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Abstract. This note considers the problem of constructing an asymptotically normal statistic for

the value function of a convex stochastic minimization programme, which may have more than one

minimizer. It introduces the proximal statistic using a recursive estimator of one of the minimizers.

The use of this statistic is illustrated by extending an existing selection test for point-identifying

parametric models to the set-identifying case.
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1. The Problem: Nonunique Global Minimizer

Consider the problem of constructing, from a random sample {zi}ni=1, an asymptotically

normal statistic for the real-valued parameter ϕo defined as

ϕo := min
q∈Q

F (q, Po),

where Q is a known set, Po is the unknown distribution of the random vector zi tak-

ing values in RL, and F (q, Po) :=
∫
f(q, z)dPo(z) for a known function q 7→ f(q, zi).

The asymptotic normality requirement serves to simplify inference. This problem arises,

for instance, in the context of selecting parametric statistical models (see e.g. Vuong,

1989). When arg minq F (q, Po) exists and is unique, a solution is the plug-in statistic

ϕ̂n := F (q̂n, Pn), where q̂n ∈ arg minq∈Q F (q, Pn) and Pn is the empirical distribution func-

tion. Under a Lipschitz-continuity and an envelope condition on f , it is known (see e.g.,

Shapiro, Dentcheva, and Ruszczyinski, 2009, Theorem 5.7) that the sequence n1/2(ϕ̂n − ϕo)

converges in distribution (denoted  ) to a normal random variable N
(
0, avar(ϕ̂n)

)
with

mean zero and variance avar(ϕ̂n) := E
[
[f(q?, zi)−ϕo]2

]
for q? ∈ arg minq∈Q F (q, Po). When
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arg minq F (q, Po) is not unique, it is also known (see e.g., Shapiro et al., 2009, Theorem 5.7)

that n1/2(ϕ̂n − ϕo)  G? := infq∈Q? Gq, where Q? := arg minq∈Q F (q, Po) and q 7→ Gq is a

Gaussian process. The plug-in statistic is no longer a solution to the problem of interest

because G? is not normal.

This note considers the case when arg minq F (q, Po) may not be unique, q 7→ f(q, zi) is a

convex function a.e. zi, and Q is a convex compact set. It investigates the following statistic.

Definition (Proximal Statistic). Define the proximal function

proxP (v) := arg min
q∈Q

F (q, P ) +
1

2
‖q − v‖2,

where ‖ · ‖ is the Euclidean norm. For n > 8, define kn := dn1/3e. Let q̂kn denote the last

element in the sequence {q̂k}knk=2 defined recursively by

q̂k+1 :=
(
1− k−1

)
proxn(q̂k), where proxn(q̂k) := proxPn(q̂k) (1)

for an arbitrary starting value q̂2 ∈ Q. The proximal statistic is ϕ̂kn := F (q̂kn , Pn). �

The proximal statistic, unlike the plug-in statistic, uses the recursive estimator q̂kn . The

recursive scheme (1), leading to q̂kn , is a variant of the proximal algorithm.1 The next

proposition establishes sufficient conditions under which ϕ̂kn is asymptotically normal. The

last section illustrates how this new result can assist in developing an asymptotically pivotal

test for selecting between parametric set-identifying models.

2. Main Result

Proposition A (Asymptotic Normality). Suppose that {zi}ni=1 is i.i.d. Po and

(A.i) There is a function m : RL 7→ R+ such that |f(q, zi)− f(q̃, zi)| ≤ m(zi)‖q − q̃‖ a.e. zi
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for all q, q̃ ∈ Q;

(A.ii) There is a function e : RL 7→ R, not depending on q, such that supq∈Q |f(q, zi)| ≤ e(zi)

a.e. zi and E[max(1, e(zi),m(zi))
2] is finite;

(A.iii) q 7→ f(q, zi) is a proper convex function a.e. zi;

(A.iv) Q ⊂ RM is the closed unit ball in RM ;

(A.v) supv∈Q ‖proxn(v)− proxo(v)‖ = OPo(n
−1/2), where proxo(v) := proxPo(v).

