defines
the reference group.
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The vertical bars show 0.90 confidence intervals around the point estimates.

6.3. Childhood exposure

We next explore whether the childhood exposure effect differs for exposure in infancy (age

0) or later (age 1). Table 10 presents the estimates that distinguish between the two ages

in early childhood, showing that the effect on fluid intelligence is driven mainly by exposure

in infancy. We also find larger effects on years of education for exposure in infancy. Al-
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though the effect of exposure at age 1 remains negative on education and intelligence, it is

insignificantly different from zero for both outcomes.

Table 10: Childhood effects at age 0 and 1. Difference-in-Difference estimates comparing
treated to control districts defined as urban England and Wales.

Dependent variable:

(1) (2) (3)
Educational
attainment

Fluid
intelligence

Respiratory,
any

Treated × In utero −0.093 −0.094∗ 0.022∗∗

(0.090) (0.051) (0.011)
Treated × Childhood, age 0 −0.142 −0.172∗∗ −0.010

(0.088) (0.067) (0.012)
Treated × Childhood, age 1 −0.107 −0.089 0.005

(0.114) (0.082) (0.015)
In utero −0.012 0.005 −0.005

(0.056) (0.036) (0.006)
Childhood, age 0 −0.050 −0.043 −0.005

(0.126) (0.079) (0.015)
Childhood, age 1 −0.181 −0.044 0.001

(0.181) (0.122) (0.022)

Observations 64,681 26,877 64,923
R2 0.08 0.067 0.018

Columns: (1) educational attainment in years, (2) standardised fluid in-
telligence score, (3) ever experienced a (primary) respiratory hospitalisa-
tion. Includes fixed-effects for district, month of birth, and year of birth.
Also controls for year-month linear time trends by administrative county.
Urban England and Wales are defined as districts that had a population
density above 400 individuals per km2 in 1951. Standard errors are clus-
tered by district. (*): p < 0.1, (**): p < 0.05, (***): p < 0.01.

7. CONCLUSIONS

There is a substantial literature documenting the contemporaneous effects of exposure to

pollution on individuals’ human capital and health outcomes. Much less is known, however,

about the potential longer-term effects of early-life pollution exposure, despite the fact that

the intrauterine and early childhood environment are crucial for shaping individuals’ out-
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comes in older age. Indeed, most of the literature that investigates the effects of early-life

pollution focuses on short-term effects, such as outcomes at birth, finding largely negative

impacts. A lack of historical pollution data with good coverage of geographical locations

means it is often not possible to use actual pollution measurements and relate those to

later-life outcomes. To shed light on the longer-term effects, research instead has to rely on

reduced form analysis and natural experiments. That is exactly what we do in this paper.

Indeed, we are among the first to estimate the very long-term effects of being exposed to a

severe pollution event on a range of outcomes measured at age ∼60.

With that, we present new evidence of the very long-term effects of an early-life pollution

shock. The London smog affected Londoners between 5–9 December 1952, when a thermal

inversion trapped pollution over London, which – due to weather conditions at the time – was

not dispersed. We focus on the long-term human capital and health effects of exposure to

the smog. We compare individuals exposed to the smog in London in either the intrauterine

or infancy period to those born in other urban areas, as well as to those conceived after the

smog. Our difference-in-difference analysis shows that those exposed to the smog have lower

fluid intelligence scores, with some suggestive evidence that they also have fewer years of

education, though this is not always sufficiently precisely estimated. We find that exposure in

infancy has slightly larger effects compared to exposure in utero. Investigating the long-term

health effects, we find a large increase in the probability of being diagnosed with respiratory

disease due to intrauterine exposure, which is driven by acute respiratory conditions.

We next study potential differential effects of in utero exposure, distinguishing between

exposure in the first, second, and third trimester. We find some evidence for differential

gestational effects for fluid intelligence, with larger effects for exposure at early gestational

ages. Similarly, we find that the increase in respiratory conditions is driven by first trimester

exposure.

We then model the heterogeneity of our effect estimates with respect to three sources

of (predetermined) variation: individuals’ genetic predisposition, gender and socio-economic
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status at birth. We estimate the extent to which individuals’ genetic variation can moderate

the effects of exogenous early-life pollution exposure. Indeed, individuals with a high ‘genetic

predisposition’ for education may be able to overcome such adverse early-life environments.

