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Abstract
We propose a new method, the confidence interval (CI) method, to select valid
instruments from a set of potential instruments that may contain invalid ones, for
instrumental variables estimation of the causal effect of an exposure on an outcome.
Invalid instruments are such that they fail the exclusion restriction and enter the
model as explanatory variables. The CI method is based on the confidence inter-
vals of the per instrument causal effects estimates. Each instrument specific causal
effect estimate is obtained whilst treating all other instruments as invalid. The
CI method selects the largest group with all confidence intervals overlapping with
each other as the set of valid instruments. Under a plurality rule, we show that
the resulting IV, or two-stage least squares (2SLS) estimator has oracle properties,
meaning that it has the same limiting distribution as the oracle 2SLS estimator
with the set of invalid instruments known. This result is the same as for the hard
thresholding with voting (HT) method of Guo et al. (2018). Unlike the HT method,
the number of instruments selected as valid by the CI method is guaranteed to be
monotonically decreasing for decreasing values of the tuning parameter, which de-
termines the width of the confidence intervals. For the CI method, we can therefore
use a downward testing procedure based on the Sargan test for overidentifying re-
strictions. We find in a simulation design similar to that of Guo et al. (2018)
better properties for the CI method based estimation and inference than for the
HT method and in an application of the effect of BMI on blood pressure that the
CI method is better able to detect invalid instruments.
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1 Introduction

Instrumental variables (IV) estimation is a well established method for determining causal

effects of an exposure on an outcome, when this relationship is potentially affected by

unobserved confounding. For recent reviews and examples, see Clarke and Windmeijer

(2012), Imbens (2014), Kang et al. (2016) and Burgess et al. (2017). An IV needs to

be associated with the exposure, the so-called "relevance" condition, but only associated

with the outcome indirectly through its association with the exposure. The latter condi-

tion is referred to as the "exclusion" condition. This paper is concerned with violations

of the exclusion condition of the instruments, following closely the setup of Kang et al.

(2016), Windmeijer et al. (2018) and Guo et al. (2018).

The exclusion condition is violated, and an instrument is deemed invalid, if it has

a direct effect on the outcome, or an indirect association with the outcome through

unobserved confounders, over and above the effect of the exposure on the outcome. Use

of an invalid instrument will lead to inconsistency of the IV, or two-stage least squares

(2SLS) estimator.

Mendelian randomisation is a technique employed in epidemiology to learn about the

causal effects of modifiable health exposures on disease. It posits that genetic variants,

which are known to be associated with the exposure (i.e. relevant), additionally satisfy

the exclusion restriction of only being associated with the outcome through the exposure.

In our Mendelian randomisation application, see also Windmeijer et al. (2018), we have

96 genetic variants as potential instruments for BMI in order to determine its causal effect

on diastolic blood pressure. However, a genetic variant could be an invalid instrument

for various reasons, such as linkage disequilibrium and horizontal pleiotropy, see, for

example, Lawlor et al. (2008) and von Hinke et al. (2016). It is therefore important to

have methods that can determine whether instruments are invalid under as weak a set

of assumptions as possible.

The so-called plurality rule holds if the set of valid instruments forms the largest

group, as specified in Section 2. An approach for selecting the valid instruments could

then be to follow Andrews (1999) and estimate the causal effect for all possible subsets

of instruments and to select the model that minimises an information criterion based on

the Sargan test of overidentifying restrictions, Sargan (1958). However, this approach
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is only feasible with a relatively small number of instruments, unlike in our application.

We therefore need dimension reduction techniques, even though we are in a setting of a

fixed number of instruments kz with a large sample size n, the setting referred to as low

dimensional by Guo et al. (2018).

Following the Lasso proposal by Kang et al. (2016), Windmeijer et al. (2018) proposed

an adaptive Lasso estimator in combination with a downward testing procedure based on

the Sargan test of overidentifying restrictions as in Andrews (1999). When the so-called

majority rule holds, meaning that more than 50% of the potential instruments are valid,

then this approach results in consistent selection of the invalid instruments and oracle

properties of the resulting 2SLS estimator. This means that the limiting distribution of

the estimator is the same as the oracle estimator, which is the 2SLS estimator when the

set of invalid instruments is known.

Relaxing the majority rule, Guo et al. (2018) proposed a two-stage hard thresholding

with voting (HT) method that results in consistent selection of the valid instruments and

oracle properties of the resulting 2SLS estimator when the weaker plurality rule holds.

Under the plurality rule more than 50% of the instruments can be invalid.

In this paper we develop an alternative method, which we call the confidence interval

(CI) method as presented in Section 3. This method simply selects as valid instruments

the largest group of instruments where all confidence intervals of the instrument specific

causal effect estimates overlap. The instrument specific estimates are obtained whilst

treating all other instruments as invalid. Like the Guo et al. (2018) method, we show

that the CI method results in consistent selection and oracle properties of the resulting

2SLS estimator when the plurality rule holds.

An advantage of the CI method is that the number of instruments selected as valid

decreases monotonically for decreasing values of the tuning parameter which determines

the length of the confidence intervals. As with the adaptive Lasso method, we can

therefore use the Sargan test based downward testing procedure. Whilst the CI method

achieves dimension reduction by ignoring the covariances between the instrument specific

estimates, use of the Sargan test guarantees that the model selection is based on the joint

distribution, taking into account the full covariance structure.

In Mendelian randomisation applications the genetic variants have in general a low

correlation with each other and thus the CI method is very well suited for that setting.
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However, all results are derived for general correlations between the (valid and invalid)

instruments, and the instruments are correlated in the Monte Carlo exercise in Section

7. But allowing for a general correlation structure of the instruments does limit the

types of invalid instruments that the methods can deal with. In particular, instruments

that are invalid because they are affected by unmeasured confounders that also affect

the outcome cannot be dealt with under general correlation structures, as explained in

Section 2. Instruments that are invalid because they affect the outcome, either directly or

through unobserved confounders, can be consistently selected by the HT and CI methods

under general correlation structures of the instruments.

We discuss the HT method in Section 4. We show that this method is a collection of

pairwise tests determining whether the individual instrument specific causal effects esti-

mates are statistically different from each other, given a threshold value. If they are found

to be not statistically different, then they give a vote to each other and the instruments

with the largest number of votes are selected as valid. As we discuss in Section 4.2 and

show in the Monte Carlo exercise in Section 7, the number of valid instruments selected

by the HT method is not guaranteed to be monotonically decreasing in decreasing values

of the tuning parameter, and therefore the downward testing procedure does not apply in

general. Guo et al. (2018) only consider values of their tuning parameters, or thresholds,

that are predetermined and theoretically motivated. These are specific functions of the

sample size n or number of instruments kz, which we discuss in Section 4.1 and evaluate

in the Monte Carlo Section 7.

Whilst initially making the assumptions of conditional homoskedasticity and strong

instruments in Section 2 for ease of exposition, we discuss in Section 5 how to adapt

the methods to general forms of heteroskedasticity. We further discuss the first-stage

thresholding method of Guo et al. (2018) to dealing with weak instruments in Section 6.

We evaluate the two methods in the Monte Carlo exercise in Section 7, for a design

very similar to the kz = 7 design of Guo et al. (2018), but we consider a larger number

of potential instruments, kz = 21. We find that overall, the CI method performs better

than the HT method in this design. In the application in Section 8 we find that the

HT method selects too few instruments as invalid, resulting in models that are rejected

by the Sargan test. The CI method produces results very similar to the adaptive Lasso

method which indicates that the majority rule is not violated in this application.
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2 Model and Assumptions

We follow Kang et al. (2016) and Guo et al. (2018), who considered the following potential

outcomes model. For i = 1, ..., n, let Y (d,z)
i be the potential outcome if the individual i

were to have exposure d and instrument values z. The observed outcome for an individual

i is denoted by the scalar Yi, the treatment or exposure by the scalar Di and the vector

of kz potential instruments by Zi.. The instruments may not all be valid and can have a

direct effect on, or an indirect association with the outcome.

For two possible values of the exposure d∗, d and instruments z∗, z, assume the

following potential outcomes model

Y
(d∗,z∗)
i − Y (d,z)

i = (z∗ − z)′φ+ (d∗ − d) β (1)

E
[
Y

(0,0)
i |Zi.