Then,

n1/2(ϕ̂kn − ϕo) N
(
0, avar(ϕ̂kn)

)
,

where avar(ϕ̂kn) := E
[
[f(q?, zi) − ϕo]

2
]

and q? ∈ Q? is the minimum-norm fixed point of

v 7→ proxo(v).

The proof is given below. Assumptions (A.i)-(A.iv) are, respectively, the Lipschitz-continuity,

envelope, and convexity restrictions announced in the introduction. (A.v) is a rate of con-

vergence restriction on proxn. These assumptions do not restrict Q? to be a singleton.2

Asymptotic normality follows from the result (see Lemma 3 below) that, even when there

may be multiple minimizers, q̂kn , unlike q̂n, converges in probability. When Q? is a single-

ton, the proximal and plug-in statistics have the same asymptotic normal distribution, c.f.,

Proposition A with Shapiro et al. (2009, Theorem 5.7).

Proof of Proposition A. It is sufficient to verify that

(A.1) Xn := n1/2[F (q?, Pn)− ϕo] X := N
(

0, E
[
[f(q?, zi)− ϕo]2

])
. This is an implication

of Lemma 1 below.

(A.2) For Yn := n1/2[F (q̂kn , Pn)−ϕo], one has Xn−Yn →
Po

0. Lemma 2 below establishes this

result using Lemma 1 and Lemmas 3 to 5.

Then, from van der Vaart (1998, Theorem 2.7(iv)), it follows that Yn = n1/2(ϕ̂kn−ϕo) X.
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♦

Lemma 1. For F := {f(q, ·) : q ∈ Q}, define `∞(F) := {f ∈ F : supq∈Q |f(q, ·)| < ∞}.

Then, Gnf(q) := n1/2[F (q, Pn) − F (q, Po)]  Gf(q) in the space `∞(F), where q 7→ Gf(q)

is a Gaussian process with zero mean and covariance function q, q̃ 7→ E[f(q, zi)f(q̃, zi)] −

E[f(q, zi)]E[f(q̃, zi)].

Proof. Let H(ε,F , P ) denote the cover number of the family of functions F .3 Under A.i

and A.iv, F is a type II class in the sense of Andrews (1994, p. 2270). It follows then from

Andrews (1994, Theorem 2) that v(zi) := max(1, e(zi),m(zi)) is such that |f(q, zi)| ≤ v(zi)

∀f ∈ F and the uniform entropy integral
∫ 1

0
supP∈D

[
lnH(ε(Pv2)1/2, P,F)

]1/2
dε satisfies

∫ 1

0

sup
P∈D

[
lnH(ε(Pv2)1/2, P,F)

]1/2
dε ≤ ∞, (1.1)

where D is the set of all discretely supported probability distributions. Rewrite A.ii as

Pov
2 ≤ ∞. (1.2)

Since F is measurable under (A.i) and (A.ii), it follows from (1.1)-(1.2), by van der Vaart

(1998, Theorem 19.14), that

F is Po-Donsker. (1.3)

Conclude by restating the definition of Po-Donsker class (van der Vaart, 1998, p.269). 4

Lemma 2. n1/2F (q?, Pn)− n1/2F (q̂kn , Pn)→
Po

0.

Proof. We first verify that q 7→ f(q, zi) is square integrable at q?:

lim
q→q?

∫
|f(q, zi)− f(q?, z)|2dPo(z) = 0. (2.1)
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For any q ∈ Q, A.i implies |f(q, zi)−f(q?, zi)|2 ≤ m(zi)
2‖q−q?‖2 because |f(q, zi)−f(q?, zi)|

is nonnegative. Taking expectations on both sides

∫
|f(q, zi)− f(q?, z)|2dPo(z) ≤

∫
m(z)2dPo(z)‖q − q?‖2.