Our findings, however, show that the negative effects of smog exposure on educational at-

tainment are driven by individuals with a high polygenic score for education, and that the

increase in respiratory disease due to prenatal smog exposure is larger for individuals with

a high polygenic score, suggesting that a higher polygenic score increases individuals’ vul-

nerability with respect to respiratory conditions following a severe pollution event. This

highlights the joint role that ‘nature’ and ‘nurture’ play in shaping individuals’ outcomes,

and presents clear evidence against genetic (or environmental) determinism; the belief that

one’s outcomes are solely affected by genetic variation (or environmental characteristics).

Similarly, we find that the negative effect on years of schooling is driven by women, and

that the worsening of human capital as well as respiratory health is driven by those in low

socio-economic status environments.

Our estimates are quantitatively and qualitatively important, but there are three key

points regarding their interpretation. First, they estimate the effects of exposure to a severe

pollution event. Indeed, London nowadays experiences pollution levels that are still high,

but nowhere near those observed in 1952. Hence, our results cannot be extrapolated to smog

events occurring in London or most other cities in Europe nowadays. Despite that, they do

compare to smog events that are happening each year in industrialising economies such as

India and China. Hence, our findings are relevant to those settings, suggesting that such

extreme pollution events do not only affect contemporaneous outcomes, but also have longer

term adverse effects.

Second, our analysis compares pollution during the smog to ‘standard’ pollution levels

in control districts as well as in the years immediately after the smog. Although these

levels of pollution are indeed lower than those in inner London, they are not comparable

to current levels of pollution. Hence, our estimates capture the effect of being exposed to
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a large pollution shock, relative to already high levels throughout early childhood. Again,

the results can therefore better be extrapolated to industrialising economies with higher

pollution levels in general, as well as larger pollution shocks.

Third, our estimates are likely to be a lower bound of the ‘true’ effect of the smog. This

is the case for three reasons. First, the evidence suggests that the smog led to an increase

in infant mortality and foetal loss. Assuming that those who died were more vulnerable

and those who survived were stronger, this suggests that our estimates are likely to be a

lower bound.22 Second, and relatedly, since individuals in the UK Biobank were invited to

participate in 2006-2010, we implicitly condition on survival until this time. In the presence

of frailty selection, where fragile individuals are more likely to die prior to assessment leaving

stronger survivors in the sample, our estimates are likely to be attenuated. The third reason

why our estimates are likely to be downward biased is due to measurement error. For

one, since we do not observe gestational age, we assume all individuals were in utero for

nine months prior to their year-month of birth, and we assume individuals were born on

the first of the month. In reality, some individuals would have had a shorter gestational

period, potentially misclassifying them as being exposed to the smog. Two, we are reliant

on publications from the 1950s, showing the extent of the smog as well as its variability

across London. We therefore define individuals as either exposed or unexposed, but in

reality, pollution would have shown more regional variability that we are unable to capture

in our analyses. Three, related to this, we observe individuals’ location of birth (eastings and

northings) with a 1km2 resolution. Given that pollution changes across space, individuals

who are born on the boundary of our exposed and unexposed districts may be misclassified,

leading to additional measurement error.

As with any research, our analysis comes with its limitations. First, we cannot identify

22To explore potential selective mortality with respect to gender, using the knowledge that male foetuses
are generally frailer than female foetuses, we estimate the effect of the smog on the probability of being male.
However, this analysis does not show significant effects on the gender ratio, suggesting there is no strong
evidence of gender differences in survival. We do not report the results here, but they are available from the
authors upon request.
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which pollutants matter more for individuals’ human capital and health outcomes. Indeed,

the literature suggests that multiple pollutants increased during the smog, and we cannot

determine whether one or more of these are driving the deterioration in later-life outcomes.

Second, the UK Biobank is a large database of those aged 45–69 in the United Kingdom.

However, it is not representative of the population, since recruitment into the study was

voluntary. Indeed, UK Biobank participants are generally healthier and wealthier than the

general UK population (Fry et al., 2017). Having said that, the data is unique in combining

information from questionnaires, objective measurements, genetic information, and admin-

istrative data on a very large sample of UK residents, with information on year-month and

location of birth, allowing us to identify which participants were exposed and which were not.

With that, our paper highlights the very long-run pollution effects, identifying reductions in

individuals’ human capital and health outcomes up to ∼60 years after the actual exposure.

