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1 Introduction

The notion of rationalizability by utility maximization is natural and normatively uncon-

troversial in the revealed preference literature — a utility function is said to rationalize

expenditure data on different goods if, at each observation, it assigns weakly higher utility

to the chosen bundle than to any other bundle that is weakly cheaper at the prevailing

prices. But, in fact, there is an equally natural dual notion which is just as important be-

cause it implicitly justifies many empirical studies of consumer demand and this is the notion

of cost-rationalizability — a utility function is said to cost-rationalize expenditure data on

different goods if, at each observation, any bundle that achieves at least as much utility as

the observed bundle must be weakly more expensive. In this note, we show that these two

notions of rationalizabilty are definitionally equivalent under mild conditions. We also show

that they are observationally equivalent in the sense that, in a data set with finitely many

observations, both concepts are characterized by the generalized axiom of revealed preference

(see Afriat (1967), Diewert (1973), and Varian (1982)).

In a sufficiently rich empirical setting, a data set will rarely be exactly rationalizable

(equivalently, cost-rationalizable) and some way of measuring its departure from exact ra-

tionalizability is required. The most common approach is to use Afriat’s (1973) critical cost

efficiency index (CCEI). While Afriat’s measure is widely used in empirical applications, its

motivation is not always well understood. We argue that the CCEI could be motivated as

a measure of approximate cost-rationalizability, and so another objective in this note is to

provide a precise explanation of that motivation.

2 Approximate Rationalizability

At observation t, the prices of ` goods are pt and the consumer purchases the bundle xt of

these ` goods. We refer to the collection of observations, O = {pt,xt}Tt=1, as a data set. We

assume throughout that pt ∈ R`
++ and xt ∈ R`

+ \ {0}.

Definition 1. Let U be a collection of utility functions defined on the consumption space

X ⊆ R`
+. The data set O = {pt,xt}Tt=1 is rationalizable in U with respect to the vector of

efficiency coefficients e = {et}Tt=1 (where et ∈ (0, 1] for all t) (or simply e-rationalizable in
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U) if there is a utility function U : X → R belonging to U , such that, at every observation t,

U(xt) > U(x) for all x ∈ Bt(et) = {x′ ∈ X : pt · x′ 6 etpt · xt}.

A data set O is said to be exactly rationalizable (or simply rationalizable) in U if it is

(1, 1, . . . , 1)-rationalizable in U .

Loosely speaking, the further is e from (1, 1, . . . , 1), the weaker is the rationalizability

displayed within the data set. Afriat (1973) proposes the critical cost efficiency index (CCEI)

as a measure of a data set’s distance from exact rationalizability.

Definition 2. Given a data set O and a family of utility functions U , the CCEI is given by

sup{e : O is (e, e, . . . , e)-rationalizable in U}. (1)

To understand what the CCEI means, suppose that a data set O has a CCEI of 0.95

for the family of utility functions U . Then the agent’s observed choices are not exactly

rationalizable in the sense that for any utility function U in U , there is some observation s

and bundle x′ such that U(xs) < U(x′) and ps · x′ 6 ps · xs. However, this ‘irrationality’

is limited in the sense that for any ε > 0, there is a utility function Ū in U such that

Ū(xt) > Ū(x) for any x satisfying pt · x 6 (0.95 − ε)pt · xt for all observations t; in other

words, xt gives weakly higher utility than any bundle that is more than 5% cheaper than xt.

Afriat (1973) provides a way to calculate the CCEI. To be precise, let ULNS be the

family of locally nonsatiated utility functions defined on X = R`
+. It is shown that if O

is e-rationalizable by a member of ULNS, then O must obey a particular property that is

easy to check; furthermore, if a data set satisfies this property then it is e-rationalizable by

a member of UWB, the family of well-behaved utility functions, in the sense that the utility

functions are defined on X = R`
+, strictly increasing, and continuous. Given this result, a

data set’s CCEI can be obtained via a binary search over e = (e, e, . . . , e), for e ∈ (0, 1], and

the CCEI for the family ULNS must coincide with that for the family UWB.

We now introduce the concepts needed to explain Afriat’s result.