]
= Z′i.µ, (2)

where φ measures the violation of the no-direct-effect assumption of the instruments on

the outcome, and µ represents the presence of unmeasured confounders that affect both

the instruments and outcome. An instrument Zj therefore does not satisfy the standard

exclusion and independence assumptions if φj 6= 0 and/or µj 6= 0.

The two possible violations of the exclusion restriction considered in (1) are repre-

sented by the instruments Z1 and Z2 in the directed acyclic graph (DAG) as shown in

Figure 1.

Figure 1: Causal DAG. UC represents unmeasured confounders. Z1 and Z2 are invalid
instruments. Z3 is a valid instrument after conditioning on Z1 and Z2, independent of
any directional correlations between the instruments.

Z1 has a direct effect on the outcome, whereas Z2 has an effect on the outcome

via UC, representing unmeasured confounders that affect both the outcome Y and the
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exposure D. After conditioning on Z1 and Z2, as specified in the potential outcomes

model (1), Z3 is a valid instrument, independent of any possible directional correlation

of the instruments.

Although Guo et al. (2018) assert that instruments can be correlated, the violation

of the exclusion restriction (2) through unobserved confounding affecting the instrument

and outcome needs some qualification when allowing for general correlations between the

instruments. In Figure 2, Z4 is an invalid instrument because of unobserved confounding

UC affecting both Z4 and the outcome Y .

Figure 2: Instrument Z4 is invalid. In the left panel, Z3 is a valid instrument after
conditioning on Z4 as in (2). In the right panel, Z3 becomes an invalid instrument after
conditioning on Z4.

In the left panel of the figure, there is directed correlation from Z4 to Z3, and after

conditioning on Z4 as in (2), Z3 is a valid instrument. However, in the right panel of

Figure 2 there is directed correlation from Z3 to Z4, resulting in Z4 being a collider, and

hence rendering Z3 invalid after conditioning on Z4. In other words, both µ3 and µ4 in (2)

are then different from zero and the Lasso, CI and HT methods will not be able to select

the oracle model. Therefore, in order to allow for this type of violation of the exclusion

restriction one needs to make additional assumptions about the correlation structure of

the instruments. A suffi cient condition is that all invalid instruments of the type Z4 are

independent of the valid instruments Z3, after conditioning on the Z1 and Z2 type invalid

instruments from Figure 1. For ease of exposition, we assume in the following that this

condition holds.

We have a random sample {Yi, Di,Z
′
i.}

n
i=1. Combining (1) and (2), the observed data

model for the random sample is given by

Yi = Diβ + Z′i.α+ ui, (3)

5



where α = φ+ µ;

ui = Y
(0,0)
i − E

[
Y

(0,0)
i |Zi.

]
and hence E [ui|Zi.] = 0. We initially further assume conditional homoskedasticity,

E [u2
i |Zi.] = σ2

u.

The Kang et al. (2016) definition of a valid instrument is then linked to the exclusion

restriction and given as follows: Instrument Zj, j ∈ {1, ..., kz}, is valid if αj = 0 and

it is invalid if αj 6= 0. As in their setting, we are interested in the identification and

estimation of the scalar treatment effect β in large samples with a fixed number kz

of potential instruments. We consider here only the fixed kz << n case, or the low

dimensional setting in the terminology of Guo et al. (2018). This is a setting of interest

in many applications and is the setting under which the oracle IV estimator has the

standard limiting distribution as described below.

Let y and d be the n-vectors of n observations on {Yi} and {Di} respectively, and
let Z be the n× kz matrix of potential instruments. As an intercept is implicitly present
in the model, y, d and the columns of Z have all been taken in deviation from their

sample means. Other covariates can be partialled out in the same way. Let ZV0 and ZA

be the sets of valid and invalid instruments, V0 = {j : αj = 0}, A = {j : αj 6= 0}, with
dimensions kV0 and kA respectively and kz = kV0 + kA. The oracle model is given by

y = dβ + ZAαA + u.

For a full column rank matrix C with n rows define MC = In − PC , where PC =

C (C′C)−1 C′ is the projection onto the column space of C, and In is the n-dimensional

identity matrix. Let d̂ = PZd, then the oracle 2SLS estimator for β is the OLS estimator

in the specification

y = d̂β + ZAαA + ξ,

where ξ is defined implicitly, and is given by

β̂or =
(
d̂′MZAd̂

)−1

d̂′MZAy.

Under standard assumptions, as defined below,

√
n
(
β̂or − β

)
d−→ N

(
0, σ2

βor

)
, (4)
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where

σ2
βor

= σ2
u

(
E [Zi.Di]

′E [Zi.Z
′
i.]
−1
E [Zi.Di]− E [ZA,i.Di]

′E
[
ZA,i.Z

′
A,i.
]−1

E [ZA,i.Di]
)−1

.

(5)

The vector d̂ = PZd = Zγ̂ is the linear projection of d on Z, with γ̂ the OLS

estimator of γ = E [Zi.Z
′
i.]
−1E [Zi.Di] in the linear projection

Di = Z′i.γ + εdi, (6)

and hence E [Zi.εdi] = 0. We initially assume that the kz elements γj in γ, are all different

from 0:

Assumption 1 γ = (E [Zi.Z
′
i.])
−1E [Zi.Di], γj 6= 0, j = 1, ..., kz.

This is the same assumption as in Kang et al. (2016) and Windmeijer et al. (2018).

Guo et al. (2018) relaxed this assumption and proposed a first-stage hard thresholding

procedure to consistently select only instruments with γj 6= 0. We will discuss this further

in Section 6 and apply this first-stage thresholding in our application.

Let Γ = E [Zi.Z
′
i.]
−1E [Zi.Yi] = γβ +α. Then define βj as

βj ≡
Γj
γj

= β +
αj
γj
, (7)

for j = 1, ..., kz. Following Theorem 1 in Kang et al. (2018), a necessary and suffi cient

condition to identify β and the αj, given Γ and γ, is that the valid instruments form

the largest group, where instruments form a group if they have the same value for βj.

This is the plurality rule. As in Guo et al. (2018), we maintain the assumption that this

condition is satisfied:

Assumption 2 |V0| > maxg 6=0 |Vg|, where Vg =
{
j :

αj
γj

= g
}
.

For the sample {Yi, Di,Z
′
i.}

n
i=1, and models (3) and (6), we assume that the following

standard conditions hold:

Assumption 3 E [Zi.Z
′
i.] = Q, with Q a finite and full rank matrix.

Assumption 4 Let wi = (ui εdi)
′. Then E [wi] = 0; E [wiw

′
i] =

[
σ2
u σuεd

σuεd σ2
εd

]
= Σ.

The elements of Σ are finite.
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Assumption 5 plim (n−1Z′Z) = E [Zi.Z
′
i.] = Q; plim (n−1Z′d) = E [Zi.Di];

plim (n−1Z′u) = E [Zi.ui] = 0; plim (n−1Z′εd) = E [Zi.εdi] = 0;

plim (n−1
∑n

i=1 wi) = 0; plim (n−1
∑n

i=1 wiw
′
i) = Σ.

Assumption 6 1√
n

∑n
i=1 vec (Zi.w

′
i)

d→ N (0,Σ⊗Q).

Note that conditional homoskedasticity E [wiw
′
i|Zi.] = Σ is implicit in Assumption 6.

We make this assumption primarily for ease of exposition and will relax this in Section

5.

The plurality rule, Assumption 2, is the main assumption on the instruments needed

to establish oracle properties for the CI method described below and the HT method of

Guo et al. (2018). In particular, the values of αj, the effect of the instrument on the

outcome, and γj, the effect of the instrument on the exposure, also referred to as the

strength of the instrument, can be arbitrary and arbitrarily correlated. For example,

note from the DAG of Figure 1, that for instruments of type Z2, the Z2-D relationship

itself is subject to unobserved confounding, which could lead to a correlation between

the observed strength of the instruments and their effects on the outcome Y . The CI and

HT methods are robust to any such correlation. Alternatively, the methods of Kolesár

et al. (2015) and Bowden et al. (2015) do not make the plurality rule assumption and

can have all instruments invalid. A bias corrected 2SLS estimator is then consistent

under the INstrument Strength Independent of Direct Effect (INSIDE) assumption that

Cov
(
αj, γj

)
= 0, together with the requirement that the number of instruments increases

with the sample size. Guo et al. (2018) provide a discussion of and comparison to these

methods, also including alternative methods proposed by Bowden et al. (2016), Hartwig

et al. (2017) and Burgess et al. (2018).