Finally, our findings have clear policy implications. They suggest that reducing pollution

has large, long-term benefits for the population. From the population perspective, given the

ease and low cost of pollution forecasting, the benefits of avoiding pollution are substantial.

From a policy maker perspective, this should encourage the implementation of incentives

or regulation that reduce pollution from e.g., residential homes, firms, or transportation.

Indeed, we show that creating environments that improve individuals’ human capital and

health outcomes in the long-term starts with improving environments before they are born.
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Vilhjálmsson, Bjarni J et al. (2015). “Modeling linkage disequilibrium increases accuracy of
polygenic risk scores”. In: The american journal of human genetics 97.4, pp. 576–592.

von Hinke, Stephanie, Nigel Rice, and Emma Tominey (2019). Mental Health around Preg-
nancy and Child Development from Early Childhood to Adolescence. Tech. rep.

von Hinke, Stephanie et al. (2014). “Alcohol exposure in utero and child academic achieve-
ment”. In: The Economic Journal 124.576, pp. 634–667.

Warren Spring Laboratory (1967). The investigation of Atmospheric Pollution 1958–1966:
Thirty-second report. Her Majesty’s Stationery Office, London.

Wilkins, ET (1954). “Air pollution and the London fog of December, 1952”. In: Journal of
the Royal Sanitary Institute 74.1, pp. 1–21.

Zhang, Xin, Xi Chen, and Xiaobo Zhang (2018). “The impact of exposure to air pollution
on cognitive performance”. In: Proceedings of the National Academy of Sciences 115.37,
pp. 9193–9197.

41

https://doi.org/10.1257/jep.25.4.57
https://doi.org/10.3386/w22348
https://doi.org/10.3386/w22348
https://doi.org/10.1007/s10519-015-9739-1
https://doi.org/10.1007/s10519-015-9739-1
http://www.visionofbritain.org.uk
http://www.visionofbritain.org.uk


ONLINE APPENDIX

A. Additional Tables and Figures

Figure A.1: Population density (in population per km2) at the district level in England
and Wales.
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The map uses data on population density and districts from Vision of Britain (Southall,
2011)
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Table A.1: Mapping between qualifications and years of education.

Qualifications Years of education

College or university degree 16
A/AS levels + NVQ/HND/HNC 14
A/AS levels + Other professional qualifications 15
NVQ/HND/HNC 13
Other professional qualifications 12
A/AS levels 13
CSEs, GCSEs, or O levels 11
No qualifications 10

Columns: (1) the qualifications recorded in the UK Biobank, (2) the
assigned years of education. A plus indicates that the individual must
hold both of the specified qualifications simultaneously.

Table A.2: Heterogeneity across genetics – Qualifications. Difference-in-Difference esti-
mates comparing treated to control districts defined as urban England and Wales.

Exits education system with qualification:

(1) (2) (3)
Upper secondary Lower secondary None

Panel (a) – High polygenic score
Treated × In utero −0.052∗∗∗ 0.047∗∗∗ 0.005

(0.019) (0.017) (0.009)
Treated × Childhood −0.043∗∗ 0.023 0.020∗∗

(0.020) (0.019) (0.010)
In utero 0.013 −0.015 0.002

(0.015) (0.012) (0.008)
Childhood −0.008 0.011 −0.002

(0.032) (0.024) (0.019)

Panel (b) – Low polygenic score
Treated × In utero 0.016 −0.028 0.012

(0.031) (0.022) (0.021)
Treated × Childhood −0.003 0.040 −0.036

(0.033) (0.027) (0.022)
In utero 0.001 0.015 −0.016

(0.015) (0.014) (0.014)
Childhood 0.046 −0.023 −0.023

(0.031) (0.026) (0.028)

Columns: (1) exits at upper secondary level (university/college degree, A/AS-
levels, professional/vocational training), (2) exits at lower secondary level (CSEs,
GCSEs, O-levels), (3) exits with no qualifications. Panels: (a) high PGS subsam-
ple, (b) low PGS subsample. Includes fixed-effects for district, month of birth, and
year of birth. Also controls for year-month linear time trends by administrative
county. Urban England and Wales are defined as districts that had a population
density above 400 individuals per km2 in 1951. Standard errors are clustered by
district. (*): p < 0.1, (**): p < 0.05, (***): p < 0.01.
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Figure A.2: Time series for minimum temperature, sunshine, and rainfall, in control and
treated districts.
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We take the measurements at the birth locations of all individuals in our sample and average
these by year-month and treatment status. Before averaging we remove seasonality using a
set of month dummies.
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Table A.3: Difference-in-Difference estimates of a male birth, comparing treated to control
districts defined as urban England and Wales.