Definition 3. Let O = {pt,xt}Tt=1 be a data set and e = {et}Tt=1 a vector of efficiency
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coefficients. For any pair of bundles (xt,xs), the bundle xt is (strictly) directly revealed

preferred to the bundle xs, denoted xt <∗0 (�∗0) xs, whenever pt · xs 6 (<) etpt · xt. For any

finite sequence of bundles (xt,xi,xj, . . . ,xl,xs), the bundle xt is revealed preferred to the

bundle xs, denoted xt <∗ xs, whenever xt <∗0 x
i, xi <∗0 x

j, . . . , xl <∗0 x
s.

Definition 4. Given a vector of efficiency coefficients e = {et}Tt=1, a data setO = {pt,xt}Tt=1

obeys e-GARP (where GARP stands for the generalized axiom of revealed preference) so long

as xt <∗ xs =⇒ xs 6�∗0 xt. O satisfies GARP if it satisfies e-GARP for e = (1, 1, . . . , 1).1

The following result is well known. For proofs, see Afriat (1973) and Halevy, Persitz, and

Zrill (2018). We provide a further proof in the Appendix for the sake of completeness.

Theorem 1. Let O = {pt,xt}Tt=1 be a data set and e = {et}Tt=1 a vector of efficiency

coefficients. The following statements are equivalent:

(1) O is e-rationalizable in ULNS.

(2) O obeys e-GARP.

(3) There is a set of numbers {φt, λt}Tt=1 (with φt ∈ R and λt ∈ R++), such that, at all t, s,

φs 6 φt + λtpt · (xs − etxt).

(4) O is e-rationalizable in UWB.2

An immediate corollary of this result is that a data set’s CCEI for the family of utility

functions ULNS coincides with that for the family UWB and is given by

sup{e : O satisfies (e, e, . . . , e)-GARP}. (2)

1The term GARP is originally from Varian (1982); Afriat (1967) introduces and refers to its equivalent
as cyclical consistency, and Afriat (1973) develops a modified version of this property (which is equivalent
to e-GARP with e = (e, e, . . . , e)).

2Recall that the families ULNS and UWB both contain utility functions which are defined on X = R`
+.

Also notice that statement (4) could be strengthened to say that O is e-rationalizable in the family of
well-behaved and concave utility functions.
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3 Approximate Cost-Rationalizability

Definition 5. Let U be a collection of utility functions defined on the consumption space

X ⊆ R`
+. The data set O = {pt,xt}Tt=1 is cost-rationalizable in U with respect to the vector

of efficiency coefficients e = {et}Tt=1 (or simply e-cost-rationalizable in U) if there is a utility

function U : X → R belonging to U , such that, at every observation t,

etpt · xt 6 pt · x for all x ∈ P t = {x′ ∈ X : U(x′) > U(xt)}.

A data set O is said to be exactly cost-rationalizable (or simple cost-rationalizable) if it is

(1, 1, . . . , 1)-cost-rationalizable.

Exact cost-rationalizability means that there is some utility function U in U for which

the bundle chosen by the agent at each observation t could be understood as the cheapest

way of achieving a utility target U(xt) given the prevailing prices at t.

The next proposition relates rationalizability and cost-rationalizability.

Proposition 1. (a) If a locally nonsatiated utility function U : R`
+ → R e-rationalizes

O, then U also e-cost-rationalizes O. (b) If a continuous utility function U : R`
+ → R

e-cost-rationalizes O, then U also e-rationalizes O.

Proof. If (a) is false then there is an observation t and a bundle y such that U(y) > U(xt)

with etpt · xt > pt · y. Since U is locally nonsatiated, there is y′ such that U(y′) > U(y) >

U(xt), with etpt · xt > pt · y′, which contradicts the e-rationalizability of O by U .

For (b), we again prove by contradiction. Suppose that U e-cost-rationalizes O but that

there is an observation t and a bundle y such that U(y) > U(xt) with pt · y 6 etpt · xt. By

the continuity of U and the fact that etpt · xt > 0, there is y′ such pt · y′ < etpt · xt and

U(y′) > U(xt), but this is impossible since U e-cost-rationalizes O.