3 The Confidence Interval Method

From the plurality rule Assumption 2, it follows that consistent instrument selection pro-

cedures can be based on consistent and asymptotic normal estimators of the parameters

βj. Then groups of instruments are formed by similar estimates β̂j, and, in large sam-

ples, the largest group will constitute the group of valid instruments under Assumption

2. Whilst in principle all combination of instruments could be tested separately, see
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Andrews (1999), in practice this may not be feasible, as is the case in our application,

where we have 96 potential instruments. The Guo et al. (2018) method as described

further in Section 4 reduces the dimensionality of the problem by essentially performing

kz (kz − 1) /2 pairwise tests of the null H0 : βj = βk, combined with a voting scheme to

group the instruments.

A clear reduction of the dimensionality of the problem is achieved by alternatively

considering testing H0 : βj = δg, for a grid δg spanning the possible values of β and

selecting as the set of valid instruments the largest set over all values of δg for which a

particular value of δg is not rejected. The CI method operationalises this idea without

having to consider the grid points δg by grouping together instruments with overlapping

confidence intervals.

Let Γ̂ and γ̂ be the OLS estimators for Γ and γ in the specifications

y = ZΓ + εy; d = Zγ + εd.

Under Assumptions 3-6 it follows that

√
n

((
Γ̂
γ̂

)
−
(

Γ
γ

))
d→ N (0,Λ) , (8)

where Λ = Ω⊗Q−1, with Ω = E [εiε
′
i|Zi.], εi = (εyi, εdi)

′.

Following Guo et al. (2018), let an estimator for βj be

β̂j =
Γ̂j
γ̂j
, (9)

then it follows, using the delta method, that
√
n
(
β̂j − βj

)
d→ N

(
0, σ2

j

)
, with, denoting

Q−1
jj the j-th diagonal element of Q−1,

σ2
j =

τ 2
jQ
−1
jj

γ2
j

; τ 2
j =

(
1 −βj

)
Ω

(
1
−βj

)
. (10)

An estimator for the variance of β̂j and is then given by

V âr
(
β̂j

)
=
τ̂ 2
j (Z′Z)−1

jj

γ̂2
j

; τ̂ 2
j =

(
1 −β̂j

)
Ω̂

(
1

−β̂j

)
, (11)

where (Z′Z)−1
jj is the j-th diagonal element of (Z′Z)−1 and Ω̂ = 1

n

∑n
i=1 ε̂iε̂

′
i, with ε̂i the

OLS residual vector (ε̂yi, ε̂di)
′. It follows that nV âr

(
β̂j

)
p→ σ2

j .
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We show in Appendix A.1 that β̂j is identical to the 2SLS estimator of βj in the just

identified model

y = dβj + Z{−j}π
[j] + uj,

where Z{−j} = Z\ {Z.j}, using Z.j as the instrument for d. This therefore implies that

β̂j is the IV estimator for β based on instrument Z.j whilst treating all other instruments

as invalid. The variance estimator V âr
(
β̂j

)
as defined in (11) is also the same as the

standard 2SLS variance estimator in the just identified model.

The CI method is a fast method that consistently selects the valid instruments. Given

a value ψn, define the confidence interval cij (ψn) for β̂j as

cij (ψn) =
(
β̂j − v̂jψn, β̂j + v̂jψn

)
, (12)

for j = 1, ..., kz, where v̂j =

√
V âr

(
β̂j

)
with

√
nv̂j

p→ σj. Let σ̂j =
√
nv̂j. Instruments

are then classified as groups V̂g (ψn). For members j ∈ V̂g (ψn), all cij (ψn) overlap with

each other. It is clear from this definition that instruments can be members of multiple

groups, and a group can be a singleton. We then select as the group of valid instruments

the largest group, denoted V̂n defined as

V̂n =

{
V̂m (ψn) :

∣∣∣V̂m (ψn)
∣∣∣ = max

g

∣∣∣V̂g (ψn)
∣∣∣} . (13)

The next Theorem states the conditions under which this selection method is consistent.

Theorem 1 Let the β̂j be defined as in (9) and their confidence intervals as in (12).

Let V̂n be the largest group of instruments for which all confidence intervals overlap with
each other as defined in (13). For ψn →∞, ψn = o

(
n1/2

)
, and under Assumptions 1-6

it follows that

lim
n→∞

P
(
V̂n = V0

)
= 1.

Proof. First consider a valid instrument Zq and invalid instrument Zs. Consider wlog

the case with βs > β. The joint limiting distribution of the estimators β̂q and β̂s is given

by
√
n

((
β̂q
β̂s

)
−
(

β
βs

))
d→ N

((
0
0

)
,

[
σ2
q σqs

σqs σ2
s

])
.
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Then the confidence intervals will not overlap when n→∞, as

lim
n→∞

P
(
β̂q + v̂qψn < β̂s − v̂qψn

)
= lim

n→∞
P
(
β̂q − β̂s < −ψn (v̂q + v̂s)

)

= lim
n→∞

P

√n
((
β̂q − β̂s

)
− (β − βs)

)
√
σ2
q + σ2

s − 2σqs
< −ψn

σ̂q + σ̂s√
σ2
q + σ2

s − 2σqs
+

√
n (βs − β)√

σ2
q + σ2

s − 2σqs


= 1,

as √
n
((
β̂q − β̂s

)
− (β − βs)

)
√
σ2
q + σ2

s − 2σqs

d→ N (0, 1)

and ψn = o
(
n1/2

)
.

For any pair of valid instruments Zq and Zk, we have that the confidence intervals

will overlap with probability 1 when n→∞, as

lim
n→∞

P
(
β̂q + v̂qψn > β̂k − v̂kψn

)
= lim

n→∞
P
(
β̂q − β̂k > −ψn (v̂q + v̂k)

)
= lim

n→∞
P

√n
((
β̂q − β̂k

))
√
σ2
q + σ2

k − 2σqk
> −ψn

σ̂q + σ̂k√
σ2
q + σ2

k − 2σqk


= 1.

The above results hold for all groups Vg. For n → ∞, all confidence intervals for the
instruments within a group will overlap, whereas none of the confidence intervals of

instruments in different groups Vg and Vg′ will overlap.

Following the results in Guo et al. (2018), the next Theorem states the oracle prop-

erties of the 2SLS estimator based on selecting ZV̂n as the valid instruments and thus

ZÂn = Z\
{
ZV̂n

}
as the set of invalid instruments.

Theorem 2 Let ZÂn = Z\
{
ZV̂n

}
and let β̂Ân be the 2SLS estimator of β, given by

β̂Ân =
(
d̂′MZÂnd̂

)−1

d̂′MZÂny.

Then under the conditions of Theorem 1, it follows that

√
n
(
β̂Ân − β

)
d→ N

(
0, σ2

or

)
.

Proof. As limn→∞ P
(
V̂n = V0

)
= 1, the result follows directly from Theorem 2 in Guo

et al. (2018).
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3.1 Algorithm

For any ψn the sets of overlapping confidence intervals can easily and rapidly be obtained

as follows. Denote the lower and upper endpoints of cij by cilj and ciuj. Order the

confidence interval in ascending order of the lower endpoints, and use the notation cil[j]

and ciu[j] for the ordered intervals. For j = 2, ..., kz, let no[j] =
∑j−1

k=1 1
(
ciu[k] > cil[j]

)
.

Then the largest set(s) of overlapping intervals are those associated with the maximum

value of no[j].