Under A.ii,
∫
m(z)2dPo(z) <∞. Hence, (2.1) follows from the last display after taking limits

to both sides as q → q?.

Define g : `∞(F)× F 7→ R by g(h, f) := h(f)− h(f?), where f? = f(q?, ·). The set F is

a semimetric space relative to the L2(Po)-metric. The function g is continuous with respect

to the product semimetric at every point (h, f) such that f 7→ h(f) is continuous. Indeed,

if, for any sequence {hk, fk}k in `∞(F)×F , {hk, fk}k → (h, f), then hk → h uniformly and

hence hk(fk) = h(fk) + o(1)→ h(f) if h is continuous at f . By van der Vaart (1998, Lemma

18.15), it follows from (1.3) that almost all sample paths of G are uniformly continuous on

F . Thus, the function h is continuous at f? ∈ F .

Set fn := f(q̂kn , ·). Since q̂kn →
Po

q? (Lemma 3), one has, by (2.1), that fn →
P
f? in the

metric space F . For Gn := n1/2(Pn − Po), by (1.3), Gn  G in the space `∞(F). Hence,

(fn,Gn) (f?,G) in the space F × `∞(F). (2.2)

We have verified that g is continuous and (2.2) holds. Apply the Continuous Mapping

Theorem (van der Vaart, 1998, Theorem 18.11(i)) to obtain

Gn(fn − f?) = g(Gn, fn) g(G, f?) = Gf? −Gf? = 0.

Since convergence in probability and convergence in distribution are the same for a degener-

ate limit (van der Vaart, 1998, Theorem 18.10(iii)), Gn(fn− f?)→
Po

0. Conclude by replacing

Gn(fn − f?) by its definition in −Gn(fn − f?) = n1/2F (q?, Pn)− n1/2F (q̂kn , Pn). 4
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Lemma 3. ‖q̂kn−q?‖ →
Po

0, where q? ∈ Q? is the minimum-norm fixed point of v 7→ proxo(v).

Proof. Use the triangle inequality to bound ‖q̂kn+1− q?‖ by the sum of a deterministic and

a stochastic term ‖q̂kn+1 − q?‖ ≤ ‖qkn+1 − q?‖+ ‖q̂kn+1 − qkn+1‖. Consider the deterministic

term. By Lemma 5, ‖qkn+1− q?‖ = o(1). Consider now the stochastic term. Replacing q̂kn+1

and qkn+1 recursively,

‖q̂kn+1 − qkn+1‖ = ‖aknproxn(q̂kn)− aknproxo(qkn)‖.

Add-and-subtract proxo(q̂kn) and use the triangle inequality to get

‖q̂kn+1 − qkn+1‖ ≤akn‖proxn(q̂kn)− proxo(q̂kn)‖+ akn‖proxo(q̂kn)− proxo(qkn)‖.

Since v 7→ proxo(v) is nonexpansive (Lemma 4),

‖q̂kn+1 − qkn+1‖ ≤ akn‖proxn(q̂kn)− proxo(q̂kn)‖+ akn‖q̂kn − qkn‖.

By recursive substitution,

‖q̂kn+1 − qkn+1‖ ≤
akn

1− akn
‖proxn(q̂kn)− proxo(q̂kn)‖.

Since ‖proxn(q̂kn)− proxo(q̂kn)‖ ≤ supq∈Q ‖proxn(q)− proxo(q)‖,

‖q̂kn+1 − qkn+1‖ ≤
akn

1− akn
sup
q∈Q
‖proxn(q)− proxo(q)‖.

Since we have assumed that n1/2[proxn − proxo] is asymptotically tight (see A.v), one has

‖q̂kn+1 − qkn+1‖ ≤
akn

1− akn
OPo(n

−1/2).
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Since akn/(1− akn) = kn − 1 and we have assumed kn = o(n1/2),

‖q̂kn+1 − qkn+1‖ ≤ o(n1/2)OPo(n
−1/2) ≤ n1/2−1/2o(1)OPo(1) ≤ oPo(1).