We know (from Theorem 1) that e-GARP is sufficient for e-rationalizability by a utility

function U belonging to UWB, and therefore (by Proposition 1a) it is also sufficient for e-

cost-rationalizability by a utility function U belonging to UWB. The necessity of e-GARP is

stated formally below.
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Proposition 2. O obeys e-GARP whenever any of the following conditions holds:

(i) O is e-rationalizable and e-cost-rationalizable in U , where U is a collection of utility

functions U : X → R defined on the consumption space X ⊆ R`
+.

(ii) O is e-rationalizable by a locally nonsatiated utility function U : R`
+ → R.

(iii) O is e-cost-rationalizable by a continuous utility function U : R`
+ → R.

Proof. In view of Propositon 1, (ii) and (iii) follow once we prove (i). So we prove (i).

Indeed, if pt · xs = etpt · xt, then U(xs) 6 U(xt) since U e-rationalizes O. Furthermore,

if pt · xs < etpt · xt, then U(xs) < U(xt) since U is e-cost-rationalizes O. Therefore, if

xt <∗ xs then U(xt) > U(xs) and so xs 6�∗0 xt, as required by e-GARP (otherwise, we obtain

U(xs) > U(xt), which is a contradiction).

Polisson and Quah (2013) studies a family of utility functions U defined on a discrete

consumption space X. Part (i) of Proposition 2 guarantees that GARP holds if a data set

is rationalizable and cost-rationalizable by a utility function in U ; the authors show that

GARP is also sufficient to guarantee the existence of a strictly increasing utility function

defined on X that rationalizes and cost-rationalizes the data set.

An implication of Proposition 2 is that, for the family of well-behaved utility functions

UWB, e-rationalizability and e-cost-rationalizability are observationally equivalent because

they are both equivalent to e-GARP. Similarly, the CCEI (for U = UWB) as defined by (1),

which is equal to (2), is also equal to

sup{e : O is (e, e, . . . , e)-cost-rationalizable in U}. (3)

This identity gives us a different way of interpreting the CCEI beyond its definition.

4 Cost-Rationalizability and the CCEI

First, we argue that when analyzing observational data, it is reasonable to require both

rationalizability and cost-rationalizability as rationality criteria. This is because, typically,

the researcher would simply have access to just a fraction of the purchases made by the

6



consumer. Even if the consumer did have an exogenously given budget, it is unlikely that

all the goods on which that budget is spent are actually part of the researcher’s observation.

For example, xt could be the consumer’s purchases of food products from a grocery store.

The data set O = {pt,xt}Tt=1 is cost-rationalizable if there is a utility function U defined

on those ` goods (properly speaking, a sub-utility function, since her consumption decisions

will cover many other (unobserved) goods) so that, at each observation t, the bundle xt is

the cheapest way of achieving utility level U(xt). This is a reasonable rationality criterion

to impose since we would expect the consumer to be cost efficient in her purchases of the `

goods, in order to maximize the money available for purchases of the non-` goods.

In the context of cost-rationalizabilty, what does it mean for a consumer to have a CCEI

of (say) 0.9? This means that for any e′ = 0.9− ε with ε > 0, O is cost-rationalizable with

respect to (e′, e′, . . . , e′). Then there is a well-behaved utility function U defined on the `

goods, such that there is no observation t at which the agent could have saved more than

100(0.1 + ε)% of her observed expenditure pt · xt while achieving utility U(xt). In other

words, there could be one (or more) observation(s) at which she is spending more than is

necessary given her utility target, but the cost saving is not materially greater than 10% at

each observation. Furthermore, given that 0.9 is the supremum among all possible values of

e at which O is (e, e, . . . , e)-cost-rationalizable, for any well-behaved utility function U , there

must be at least one observation s such that the agent could have achieved utility U(xs) and

saved more than 100(0.1− ε)% of her observed expenditure ps · xs.