3.2 Choice of Tuning Parameter, Sargan Test

Whilst any sequence ψn such that ψn → ∞ and ψn = o
(
n1/2

)
will lead to consistent

selection, for any given sample there is the usual trade-off in the sense that larger values

of ψn result in larger probabilities of selecting the valid instruments as valid, but smaller

probabilities of selecting the invalid instruments as invalid, and vice versa. Whilst stan-

dard cross validation techniques can be used for a data driven selection of the tuning

parameter, these are well-known to not result in consistent selection and to select too

many instruments as invalid in general. This was illustrated by Windmeijer et al. (2018)

for the Lasso selection of invalid instruments.

Instead of choosing a value for ψn, one can instead focus on choosing the critical

value of the Sargan test for overidentifying restrictions, following Andrews (1999), see

also Windmeijer et al. (2018). For the oracle model

y = dβ + ZAαA + u = XAθA+u,

with XA =
[

d ZA
]
and θA =

(
β α′A

)′
, the Sargan test is given by

S
(
θ̂A

)
=

û′Z (Z′Z)−1 Z′û

û′û/n
,

where û = y −XAθ̂A, with θ̂A the 2SLS estimator of θA. Then, under the null that the

moment conditions are correct, H0 : E [Zi.ui] = 0, S
(
θ̂A

)
d→ χ2

kz−kA−1. For any set ZA+,

such that ZA ⊂ ZA+ it follows that S
(
θ̂
A+

)
d→ χ2

kz−kA+−1, whereas for any set ZA−, such

that ZA 6⊂ ZA−, S
(
θ̂
A−

)
is Op (n).
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The Sargan test S
(
θ̂A

)
in the oracle model is equal to the score test for testing

H0 : αB = 0 after 2SLS estimation of the just identified specification

y = dβ + ZAαA + ZBαB + uB,

where ZB is any kV0 − 1 subset of instruments from ZV0 , see Newey and West (1987),

making clear the link between the Sargan test and the specification of invalid instruments

as in (3). In the oracle model, it is also a test for the joint null hypothesis H0 : βV01 =

βV02 = ... = βV0kV0
, where the βV0r are the βj coeffi cients (7) for j ∈ V0, see Windmeijer

(2019). Therefore, whilst the CI method achieves dimension reduction by ignoring the

covariances between the estimators β̂j, by using the Sargan test as a stopping rule as

described below, the selected model is the one with the largest number of instruments

with overlapping confidence intervals for which the joint null hypothesis is not rejected,

incorporating the full covariance structure.

Starting from a large value ψ1 such that all confidence intervals overlap and so V̂1 = Z

and Â1 = ∅, the full model selection path is obtained from the sequence of values

ψs, which is the maximum value of ψ for which the maximum number of overlapping

confidence intervals drops at each step. For any value ψs, there may be multiple groups

with the largest number of overlapping confidence intervals. If that is the case, we

follow Andrews (1999) and select the group of instruments for which the Sargan test for

overidentifying restrictions is smallest.

Let ψ∗j,r =
∣∣∣β̂j − β̂r∣∣∣ / (v̂j + v̂r), then all possible breakpoints are given by ψ

∗
j,r − ε for

some small value ε > 0, j, r = 1, ..., kz, j 6= r. In practice, one only needs to consider the

next breakpoint for the currently selected largest group of instruments, which is given by

ψs = maxj,r∈V̂s−1
(
ψ∗j,r
)
− ε. When there are multiple groups with the maximum number

of overlapping confidence intervals, then only the smallest value of the collection of next

group specific breakpoints need to be considered.

For the monotonic sequence of models thus obtained we can use the downward testing

procedure of Andrews (1999) and select the model with the largest degrees of freedom

for which the Sargan test is smaller than the critical value ζn,kz−kÂs−1 of the χ
2
kz−kÂs−1

distribution. For consistent model selection, the critical values ζn,kz−kÂs−1 need to satisfy

ζn,kz−kÂs−1 →∞ for n→∞, and ζn,kz−kÂs−1 = o (n) , (14)
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see Andrews (1999). Windmeijer et al. (2018) choose as threshold p-value for the Sargan

test 0.1/ log (n), following the suggestion of Belloni et al. (2012) and which satisfies the

conditions for consistent model selection and oracle properties of the resulting 2SLS

estimator. With this strategy, there are a maximum of kz − 1 models to be evaluated.

Clearly, if the last model with 2 possible valid instruments gets rejected, there is no

evidence that any of the instruments are valid.

4 Hard Thresholding Method

Consider next pairwise testing of the null hypotheses H0 : βj = βk, j = 1, ..., kz − 1; k =

j + 1, ..., kz. These are equivalent to H0 :
Γj
γj

= Γk
γk
and a reformulation is given by

H0 : Γk − Γj
γj
γk = π

[j]
k = 0. Guo et al. (2018) use the latter as the basis for their pairwise

testing using Wald test statistics. Unlike the score test, the Wald test is not invariant to

the reformulation of a nonlinear restriction, and whilst the Wald tests for H0 : βj = βk

are symmetric, this is not the case for H0 : π
[j]
k = 0. As we discuss below in Section 4.3,

the score test here is the same as the Sargan test for overidentifying restrictions when

Z.j and Z.k are the excluded instruments.

An estimator for π[j]
k is given by

π̂
[j]
k = Γ̂k −

Γ̂j
γ̂j
γ̂k. (15)

It follows from the delta method that
√
n
(
π̂

[j]
k − π

[j]
k

)
d→ N

(
0, σ2

π
[j]
k

)
, with σ2

π
[j]
k

=

τ 2
j

(
Q−1
kk − 2

(
γk
γj

)
Q−1
kj +

(
γk
γj

)2

Q−1
jj

)
, where τ 2

j is as defined in (10). An estimator for

the variance of π̂[j]
k is therefore given by

V âr
(
π̂

[j]
k

)
= τ̂ 2

j

(
(Z′Z)

−1
kk − 2

(
γ̂k
γ̂j

)
(Z′Z)

−1
kj +

(
γ̂k
γ̂j

)2

(Z′Z)
−1
jj

)
, (16)

where τ̂ 2
j is as defined in (11), with nV âr

(
π̂

[j]
k

)
p→ σ2

π
[j]
k

.

Guo et al. (2018) consider the test statistics1

t
[j]
k =

π̂
[j]
k

v̂
π
[j]
k

(17)

1We provide detail of the correspondence between the specification in Guo et al. (2018) and our
notation in Appendix A.2.
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for k, j = 1, .., kz, k 6= j, where v̂
π
[j]
k

=

√
V âr

(
π̂

[j]
k

)
with

√
nv̂

π
[j]
k

p→ σ
π
[j]
k
. Let σ̂

π
[j]
k

=

√
nv̂

π
[j]
k
. It follows that under the null, H0 : π

[j]
k = 0, t[j]k

d→ N (0, 1). Hence, for the

sequence ψn →∞, ψn = o
(
n1/2

)
, when π[j]

k = 0,

lim
n→∞

P
(∣∣∣t[j]k ∣∣∣ ≤ ψn

)
= 1, (18)

and when π[j]
k 6= 0,

lim
n→∞

P
(∣∣∣t[j]k ∣∣∣ ≤ ψn

)
= lim

n→∞
P

∣∣∣∣∣∣
√
n
(
π̂

[j]
k − π

[j]
k

)
σ̂

[j]
πl

+

√
nπ

[j]
k

σ̂
[j]
πk

∣∣∣∣∣∣ ≤ ψn

 = 0. (19)

Guo et al. (2018) then define the set V̂ [j]
n as

V̂ [j]
n =

{
k :
∣∣∣t[j]k ∣∣∣ ≤ ψn

}
. (20)

These are the instruments k = 1, ..., kz, for whichH0 : π
[j]
k = 0 is not rejected using critical

value, or threshold, ψn. Note that instrument j is always contained in V̂
[j]
n . It follows

that if βk = βj, limn→∞ P
(
k ∈ V̂ [j]

n

)
= 1 and if βk 6= βj, limn→∞ P

(
k ∈ V̂ [j]

n

)
= 0.

As these are not joint, but only pairwise comparisons, Guo et al. (2018) propose a

majority and plurality voting scheme to consistently obtain the set of valid instruments.

In their terminology, V̂ [j]
n is expert j’s ballot that contains expert j’s opinion about which

instruments are valid. The number of votes an instrument k gets is given by

VMk =
kz∑
j=1

1
(
k ∈ V̂ [j]

n

)
.