Conclude then ‖q̂kn − q?‖ ≤ o(1) + oPo(1) ≤ oPo(1). 4

Lemma 4. v 7→ proxo(v) is nonexpansive:

‖proxo(v)− proxo(ṽ)‖ ≤ ‖v − ṽ‖ for any v, ṽ ∈ Q.

Proof. (A.iii) implies that q 7→ F (q, Po) is a proper convex function. Conclude then, from

Moreau (1965, Proposition 5.b.), that v 7→ proxo(v) is nonexpansive. 4

Lemma 5. Let akn := 1−k−1
n . Define qkn+1 := aknproxo(qkn) for an arbitrary starting point

q ∈ Q. qkn converges to q? ∈ Q? for q? the minimum-norm fixed point of v 7→ proxo(v):

‖qkn − q?‖ = o(1).

Proof. Since proxo : Q 7→ Q is nonexpansive (Lemma 4) and Q is the closed unit ball

in a Hilbert space (see A.iv), akn := 1 − k−1
n = 1 − dn−1/3e is acceptable in the sense of

Halpern (1967, Corollary p. 961), viz. ‖qkn − q?‖ = o(1), where q? is the fixed point of

v 7→ proxo(v) with the smallest norm. Since the fixed points of v 7→ proxo(v) belong to Q?,

one has q? ∈ arg minq∈Q F (q, Po). 4

If q? also belongs to Q?? := arg minq∈Q? E
[
[f(q?, zi)

2], ϕ̂kn has minimum asymptotic vari-

ance. A sufficient condition for ϕ̂kn having this property is

Corollary. If q 7→ E[f(q, zi)
2] is convex, then avar(ϕ̂kn) = minq?∈Q? E

[
[f(q?, zi)− ϕo]2

]
.
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One could also construct a minimum asymptotic variance statistic by using the iteration

qk+1 = (1−ak)q̂??+akproxn(q̂k) for any consistent estimator q̂?? of q?? ∈ arg minq∈Q? E[f(q, zi)
2].

3. Illustration: A Model Selection Test under Loss of Point-Identification

This Section illustrates the proximal statistic in the context of extending Vuong (1989)

selection test from non-nested point-identifying models to the set-identifying case. Let po

denote the density associated to Po. For modeling po, consider the families of parametric

density functions, from now so-called the models, G := {z 7→ g(z, θ) : θ ∈ Θ ⊂ Rdim(θ)} and

H := {z 7→ h(z, γ) : γ ∈ Γ ⊂ Rdim(γ)}. The functions z 7→ g(z, θ) and z 7→ h(z, γ) are known

up to the parameters θ and γ, respectively. The aim is to choose the model that is ’closest’

to po. Consider the Kullback-Liebler information criterion defined as

KLICo(G) :=

∫
ln po(z)dPo(z)−min

θ∈Θ
G(θ, Po),

whereG(θ, Po) :=
∫
− ln g(z, θ)dPo(z). A similar definition follows forKLICo(H). KLICo(G)

is nonnegative and is equal zero if and only if po(zi) = g(zi, θ?) a.e. zi for θ? ∈ arg minG(θ, Po).

Define ρo := KLICo(H) − KLICo(G) = minθ∈ΘG(θ, Po) − minγ∈ΓH(γ, Po). Consider the

following hypotheses and definitions:

H0 : ρo = 0, meaning that G and H are equivalent.

HG : ρo > 0, meaning that G is better than H.

HH : ρo < 0, meaning that G is worse than H.

These definitions do not require that either model is point-identifying the model’s parameter

(i.e., there may be θo 6= θ̃ such that g(zi, θo) = g(zi, θ̃) = po(zi) a.e. zi).