In the context of laboratory data, suppose that a subject’s data set is exactly rational-

izable. Then the data set is also exactly cost-rationalizable, which means there is a utility

function for which the subject will be strictly worse off should the experimenter give the

subject a smaller budget (less of the experimental currency) in any one round. The CCEI is

a measure of how close the subject is to exact cost-rationalizability. A CCEI of 0.9 means

that, for a subject with any well-behaved utility function, there will be one round (and

possibly more) in which the subject could have achieved the same utility in that round with

a budget that is 100(0.1 − ε)% smaller. However, for any withdrawal of 100(0.1 + ε)% of

the budget, there is a well-behaved utility function such that a subject with such a utility

function is strictly worse off in some round.
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We should emphasize that in the definition of approximate cost-rationalizability, the

target utility is contingent on the observation t (or, if we interpret t as time, contingent on

time t). The definition does not require that there is not a cheaper way of achieving the same

set of utility levels, possibly after altering the observation at which a particular utility level is

obtained. For example, consider a data set where p1 = (1, 1) and x1 = (1, 1) at observation

1 and p2 = (2, 2) and x2 = (2, 2) at observation 2. This data set is rationalizable and cost-

rationalizable (because it obeys GARP), but clearly the agent could save money if he had

bought the bundle x2 = (2, 2) at the prices p1 = (1, 1) and the bundle x1 = (1, 1) at the prices

p2 = (2, 2). This does not contradict cost-rationalizability because cost-rationalizability

allows the agent to choose the timing of the utility targets. This greater permissiveness

makes sense: observation 1 could be on food spending in normal times and observation 2 on

food spending during a festive period; cost-rationalizability does not preclude the possibility

of the agent choosing to derive higher utility from food during a festive period (even when

food prices are higher) and lower utility from food in normal times (even when food prices are

lower). In essence, cost-rationalizability respects the price-bundle pairs within observations,

leaving open the possibility that prices/expenditures are in fact endogenous.

5 Discussion

The notion of approximate rationalizabilty has as its ancestral analogue the ‘structural

model’ plus ‘error term’ within the context of the econometrics of consumer demand (see, for

example, Deaton and Muellbauer (1980) and McFadden (1973)). This econometric tradition

is long and rich, and we do not intend to meaningfully engage with that literature in this

note. Instead we confine our discussion to the revealed preference approach to consumer

demand in the spirit of Afriat (1967), Diewert (1973), and Varian (1982).

Approximate rationalizability through cost inefficiency was first introduced within the

context of production (Afriat, 1972) and then consumption (Afriat, 1973).3 The intuition

behind cost inefficiency in production is strong,4 and our objective in this note is to provide

an equally strong intuition for cost inefficiency within the context of consumer demand. This

3Debreu (1951) also expresses a similar idea within the context of an exchange economy.
4A cost inefficient combination of inputs means that the same level of output can be achieved through a

different combination of inputs which costs strictly less at the prevailing factor prices.

8



in turn furnishes an intuitive interpretation for Afriat’s (1973) critical cost efficiency index

(CCEI) which may be useful for researchers in revealed preference. The CCEI is by far the

most widely used index for measuring the degree of rationality in a data set and as such

has received considerable attention, including some criticism (see, for example, Echenique

(2021)). Whatever arguments there might be for and against, we do not see any interpretive

difficulties with this index. Besides our interpretation, another (more ‘psychological’) inter-

pretation of the index based on a consumer’s innate inability to distinguish among similar

bundles is found in Dziewulski (2020).

Our interpretation of the CCEI in terms of approximate cost-rationalizability remains

valid when the index is applied to other classes of utility functions which are narrower

than UWB. Note that one of the strengths of this index is the ease with which it could

be calculated for other classes of utility functions. For example, in Polisson, Quah, and

Renou (2020), CCEIs are calculated for a wide range of models of decision making within

the context of choice under risk (e.g., expected utility (UEUT ), disappointment aversion

(UDA), rank dependent utility (URDU), and stochastically monotone utility (UFOSD)) with

and without concavity of the Bernoulli function.5 It could also be estimated when U is a

fully parametric class of utility functions, e.g., expected utility with constant relative risk

aversion (CRRA).