The majority rule then selects an instrument as valid if it gets a vote from more than

50% of the experts. The group of instruments selected as valid is then given by

V̂M =

{
k : VMk >

kz
2

}
. (21)

If none of the instruments gets a majority vote, the plurality rule is applied, which defines

the set of instruments selected as valid by

V̂P =
{
k : VMk = max

l
VMl

}
. (22)
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Let V̂HTn = V̂M ∪ V̂P , then Guo et al. (pp 13-14) show that under Assumptions 1-6 it
follows that

lim
n→∞

P
(
V̂HTn = V0

)
= 1

and
√
n
(
β̂
HT

n − β
)

d→ N
(
0, σ2

or

)
,

where β̂
HT

n =
(
d̂′MZÂ

HT
n

d̂
)−1

d̂′MZÂ
HT
n

y, Z
Â
HT
n

= Z\
{

Z
V̂
HT
n

}
.

4.1 Choice of Tuning Parameter

From the results in (18) and (19) it follows that there is the usual trade-off in the value of

ψn in classifying instruments as potentially valid or invalid. However, Guo et al. (2018)

do not treat ψn as a classical tuning parameter, indeed stressing the fact that their

method is tuning parameter free, and they do not specify the rate for ψn as obtained

above. They set ψn =
√

2.012 log (max (kz, n)) which in the setting here with fixed kz

and n > kz would lead to ψn =
√

2.012 log (n). The motivation seems to be from the fact

that there are kz (kz − 1) statistics t[j]k . If they were all independent N (0, 1) distributed

random variables, then it follows that if the number of instruments kz increases,

lim
kz→∞

P

(
max
k,j

(∣∣∣t[j]k ∣∣∣) >√2 log (kz (kz − 1))

)
= 0, (23)

see Donoho and Johnstone (1994). For the kz fixed case considered here, we have, if the

t
[j]
k were independent N (0, 1) distributed random variables, that

E

[
max
k,j

(
t
[j]
k

)]
<
√

2 log (kz (kz − 1)). (24)

It is unclear how the result in (24) translates into an optimal choice ψn as a function

of n, even if the t[j]k were independently distributed, which they are clearly not. We find

in the Monte Carlo experiments below that the value of ψn =
√

2.012 log (n) can be

much too large, resulting in selecting a large group of instruments as valid that includes

invalid instruments. Guo et al. (2018, p. 800) state that in practice, the max (kz, n) is

often replaced by kz or n to improve the finite sample performance. In the R-routine

TSHT.R (Kang, 2018), the default threshold parameter for the low dimensional setting

is set equal to ψ =
√

2.012 log (kz), in line with the results (23) and (24) above, but in
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principle this choice of ψ does not lead to consistent selection for fixed kz and n→∞. In
their Monte Carlo simulations, Guo et al. (2018) instead set ψ =

√
2.01 log (kz). We will

use these latter two values to evaluate the performance of the hard thresholding method

in the simulations and application below.

4.2 Voting

The Guo et al. (2018) method achieves dimension reduction by pairwise testing of H0 :

π
[j]
k = 0 and the voting mechanism. A weakness of the voting scheme is that it does not

have a mechanism to choose between sets of instruments when there are ties, and the

number of instruments selected as valid is not guaranteed to be monotonically decreasing

for decreasing values of ψn. Consider the example as depicted in Table 1. There are

5 potential instruments. In the left panel of the table, for a value ψ1 for the tuning

parameter, instruments 2 and 3 both get three votes, including the votes for themselves,

whereas instruments 1 and 2 get two votes and instrument 5 only one vote. Hence,

V̂HTn,1 = {2, 3} and the number of instruments selected as valid is equal to 2. Next

consider the right panel, with ψ2 < ψ1 and the situation is such that ψ2 ≤
∣∣∣t[2]

3

∣∣∣ ≤ ψ1 and

ψ2 ≤
∣∣∣t[3]

2

∣∣∣ ≤ ψ1, but
∣∣∣t[j]k ∣∣∣ ≤ ψ2 for k, j ∈ {1, 2} and k, j ∈ {3, 4}. Now instruments 1, 2, 3

and 4 all get two votes. Application of the plurality rule (22) then leads to selecting these

four instruments all as valid, V̂HTn,2 = {1, 2, 3, 4}, and so the number of valid instruments
selected here increases for a decreasing value of ψ. Because of this, the Andrews (1999)

Sargan test based downward testing procedure can not be applied in general to the HT

method.

As is clear from Table 1, the voting mechanism can select the instruments in non-

overlapping groups all as valid. One way to overcome the problem of ties in the voting

Table 1: Example of voting
ψ1 ψ2 < ψ1

k\j 1 2 3 4 5 VMk k\j 1 2 3 4 5 VMk

1 x x - - - 2 1 x x - - - 2
2 x x x - - 3 2 x x - - - 2
3 - x x x - 3 3 - - x x - 2
4 - - x x - 2 4 - - x x - 2
5 - - - - x 1 5 - - - - x 1
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matrix is to find the maximal cliques, but as this problem is np complete, Karp (1972),

this negates the dimension reduction properties of the voting scheme. This problem is

circumvented in the CI method, which keeps track of the groupings and selects the group

of instruments with the smallest value of the Sargan test in case of ties.

Further note that for the HT method the number of instruments selected as valid can

be both larger and smaller than the number of votes, as the examples in Table 1 show.

With the asymmetric t[k]
j , it could also be the case that only one instrument is selected

as valid. This would happen, for example, if the left panel was changed with
∣∣∣t[3]

2

∣∣∣ > ψ1,

but
∣∣∣t[2]

3

∣∣∣ ≤ ψ1, in which case only instrument 2 is selected as valid with three votes.

4.3 Relationship with Sargan Test

Proposition A1 in Appendix A.1 shows that t[j]k as defined in (17) can equivalently be

specified as

t
[j]
k =

π̂
[j]
k,2sls√

V âr
(
π̂

[j]
k,2sls

) ,
after 2SLS estimation of the parameters in the just identified model model (A.1)

y = dβj + Z{−j}π
[j] + uj,

with Z{−j} = Z\ {Z.j}, using Z.j as the instrument for d, and using the notation π̂[j]
2sls =(

π̂
[j]
k,2sls

)
k 6=j
. Instead of the t, or Wald test, one could perform a score test for the null

H0 : π
[j]
k = 0, with the only difference that the variance is estimated under the null. This

score test is the same as the Sargan test of overidentifying restrictions in the model

y = dβjk + Z{−jk}π
[jk] + ujk, (25)

where Z{−jk} = Z\ {Z.j,Z.k}, using both Z.j and Z.k as instruments for d, see Newey

and West (1987) and the discussion in Appendix A.1. Denoting this Sargan statistic by

Sjk, then under the null and maintained assumptions, Sjk
d→ χ2

1.

Unlike the t[j]k , for which t
[j]
k 6= t

[k]
j , the Sjk are symmetric, Sjk = Skj, an invariance

feature of the score test which is invariant to specifying the null as H0 : Γk
γk
− Γj

γj
= 0

or H0 : Γk − Γj
γj
γk = 0. There are therefore kz (kz − 1) /2 statistics Sjk and, instead of

the selection rule V̂ [j]
n =

{
k :
∣∣∣t[j]k ∣∣∣ ≤ ψn

}
, we can use the asymptotically equivalent rule

V̂ [j]
n =

{
k :
√
Sjk ≤ ψn

}
.
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5 Robustness to Heteroskedasticity

Both the confidence interval and hard thresholding procedures can be adapted to be ro-

bust to heteroskedasticity, clustering and/or serial correlation. Consider for example con-

ditional heteroskedasticity of the general form E [wiw
′
i|Zi.] = Σ (Zi.) and E [εiε

′
i|Zi.] =

Λ (Zi.), with the functions Σ (Zi.) and Λ (Zi.) unknown. Let η̂j =
(

Γ̂j γ̂j

)′
, then a

robust estimator of V ar
(
η̂j
)
is given by

V ârr
(
η̂j
)

=
(
I2 ⊗ (Z′Z)

−1
)( n∑

i=1

(
ε̂iε̂
′
i ⊗ Zi.Z

′
i.