When arg maxθG(θ, Po) and arg maxγ H(γ, Po) are unique, it is known (see Vuong, 1989,

Theorem 5.1) that, if the models are non-nested, the n1/2-scaled version of the plug-in statis-

tic ρn := minθ∈ΘG(θ, Pn)−minγ∈ΓH(γ, Pn) is, under H0, asymptotically normal and, under
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HG (res. HH), diverges to +∞(−∞). When arg maxθG(θ, Po) and/or arg maxγ H(γ, Po)

are not unique, the asymptotic distribution of n1/2ρn, under H0, is the difference between

the infima of two Gaussian processes.4 This asymptotic distribution is not normal. To con-

struct an asymptotic normal statistic, let ϕ̂g,kn := G(θ̂kn , Pn) denote the proximal statistic

for ϕgo := minθ∈ΘG(θ,Po). Let avarn(ϕ̂g,kn) denote the plug-in estimator for the asymp-

totic variance avar(ϕ̂g,kn) := E
[
(ln g(zi, θ?))

2
]
− E

[
ln g(zi, θ?)

]2
. Similarly, define ϕ̂h,kn ,

γ̂kn , avarn(ϕ̂h,kn), and acovn(ϕ̂g,kn , ϕ̂h,kn). Define the test statistic ρ̂kn := ϕ̂g,kn − ϕ̂h,kn and

the standard deviation estimator ω̂n := [avarn(ϕ̂g,kn)+avarn(ϕ̂h,kn)−2acovn(ϕ̂g,kn , ϕ̂h,kn)]1/2.

Proposition B (Model Selection Test for Strictly Non-Nested Models). Suppose

that {zi}ni=1 is i.i.d. Po and

(B.i) There exists m : RL 7→ R such that | ln g(zi, θ)− ln g(zi, θ̃)| ≤ m(zi)‖θ − θ̃‖ a.e. zi;

(B.ii) There exists e : RL 7→ R such that supθ∈Θ |g(zi, θ)| ≤ e(zi) a.e. zi and E[max(1, e(zi),m(zi))
4] <

∞;

(B.iii) θ 7→ ln g(zi, θ) is a proper concave function a.e. zi;

(B.iv) Θ is a compact convex set;

(B.v) supv∈Θ ‖proxgn(v)−proxgo(v)‖ = OPo(n
−1/2), where proxgo(v) := arg minθ∈ΘG(θ, Po)+

1/2‖θ − v‖2;

(B.vi) If Θ and g(zi, ·) are, respectively, replaced by Γ and h(zi, ·), (B.i) to (B.v) hold;

(B.vii) G ∩ H = ∅.

Then, under H0, n1/2ρ̂kn/ω̂n  N(0, 1); under HG, n1/2ρ̂kn/ω̂n →
Po

+∞; and under HH,

n1/2ρ̂kn/ω̂n →
Po

−∞.

Proposition B extends to set-identifying models a result in Vuong (1989, Theorem 5.1).

It provides an asymptotically pivotal selection test for the models. One chooses a critical

value c from the standard normal distribution for some significance level. If the realized
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value v of the statistic n1/2ρ̂kn/ω̂n is higher than c, then one rejects the null hypothesis that

the models are equivalent in favor of G. If v is smaller than −c, then one rejects the null

hypothesis that the models are equivalent in favor of H. Finally, if the absolute value of v is

smaller than c, one cannot discriminate between the two models given the data. When both

models are point-identifying, this test is asymptotically equivalent to the Vuong test.5

We decompose the proof of Proposition B in three Lemmas.

Lemma 6. n1/2(ϕ̂gkn −ϕgo) N(0, avar(ϕ̂gkn)) and n1/2(ϕ̂hkn −ϕho) N(0, avar(ϕ̂hkn)).

Proof. Under (B.i)-(B.v), we are justified to set q = θ, Q = Θ, f(q, zi) = − ln g(zi, θ),

F (q, Po) = G(θ, Po), etc. It follows then from Proposition A that n1/2[ϕ̂g,kn − ϕg,kn ]  

N(0, avar(ϕ̂gkn)). A similar reasoning yields n1/2(ϕ̂hkn − ϕho) N(0, avar(ϕ̂hkn)). 4

Lemma 7. ω̂n →
Po

ωo.