We note that one could interpret the CCEI as just one way of aggregating the efficiency

coefficients e into a rationality index or score. Other prominent aggregators of e include

the Varian (1990) and Houtman and Maks (1985) indices; see the discussions in Halevy,

Persitz, and Zrill (2018) and Polisson, Quah, and Renou (2020). The CCEI is the one most

commonly used in empirical work,6 primarily because it is easy to calculate in a practical

sense.7 There are also other ways of measuring departures from rationality that could not be

thought of as simply different ways of aggregating e; this includes Echenique, Imai, and Saito

5The approach could also be applied straightforwardly to many prominent models of decision making
under uncertainty and over time, which are formally very similar to models of decision making under risk
(see Polisson, Quah, and Renou (2020)).

6See, for just a few examples, Harbaugh, Krause, and Berry (2001), Andreoni and Miller (2002), Choi
et al. (2007, 2014), Fisman, Kariv, and Markovits (2007), and Carvalho, Meier, and Wang (2016).

7The Afriat (1973) efficiency index can be calculated efficiently using a binary search algorithm for a
wide class of utility models (see Polisson, Quah, and Renou (2020) and Dembo et al. (2021)), whereas the
Varian (1990) and Houtman and Maks (1985) indices are known to be more computationally demanding,
and especially when U is not simply UWB .
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(2020, 2021) and de Clippel and Rozen (2021) (which are based on first order conditions),

Echenique, Lee, and Shum (2011) (which leverages the idea of a ‘money pump’), and Hu

et al. (2021) (which is based on the size of perturbations of observed demand bundles).

Appendix

Proof of Theorem 1. (1) =⇒ (2): The e-rationalizability of O by U in ULNS guarantees

that pt · xs 6 etpt · xt =⇒ U(xt) > U(xs) and pt · xs < etpt · xt =⇒ U(xt) > U(xs). The

first implication follows directly from the definition of e-rationalizability of O by U , and the

second from the definition of e-rationalizability plus the local nonsatiation of U .8 Therefore,

for any pt · xi 6 etpt · xt, pi · xj 6 eipi · xi, . . . , pl · xt 6 elpl · xl, we obtain

U(xt) > U(xi) > U(xj) > · · · > U(xl) > U(xt),

which of course implies that U(xt) = U(xi) = U(xj) = · · · = U(xl) = U(xt). This equality

then equires that pt · xi = etpt · xt, pi · xj = eipi · xi, . . . , pl · xt = elpl · xl. In other words,

for any revealed preference cycle xt <∗0 xi, xi <∗0 xj, . . . , xl <∗0 xt, the weak relation <∗0

cannot be replaced with the strict relation �∗0 anywhere in the cycle.

(2) =⇒ (3): Define at,s = pt · (xs− etxt) for all t, s, and let A be a T ×T square matrix

with at,s the (t, s)-th entry. Since O satisfies e-GARP, A satisfies cyclical consistency in the

sense defined in Forges and Minelli (2009), which guarantees that there is a set of numbers

{φt, λt}Tt=1 (with φt ∈ R and λt ∈ R++), such that, at all t, s, φs 6 φt + λtat,s.

(3) =⇒ (4): The construction argument used here follows Afriat (1973). For any x

define U(x) = mint{φt+λtpt ·(x−etxt)}, and notice that U is strictly increasing, continuous,

and concave. First, we must have U(xt) > φt. To see this, suppose that U(xt) < φt; then

U(xt) = φm + λmpm · (xt − emxm) < φt, contradicting (3). Second, for any x satisfying

pt ·x 6 etpt ·xt, we have φt > φt+λtpt ·(x−etxt) since λt > 0, and U(x) 6 φt+λtpt ·(x−etxt)

8To see the latter, suppose that pt · xs < etpt · xt =⇒ U(xt) = U(xs). (From the e-rationalizability of
O by U , pt · xs < etpt · xt =⇒ U(xt) > U(xs).) Then by the local nonsatiation of U , there must be some
bundle y such that pt · y < etpt · xt and U(y) > U(xs) = U(xt), contradicting e-rationalizability.
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by the definition of U . Taken altogether,

U(xt) > φt > φt + λtpt · (x− etxt) > U(x).

(4) =⇒ (1): This is obvious since every well-behaved utility function is (by definition)

strictly increasing and thus locally nonsatiated.
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