))(
I2 ⊗ (Z′Z)

−1
)
,

and straightforward application of the delta method results in robust variance estimators

V ârr

(
β̂j

)
and V ârr

(
π̂

[j]
k

)
.

For the CI method, instead of using the Sargan test for selection, a robust score test

needs to be used, like the two-step Hansen J-test, Hansen (1982). For the oracle model

y = dβ + ZAαA + u = XAθA + u,

the two-step GMM estimator is given by

θ̂A,2 =
(
X′AZW−1

n

(
θ̂A,1

)
Z′XA

)−1

X′AZW−1
n

(
θ̂A,1

)
Z′y,

where θ̂A,1 is an initial one-step estimator, for example the 2SLS estimator, and

Wn

(
θ̂A,1

)
=

n∑
i=1

(
Yi −X′A,i.θ̂A,1

)
Zi.Z

′
i..

Let û2 = y −XAθ̂A,2 then the Hansen J-test statistic is given by

J
(
θ̂A,2, θ̂A,1

)
= û′2ZW−1

n

(
θ̂A,1

)
Z′û2.

Under the null H0 : E [Zi.ui] = 0, J
(
θ̂A,2, θ̂A,1

)
d→ χ2

kz−kA−1, thus generalising the

result for the Sargan test under conditional homoskedasticity to the case of general het-

eroskedasticity.

As the oracle estimator, we can then specify the 2SLS estimator with robust standard

errors, or the effi cient two-step GMM estimator.
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6 Weak Instruments

The relevance Assumption 1 states that γj 6= 0 for all j = 1, ..., kz. In our application

we use 96 single nucleotide polymorphisms (SNPs) as potential instruments for BMI to

investigate its effect on blood pressure. These SNPs have been found to be associated

with BMI in independent genome wide association studies (GWAS), see Locke et al.

(2015). Whilst the assumption is therefore very likely to be valid, it may well be the case

that in our sample individual instruments are weak in the sense that they only explain a

small amount of the variance of the exposure.

The presence of many weak instruments leads to bias in the 2SLS estimator. This

many weak instrument bias is much less for the Limited Information Maximum Likelihood

(LIML) and Continuously Updated GMM (CU-GMM) estimators, see Davies et al. (2015)

and the references therein. Analogously to the problem of heteroskedasticity discussed

in the previous section, to counter a potential many weak instruments bias problem of

the 2SLS estimator, the CI and HT methods can estimate the parameters by LIML or

CU-GMM, with the CI method adjusting the Sargan test statistic accordingly.

For the selection of valid instruments, a very weak invalid instrument could often be

classified as a valid instrument in the CI method due to its large standard error, and can

change the selection in the HT method by giving votes to a large number of instruments.

In order to overcome the selection problem with weak instruments, Guo et al. (2018)

proposed a first-stage hard thresholding for H0 : γj = 0 and to classify instruments as

uninformative and treated as invalid if

∣∣∣tγj ∣∣∣ =

∣∣∣∣∣∣ γ̂j√
V âr

(
γ̂j
)
∣∣∣∣∣∣ < ωn, (26)

with ωn =
√

2.01 log {max (kz, n)}, and where V âr
(
γ̂j
)
can be a robust variance estima-

tor in case of heteroskedasticity. As with the setting of ψn discussed in Section 4.1, the

threshold parameter is set to ωn =
√

2.01 log (kz) in the R routine TSHT.R (Kang, 2018),

also for the low dimensional, fixed kz case, and we will apply this first-stage thresholding

in our application.

A potential problem with this first-stage thresholding is that, as the instruments are

not a priory considered to be valid, there is a chance that invalid instruments are more
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likely to cross the threshold. This may occur for instruments of the type Z2 in the DAG

of Figure 1. As Z2 affects the unmeasured confounders UC that in turn affects the

exposure D, the Z2-D relationship itself is confounded and could result in a stronger

observed effect of the instrument on the exposure than it otherwise would have been and

a larger chance of crossing the first-stage threshold.

7 Some Monte Carlo Results

We consider a design similar to that in Guo et al. (2018, Table 2) who considered a

setting with a small number of potential instruments, kz = 7, in their design where the

majority rule is violated, but the plurality rule holds. We consider here such setting but

with a larger number of potential instruments, kz = 21. We present a replication of their

kz = 7 design in Appendix A.3.

The data are generated from

Di = Z′i.γ + εdi

Yi = Diβ + Z′i.α+ ui,

where (
ui
εdi

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
;

Zi. ∼ N (0,Σz) ;

with β = 1; kz = 21; ρ = 0.25; kA = 12, α = ca (ι′6, 0.5ι
′
6,0
′
9)′ and γ = cγ × ιkz , where

ιr is an r-vector of ones, and 0r is an r-vector of zeros. There are therefore 3 groups of

instruments. The largest group is formed by the valid instruments and so the plurality

rule holds, but not the majority rule. The elements of Σz are given by Σz,jk = ρ
|j−k|
z . We

set ρz = 0.5 and first show selection information as a function of the tuning parameter ψ

graphically for the HT and CI methods for a sample size of n = 2000 and cα = cγ = 0.4.

As in Guo et al. (2018), in this setting all instruments are strong, and the first-stage

thresholding is omitted. Note that this simple design represents invalid instruments with

a direct effect on the outcome of the type Z1 in the DAG of Figure 1.

Figure 3 shows the frequency of selection of the oracle model for the HT and CI meth-

ods, for 10, 000 Monte Carlo replications and a grid of values ψ = (0.15, 0.20, ..., 6.95, 7).

21



0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

or
ac

le
 fr

eq
.

ht
ci

Figure 3: Frequency of selecting oracle model as a function of ψ. n = 2000, kz = 21,
kA = 12, cα = cγ = 0.4.

It is clear that the CI method utilises the available information better in this case and

obtains a maximum frequency of selecting the oracle model of 0.98 at ψ = 2.60, whereas

the maximum frequency for the HT method is only 0.60 at ψ = 2.40.

Figure 4 shows the average total number of instruments selected as invalid,
∣∣∣Ân∣∣∣, and

the average number of invalid instruments selected as invalid as a function of ψ. Whilst

both methods can correctly select the 12 invalid instruments as invalid for a range of

values of ψ, the CI method can do so without also selecting valid instruments as invalid.

In contrast, the HT method selects on average additional valid instruments as invalid

resulting in the difference in the frequencies of selecting the oracle model. At ψ = 2.40,

the HT method selects on average 11.94 invalid instruments correctly as invalid, but

selects on average a total of 13.52 instruments as invalid. At ψ = 2.60, the CI method

selects on average 11.99 invalid instruments correctly as invalid, and selects on average

a total of 12.01 instruments as invalid, hence the much higher frequency of selecting the

oracle model for the CI method.

As is clear from Figure 4, the number of selected instruments as invalid is not

monotonic in decreasing values of the threshold ψ for the HT method, as discussed

in Section 4.2, whereas it is for the CI method.

The proposed threshold value for the HT method, ψn =
√

2.012 log (n) = 5.54 is

clearly too large a value in this design. The alternative as used in the TSHT.R routine,
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Figure 4: Average total number of instruments selected as invalid (all) and number of
invalid instruments selected as invalid (inv) as a function of ψ. n = 2000, kz = 21,
kA = 12, cα = cγ = 0.4.

Kang (2018), is ψ =
√

2.012 log (kz) = 3.51. As shown in Figure 3, the probability

of selecting the oracle model at this value is equal to only 0.018. Figure 4 shows that

the average number of correctly selected invalid instruments at this value of ψ is 10.93,

and quite a few valid instruments are selected as invalid, with the average total number

of instruments selected as invalid equal to 18.42. Guo et al. (2018) used the value of

ψ =
√

2.01 log (kz) in their Monte Carlo simulations, which in this case is equal to

ψ = 2.47, very close to the optimal value of ψ = 2.40 for the maximum frequency of

oracle selection. Here the probability of selecting the oracle model is equal to 0.59, on

average correctly selecting 11.91 invalid instruments as invalid, and selecting on average

a total number of 13.68 instruments as invalid.