Dependent variable:

(1)
Male

Treated × In utero −0.007
(0.021)

Treated × Childhood 0.011
(0.020)

In utero 0.001
(0.011)

Childhood −0.044∗∗

(0.022)

Observations 65,060
R2 0.014

Columns: (1) being born as male. Includes
fixed-effects for district, month of birth, and
year of birth. Also controls for year-month
linear time trends by administrative county.
Urban England and Wales are defined as dis-
tricts that had a population density above 400
individuals per km2 in 1951. Standard errors
are clustered by district. (*): p < 0.1, (**):
p < 0.05, (***): p < 0.01.
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B. Choice of time trends

The main analysis controls for administrative-county-specific (year-month) trends to allow

the outcome of interest to trend differently in each administrative county. We here explore

the sensitivity of the trend-specifications. Panel (a) of Table B.1, includes administrative

county-specific annual (as opposed to year-month) trends. Panel (b) specifies year-month

trends for each of the over 1400 districts observed in our data, and Panel (c) allows for

district-specific annual trends. Finally, Panel (d) does not include any trends and only

accounts for year of birth dummies.

Table B.1: Specification of trends. Difference-in-Difference estimates comparing treated to
control districts defined as urban England and Wales.

Dependent variable:

(1) (2) (3)
Educational
attainment

Fluid
intelligence

Respiratory,
any

Panel (a) – Year by administrative county
Treated × In utero −0.087 −0.101∗∗ 0.016

(0.089) (0.050) (0.010)
Treated × Childhood −0.119 −0.142∗∗ −0.014

(0.086) (0.066) (0.012)

Panel (b) – Year-month by district
Treated × In utero −0.120 −0.162∗∗∗ 0.022∗

(0.091) (0.048) (0.012)
Treated × Childhood −0.174∗ −0.245∗∗∗ −0.003

(0.097) (0.064) (0.016)

Panel (c) – Year by district
Treated × In utero −0.112 −0.148∗∗∗ 0.017

(0.090) (0.047) (0.012)
Treated × Childhood −0.167∗ −0.228∗∗∗ −0.013

(0.093) (0.062) (0.015)

Panel (d) – No trend
Treated × In utero −0.050 −0.072∗ 0.024∗∗∗

(0.075) (0.043) (0.008)
Treated × Childhood −0.047 −0.086∗∗ −0.001

(0.047) (0.034) (0.008)

Columns: (1) educational attainment in years, (2) standardised fluid intel-
ligence score, (3) ever experienced a (primary) respiratory hospitalisation.
Panels: (a) Year trend at administrative county (n = 174) level, (b) Year-
month trend at district (n = 785) level, (c) Year trend at district level. (d)
No trends. We always include district FE, year-of-birth FE, and month-of-
birth FE. Standard errors are clustered by district.
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The estimates are generally consistent across the different specifications. For educational

attainment, we find negative estimates throughout for both in utero and childhood exposure.

For fluid intelligence, we find clear evidence of a negative effect of smog exposure that is

slightly larger for exposure in childhood compared to prenatally. Finally, for respiratory

disease, the estimates are always positive, but they are slightly smaller when accounting

for annual trends at either the administrative county or district level. Nevertheless, the

magnitude of the estimates remains in the same ballpark, suggesting that smog exposure

increases the probability of being diagnosed with respiratory disease.
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C. Common time trends

Our specification implicitly assumes that individuals who were born in districts that were

affected by the London smog would have had similar trends in their outcomes of interest in

the absence of the smog compared to those born in districts that were not affected. To explore

this common trend assumption empirically, we compare the trends in the relevant outcomes

of interest among those conceived at different points in time throughout our observation

period in treated and control districts. Note here, that we are mainly interested in comparing

individuals in treated and control districts who are conceived after the smog, since those

who are conceived before or during the smog were potentially exposed either in utero or in

childhood. We here focus on our main outcomes of interest: education, fluid intelligence and

respiratory disease.