Proof. Define avarn(θ) := n−1
∑n

i=1 ln g(zi, θ)
2 −

[
n−1

∑n
i=1 ln g(zi, θ)

]2
and avar(θ) :=

E[ln g(zi, θ)
2]− E[ln g(zi, θ)]

2. By the triangle inequality with probability approaching one

|avarn(ϕ̂kn)− avar(ϕ̂kn)| ≤ |avarn(θ̂kn)− avar(θ̂kn)|+ |avar(θ̂kn)− avar(θ?)|.

Consider the first term in the right hand side of this inequality. From B.i, B.ii and the i.i.d.

assumption, supθ |avarn(θ) − avar(θ)| = oPo(1). Hence, |avarn(θ̂kn) − avar(θ̂kn)| = oPo(1).

Consider now the second term. From (B.i), θ 7→ avar(θ) is continuous. Since θ̂kn →
Po

θ?,

by the Continuous Mapping Theorem, |avar(θ̂kn)− avar(θ?)| = oPo(1). It follows then that

avarn(ϕ̂kn) →
Po

avar(ϕ̂kn). A similar result follows for avarn(ϕ̂hkn) and acovn(ϕ̂gkn , ϕ̂hkn).

Then, by the Continuous Mapping Theorem, ω̂n →
Po

ωo. 4

Lemma 8. (B.vii) implies ωo > 0.

Proof. It suffices to verify that ωo = 0 iff g(zi, θ?) = h(zi, γ?) for any θ? ∈ arg minθ∈Θ G(θ, Po),

γ? ∈ arg minγ∈ΓH(γ, Po). Fix θ? and γ?. From the definition of ωo, we have ωo = 0 iff there

exists a constant ε such that g(zi, θ?) = εh(zi, γ?) a.e. zi. Since z 7→ g(z, θ?) and z 7→ h(z, γ?)
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are density functions, they integrate to one. It follows then, by integrating both sides of

g(z, θ?) = εh(z, γ?) with respect to z, that ε = 1. 4

Proof of Proposition B. n1/2(ϕ̂gkn − ϕgo) − n1/2(ϕ̂hkn − ϕho) = n1/2ρ̂kn − n1/2ρo. Under

H0, n1/2ρo = 0. Lemma 8 justifies to use Slutzky’s Lemma (van der Vaart, 1998, Lemma 2.8

(iii)) to combine Lemmas 6 and 7 to obtain n1/2ρ̂kn/ω̂n  N(0, 1). The claim for n1/2ρ̂kn/ωn

under HG and HH follows similarly. ♦

Endnotes
1For an exposition on the proximal algorithm, see e.g., Polson, Scott and Willard (2015).

2Assumption (A.iv) can be relaxed, at the cost of loosing conciseness in the exposition, to Q being a closed

convex subset of RM and proving Lemma 5 below by verifying the conditions in Bauschke and Combettes

(2017, Theorem 30.1). Possible extensions to Proposition A include studying: (a) the conditions under

which the convergence in distribution also holds uniformly; the properties of the proximal statistic when (b)

q 7→ f(q, zi) is strongly amenable; (c) 1/2‖q − q̂k‖2 is replaced by another Bregman divergence; (d) Q is

defined by moment inequality restrictions. These extensions are out of the scope of this note.

3For a definition, see Andrews (1994 p. 2268) or van der Vaart (1998, p. 274).

4This follows from applying Shapiro et al. (2009, Theorem 5.7)

5 The following extensions to Proposition B are out of the scope of this note. First, the asymptotic

approximation in Proposition B is pointwise in Po. The development of a uniform asymptotic approximation

is needed. Second, one could compare more than two models using multiple testing methods. Third, one

could apply Proposition A to a test based on a goodness-of-fit criteria other than the KLIC.
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