Table 2 shows estimation results for this design for different values of the sample

size n = 500, 1000, 2000, 5000, for 10, 000 Monte Carlo replications. As in Guo et al.

(2018), we present the median absolute error (mae), the coverage probability of the 95%

confidence interval for β and the average length of the confidence interval. In addition,

we present the average number of instruments selected as invalid,
∣∣∣Ân∣∣∣, the frequency of

selecting the oracle model, por, and the frequency of selecting all invalid instruments as in-

valid, pallinv. The 95% confidence interval is given by
(
β̂Ân − 1.96v̂β̂Ân

, β̂Ân + 1.96v̂β̂Ân

)
,
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Table 2: Estimation Results, kz = 21

mae coverage CI length
∣∣∣Ân∣∣∣ por pallinv

n = 500
2SLS or 0.017 0.943 0.093 12.000 1.000 1.000
2SLS 0.423 0.000 0.088 0.000 0.000 0.000
HT4kz 0.321 0.000 0.083 1.982 0.000 0.000
HT2kz 0.330 0.000 0.091 6.901 0.000 0.000
CIsar 0.032 0.639 0.097 10.661 0.098 0.106
n = 1000
2SLS or 0.011 0.949 0.066 12.000 1.000 1.000
2SLS 0.423 0.000 0.062 0.000 0.000 0.000
HT4kz 0.325 0.000 0.065 6.822 0.000 0.000
HT2kz 0.305 0.088 0.222 17.102 0.001 0.137
CIsar 0.014 0.889 0.066 11.599 0.538 0.561
n = 2000
2SLS or 0.008 0.949 0.047 12.000 1.000 1.000
2SLS 0.424 0.000 0.044 0.000 0.000 0.000
HT4kz 0.320 0.176 0.208 18.421 0.018 0.277
HT2kz 0.012 0.836 0.088 13.681 0.585 0.911
CIsar 0.008 0.943 0.047 12.008 0.978 0.992
n = 5000
2SLS or 0.005 0.950 0.030 12.000 1.000 1.000
2SLS 0.424 0.000 0.028 0.000 0.000 0.000
HT4kz 0.005 0.947 0.030 12.031 0.984 1.000
HT2kz 0.006 0.951 0.035 12.687 0.749 1.000
CIsar 0.005 0.946 0.030 12.012 0.989 1.000
Notes: Results from 10,000 MC replications; median absolute error; 95% CI
coverage and length; number of instruments selected as invalid; frequency of
selecting oracle model; frequency of selecting all invalid instruments as invalid.

with v̂β̂Ân
=

√
V âr

(
β̂Ân

)
, the 2SLS standard error.

Results are presented for the HT method, using ψ =
√

2.012 log (kz) = 3.51 and

ψ =
√

2.01 log (kz) = 2.47 as threshold values, denoted HT4kz and HT2kz respectively,

and for the CI method using the downward testing procedure based on the Sargan test

threshold p-value of 0.1/ log (n) as described in Section 3.2 and denoted CIsar. Also given

are the estimation results for the oracle 2SLS estimator (2SLS or) and the naive 2SLS

estimator (2SLS) that treats all instruments as valid.

The CIsar estimator is better behaved than the HT estimators, especially at the
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smaller sample sizes n = 500 and n = 1000, with the CIsar estimator having a much

smaller mae and much better coverage probability than either HT estimator. For exam-

ple, at n = 1000 the mae for CIsar is very similar to that of oracle 2SLS, 0.014 vs 0.011,

and the coverage probability is 0.89, with the average length of the confidence interval

being the same as that of the oracle estimator and equal to 0.066. In contrast, the mae

for HT2kz at n = 1000 is equal to 0.31. Its coverage probability is only 0.088, and the

average length of the confidence interval is large and equal to 0.22. The latter is due to

the fact that too many instruments get selected as invalid, the average
∣∣∣Ân∣∣∣ being 17.10,

compared to 11.60 for CIsar. In terms of mae and coverage probability HT2kz is better

behaved than HT4kz for n = 1000 and n = 2000. Although all three estimators are close

to oracle 2SLS at n = 5000, and select all invalid instruments correctly as invalid, the

HT4kz is now better behaved overall than HT2kz as HT2kz still selects on average too many

instruments as invalid, 12.69, versus 12.03 and 12.01 for HT4kz and CIsar respectively.

This is as expected, as the threshold parameter needs to increase with the sample size

for consistent selection in this fixed kz setup.

The results for the kz = 7 case as presented in Appendix A.3 show again a better

performance of the CIsar estimator in terms of mae and coverage probability compared to

the HT estimators, although the differences are overall smaller due to the smaller number

of instruments.

8 Application: The Effect of BMI on Blood Pressure

We use data on 105, 276 individuals from the UK Biobank and investigate the effect of

BMI on diastolic blood pressure, DBP. See for further details Windmeijer et al. (2018).

We use 96 SNPs as potential instruments for BMI as identified in independent GWAS

studies, see Locke et al. (2015). Because of skewness, we log-transformed both BMI and

DBP. The linear model specification includes age, age2 and sex, together with 15 principal

components of the genetic relatedness matrix as additional explanatory variables.

Table 3 presents the estimation results. We present here the results based on the

assumption of conditional homoskedasticity. Robust methods as discussed in Section 5

produce virtually identical results. The first set of results is based on the full set of

instruments, not performing a first-stage thresholding, or in other words setting ωn = 0
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Table 3: Estimation results, the effect of ln(BMI) on ln(DBP )

p-value

estimate st err
∣∣∣Ân∣∣∣ Sargan test

ωn = 0, kz = 96
OLS 0.206 0.002
2SLS 0.087 0.016 0 2.05e-19
HT4kz 0.087 0.016 0 2.05e-19
HT2kz 0.104 0.016 3 3.11e-11
CIsar 0.140 0.019 13 0.011

Post-ALassosar 0.163 0.018 11 0.013
ωn = 3.03, kz = 62

OLS 0.206 0.002
2SLS 0.086 0.016 0 2.80e-19
HT4kz 0.098 0.016 1 5.29e-14
HT2kz 0.104 0.017 2 1.90e-11
CIsar 0.174 0.020 9 0.014

Post-ALassosar 0.174 0.020 9 0.014
Notes: sample size n = 105, 276.

in (26). The OLS estimate of the causal parameter is equal to 0.206 (se 0.002), whereas

the 2SLS estimate treating all 96 instruments as valid is much smaller at 0.087 (se 0.016).

The Sargan test, however, rejects the null that all the instruments are valid with a p-

value of 2.05e-19. The HT4kz method does not select any instruments as invalid, whereas

HT2kz selects 3 instruments as invalid. The HT2kz estimate is equal to 0.104 (se 0.016),

slightly larger that the 2SLS estimate, but the Sargan test still has a very small p-value

of 3.11e-11, rejecting this model.

Using a threshold p-value of 0.1/ log(n) = 0.0086 for the downward testing CIsar pro-

cedure results in a selection of 13 instruments as invalid. The CIsar estimate is 0.140 (se

0.019), indicating a downward bias of the 2SLS estimator when treating all instruments

as valid. The p-value of the Sargan test in the resulting model is equal to 0.011.

Further presented are the estimation results of the post adaptive Lasso estimator of

Windmeijer et al. (2018), also using a downward Sargan p-value based testing procedure.

This method selects 11 instruments as invalid, resulting in an estimate of 0.163 (se 0.018)

and a p-value of the Sargan test of 0.013. This method has oracle properties if more than

50% of the instruments are valid, an assumption that does not appear to be invalid given
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the estimation results of the CIsar method. It is more effi cient in this case than the

CIsar method as it finds a model with a larger group of valid instruments that passes the

Sargan test.

Of the selected invalid instruments, the CI and Lasso methods have eight in common.

In particular, the Lasso method is able to select as invalid two instruments that are very

weak with large values of
∣∣∣β̂j∣∣∣ and se(β̂j). The CI method is not able to classify these

as invalid, as discussed in Section 6. We can therefore apply the first-stage thresholding

in order to exclude these instruments for consideration in the CI and HT methods.