Figure C.1 shows the conditional difference in the mean of the relevant outcome for

those born in treated versus control districts across childhood, trimesters in utero, and 9

month intervals throughout our observation period. We condition on the same controls and

fixed-effects as in the main analysis. The two vertical dotted lines indicate the threshold for

potential exposure in childhood and in utero.

Figure C.1a and Figure C.1b show that those exposed in utero or in early childhood

have lower education and fluid intelligence compared to those born at the same time, but in

control districts. Similarly, Figure C.1c shows that those who are exposed to the smog whilst

in utero have a higher probability of being diagnosed with respiratory disease compared to

those born at the same time, but in control districts. For all outcomes, we see no suggestion

of differential trends for those conceived after the smog, i.e., those to the right of the second

vertical dotted line. In other words, we find no evidence to suggest that those born in treated

districts have differential trends in our outcomes of interest compared to those born control

districts.
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Figure C.1: The conditional differences in the means of the relevant outcome for those
born in treated versus control districts.
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Shows the conditional differences across childhood, trimesters in utero, and 9 month intervals
throughout our observation period. We condition on the same controls as in the main
analysis, and we include fixed-effects for district. We also control for year-month linear
time trends by administrative county. The two vertical dotted lines indicate the threshold
for potential exposure in childhood and in utero. The vertical bars show 90% confidence
intervals around the point estimates. Control districts are defined as districts in England
and Wales that had a population density above 400 individuals per km2 in 1951. Standard
errors are clustered by district.
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D. A brief background to genetics

Humans have 46 chromosomes stored in every cell apart from sex-cells. The chromosomes

exist in pairs such that each pair has a maternal and paternal copy. A single chromosome

consists of a double-strand of deoxyribonucleic acid (DNA) containing a large number of

‘base pairs’: pairs of nucleotide molecules (referred to as the ‘letters’ A (adenine) that binds

with T (thymine), and G (guanine) that binds with C (cytosine)) that together make up the

human genome. In a population there will be variation in the base pairs at some locations.

Such variation is known as a single nucleotide polymorphism (SNP, pronounced ‘snip’) –

a change in the base pair at one particular locus (location) – and is the most commonly

studied genetic variation. When there are two possible base pairs at a given location (i.e.,

two alleles), the most frequent base pair is called the major allele, while the less frequent is

called the minor allele. As humans have two copies of each chromosome, any given individual

can have either zero, one, or two copies of the minor allele.

To identify specific SNPs that are robustly associated with a particular outcome of inter-

est, so-called Genome-Wide Association Studies (GWAS) relate each SNP to the outcome

in a hypothesis-free approach. As there are more SNPs than individuals, the SNP effects

cannot be identified in a multivariate regression model. Instead, a GWAS runs a large num-

ber of univariate regressions of the outcome on each SNP. These analyses have shown that

most outcomes of interest in the social sciences are ‘polygenic’: they are affected by a large

number of SNPs, each with a very small effect. To increase the predictive power of the SNPs,

it is therefore custom to aggregate the individual SNPs into so-called polygenic scores, as:

Gi =
J∑

j=1

βjXij,

where Xij is a count of the number of minor alleles (i.e., 0, 1 or 2) at SNP j for individual i,

and βj is its effect size obtained from an independent GWAS. Hence, the polygenic scores are

weighted linear combinations of SNPs, where the weights are estimated in an independent
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GWAS. This is motivated by an additive genetic model where all SNPs contribute additively

to the overall genetic predisposition of an individual (see e.g., Purcell et al., 2009).

We conduct our own tailor-made GWAS for each of the main outcomes in our analy-

sis: educational attainment, fluid intelligence score, respiratory disease (acute, chronic, and

combined), and COVID-19. To avoid overfitting, we partition the UK Biobank into three

non-overlapping samples: (1) a GWAS discovery sample, (2) a reference/tuning sample, and

(3) the analysis sample. We use samples (1) and (2) to construct polygenic scores for the

individuals in the analysis sample (i.e., sample (3)). We then use these polygenic scores to

explore the extent to which one’s genetic predisposition can ‘protect’ or ‘exacerbate’ the ef-

fect of early-life pollution exposure. The analysis sample is outlined in Section 3 and contains

individuals born in treated or control districts in 1950–1956. The GWAS discovery sample

contains individuals born outside the study period, i.e., 1934-1949 and 1957-1970, as well

as individuals born outside treated and control districts in the years 1950-1956. From the

GWAS discovery sample, we randomly sample 20,000 unrelated individuals of white British

ancestry that we exclusively use for the reference sample.23

The GWAS discovery sample sizes and descriptive statistics are reported in Table D.1.

The sample size varies depending on the outcome of interest. For our GWAS, we follow the

quality control (QC) procedure described by Elsworth et al. (2019) to remove genetic outliers

and ensure the genotypes are well-measured. We follow the literature and include minimal

covariates in the GWAS, controlling for gender, genotyping array, birth year, and the first

20 genetic principal components.24 To maximise the size of the discovery sample, we use

BOLT-LMM (Loh et al., 2015) to run the GWAS. Since BOLT-LMM uses a linear mixed

model, it allow us to include related individuals and to relax the restrictions on ancestry

(i.e., European ancestry instead of white British individuals only).

Using the GWAS estimates, we use LDPred2 (Privé et al., 2020) to construct polygenic

23We use the reference sample to estimate genetic correlations (LD structure) and to select tuning pa-
rameters for the LDpred2 method.

24Principal components are commonly used to control for population stratification, see Price et al. (2006)
and Novembre and Stephens (2008).
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scores. We construct the polygenic scores under both an infinitesimal model (all SNPs are

causal) and a model where the proportion of causal SNPs is estimated as an additional

parameter using a grid search (for more information, see Privé et al., 2020). To avoid

overfitting, this grid search is done in the reference sample. We reduce the computational

burden by including only SNPs that are in HapMap3 (Altshuler et al., 2010), resulting in

approximately 1.6 million SNPs.25 We also filter the SNPs using a minor allele frequency

threshold of 0.01 and an info score threshold of 0.97.

All polygenic scores are standardised to have zero mean and unit standard deviation in

the analysis sample. To validate their predictive power, we use a linear regression model to

test them against their target outcome in the analysis sample. We control for sex and the

first 20 genetic principal components, and we include fixed effects for year-month of birth.

We report the incremental R2 defined as the increase in R2 when the polygenic score is

included as a covariate. Table D.2 reports the results, showing that each polygenic score is

highly predictive of its outcome, with the incremental R2 ranging between 0.1% and 10%.

25See also https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html (accessed 18 Oc-
tober 2021).
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Table D.1: Descriptive statistics – GWAS sample.

Obs. Mean Std. dev.
(1) (2) (3)

Educational attainment 378, 503 14.736 5.175
Fluid intelligence 138, 933 0.065 0.981
Respiratory disease 377, 577 0.111 0.314
– Acute 377, 573 0.089 0.285
– Chronic 377, 547 0.020 0.139

Columns: (1) Number of observations in the GWAS sam-
ple. (2) Sample mean in the GWAS sample. (3) Sample
standard deviation in the GWAS sample. Rows: (1) edu-
cational attainment in years, (2) standardised fluid intelli-
gence score, (3) ever experienced a (primary) respiratory
hospitalisation, (4)-(5) splits (3) into acute and chronic
causes of respiratory hospitalisation. Fluid intelligence is
standardised but during the GWAS routine a small number
of individuals are discarded from the sample and this causes
the mean and variance to differ slightly from zero and unity
above.

Table D.2: Predictive power of polygenic scores. Linear regression estimates of the main
outcomes regressed on their corresponding polygenic score.

Dependent variable:

(1) (2) (3) (4) (5)
Educational
attainment

Fluid
intelligence

Respiratory,
any

Respiratory,
acute

Respiratory,
chronic

Polygenic score 0.723∗∗∗ 0.631∗∗∗ 0.014∗∗∗ 0.009∗∗∗ 0.005∗∗∗

(0.008) (0.012) (0.001) (0.001) (0.000)

Observations 64,681 26,877 64,923 64,920 64,920
R2 0.112 0.097 0.005 0.004 0.002
Incremental R2 0.100 0.087 0.002 0.001 0.001

Columns:(1) educational attainment in years, (2) standardised fluid intelligence score, (3) ever ex-
perienced a (primary) respiratory hospitalisation, (4)-(5) splits (3) into acute and chronic causes of
respiratory hospitalisation. We only include sex and the first 20 genetic principal components as co-
variates. All specifications contain year-of-birth and month-of-birth fixed effects. Standard errors are
heteroskedasticity robust. The incremental R2 is the increase in R2 relative to a null model excluding
the polygenic score. (*): p < 0.1, (**): p < 0.05, (***): p < 0.01.
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