The second set of results presented in Table 3 performs a first-stage thresholding

using the Guo et al. (2018) recommended value of ωn =
√

2.01 log (kz) = 3.03. A total

of 34 instruments do not pass this threshold. They are treated as invalid and included

in the model as explanatory variables. The OLS and naive 2SLS estimators are virtually

unchanged. The HT4kz estimator is here the default estimator using the TSHT.R routine.

It only selects one additional instrument as invalid, with the p-value of the Sargan test of

the resulting model equal to 5.29e-14, clearly rejecting the model. The HT2kz procedure

selects only 2 instruments and the model is also rejected by the Sargan test. Interestingly,

the CIsar and post adaptive Lasso procedures result in the same model selection with the

same 9 instruments selected as invalid. The resulting estimate is equal to 0.174 (se 0.020),

again showing that the naive 2SLS estimator of the effect of log (BMI) on log (DBP ) is

downward biased. This result is quite close to the OLS result, indicating that there is

much less unobserved confounding in this relationship than suggested by the naive 2SLS

estimator.

9 Conclusions

We have proposed here a new method, the confidence interval method, for selecting

valid instruments from a set of potential instruments that may contain invalid ones. We

showed that this method has oracle properties when the plurality rule applies, i.e. that

the group of valid instruments is the largest group. This result is the same as for the

hard thresholding with voting method of Guo et al. (2018), but a difference between

the two methods is that for the CI method the number of instruments selected as valid

is monotonically decreasing in decreasing values of the tuning parameter, whereas this
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is not the case in general for the HT method. Therefore the Sargan based downward

testing procedure can be applied to the CI method. It was found in simulations that this

method performed better overall than the HT method in a design very similar to that of

Guo et al. (2018), but with a larger number of potential instruments. In the application

of the effect of BMI on blood pressure it was found that the HT method selected too

few instruments as invalid, whereas the selection of the CI method was similar to the

adaptive Lasso one, indicating also that the majority rule was not violated.

The fast and simple to compute CI method is therefore a viable alternative to the

HT method and also to the adaptive Lasso method for when the majority rule does not

hold but the plurality rule does.

References

Andrews, D.W.K., (1999), Consistent Moment Selection Procedures for Generalized

Method of Moments Estimation, Econometrica 67, 543-564.

Belloni, A., D. Chen, V. Chernozhukov and C. Hansen, (2012), Sparse Models and Meth-

ods for Optimal Instruments with an Application to Eminent Domain, Econometrica

80, 2369-2429.

Bowden, J., G.D. Smith, S. Burgess, (2015), Mendelian Randomization with Invalid

Instruments: Effect Estimation and Bias Detection through Egger Regression, Inter-

national Journal of Epidemiology 44, 512-525.

Bowden, J., G. Davey Smith, P.C. Haycock and S. Burgess, (2016), Consistent Estimation

in Mendelian Randomization with Some Invalid Instruments using a Weighted Median

Estimator, Genetic Epidemiology 40, 304-314.

Burgess, S., J. Bowden, F. Dudbridge and S.G. Thompson, (2018), Robust Instru-

mental Variable Methods using Multiple Candidate Instruments with Application to

Mendelian Randomization, arXiv:1606.03729.

Burgess, S., D.S. Small and S.G. Thompson, (2017), A Review of Instrumental Variable

Estimators for Mendelian Randomization, Statistical Methods in Medical Research 26,

2333-2355.

28



Clarke, P.S. and F. Windmeijer, (2012), Instrumental Variable Estimators for Binary

Outcomes, Journal of the American Statistical Association 107, 1638-1652.

Davies, N.M., S. von Hinke Kessler Scholder, H. Farbmacher, S. Burgess, F. Windmeijer

and G. Davey Smith, (2015), The Many Weak Instruments Problem and Mendelian

Randomization, Statistics in Medicine 34, 454-468.

Donoho, D.L. and I.M. Johnstone, (1994), Ideal Spatial Adaptation by Wavelet Shrink-

age, Biometrika 81, 425-455.

Guo, Z., H. Kang, T. Cai and D. Small, (2018), Confidence Intervals for Causal Effects

with Invalid Instruments using Two-Stage Hard Thresholding with Voting, Journal of

the Royal Statistical Society Series B 80, 793-815.

Hansen, L.P., (1982), Large Sample Properties of Generalized Method of Moments Esti-

mators, Econometrica 50, 1029-1054.

Hartwig, F.P., G. Davey Smith and J. Bowden, (2017), Robust Inference in Summary

Data Mendelian Randomization via the Zero Modal Pleiotropy Assumption, Interna-

tional Journal of Epidemiology 46, 1985—1998.

von Hinke, S., G. Davey Smith, D.A. Lawlor, C. Propper and F. Windmeijer, (2016),

Genetic Markers as Instrumental Variables, Journal of Health Economics 45, 131-148.

Imbens, G.W., (2014), Instrumental Variables: An Econometrician’s Perspective, Statis-

tical Science 29, 323-358.

Kang, H., (2018), TSHT.R, https://github.com/hyunseungkang/invalidIV.

Kang, H., A. Zhang, T.T. Cai and D.S. Small, (2016), Instrumental Variables Estima-

tion with some Invalid Instruments and its Application to Mendelian Randomization,

Journal of the American Statistical Association 111, 132-144.

Karp, R.M., (1972), Reducibility among Combinatorial Problems. In R. E. Miller, J. W.

Thatcher, J.D. Bohlinger (eds.). Complexity of Computer Computations. New York:

Plenum, 85-103.

29



Kolesár, M., R. Chetty, J. Friedman, E. Glaeser and G.W. Imbens, (2015), Identifica-

tion and Inference with Many Invalid Instruments, Journal of Business and Economic

Statistics 33, 474-484.

Lawlor, D.A., R.M. Harbord, J.A.C. Sterne, N. Timpson and G. Davey Smith, (2008),

Mendelian Randomization: Using Genes as Instruments for Making Causal Inferences

in Epidemiology, Statistics in Medicine 27, 1133-1163.

Locke, A.E., et al. (2015), Genetic Studies of Body Mass Index Yield New Insights for

Obesity Biology, Nature 518, 197—206.

Newey, W.K., and K.D. West, (1987), Hypothesis Testing with Effi cient Method of Mo-

ments Estimation, International Economic Review 28, 777-787.

Sargan, J. D., (1958), The Estimation of Economic Relationships Using Instrumental

Variables, Econometrica 26, 393—415.

Windmeijer, F., H. Farbmacher, N. Davies and G. Davey Smith, (2018), On the Use of the

Lasso for Instrumental Variables Estimation with Some Invalid Instruments, Journal

of the American Statistical Association, in press, DOI:10.1080/01621459.2018.1498346.

Windmeijer, F., (2019), Two-Stage Least Squares as Minimum Distance, The Economet-

rics Journal 22, 1-9.

30



Appendix

A.1 Alternative Representation of Estimators β̂j and π̂
[j]
k

Consider the model specifications

y = dβj + Z{−j}π
[j] + uj, (A.1)

for j = 1, ..., kz, where Z{−j} = Z\ {Z.j}, the instrument matrix with the j-th instrument
omitted. From models (3) and (6) it follows that

uj = u +
αj
γj
εd

βj = β +
αj
γj

π
[j]
k = αk −

αj
γj
γk

= βγk + αk −
(
β +

αj
γj

)
γk = Γk − βjγk

where here the index k = 1, 2, ..., j − 1, j + 1, ...kz is the index for the included in-

struments. For example for kz = 3, π[1] =
(
π

[1]
2 π

[1]
3

)′
, π[2] =

(
π

[2]
1 π

[2]
3

)′
and

π[3] =
(
π

[3]
1 π

[3]
2

)′
.

For estimating the parameters in (A.1) by 2SLS using instruments Z, this is a just

identified model as Z.j is the only excluded instrument. Let Xj =
[

d Z{−j}
]
, then the

2SLS estimator for θj =
(
βj π[j]′ )′ is given by

θ̂j,2sls =
(
X′jPZXj

)−1
X′jPZy = (Z′Xj)

−1
Z′y, (A.2)

and so

β̂j,2sls = θ̂j,2sls,1; (A.3)

π̂
[j]
k,2sls = θ̂j,2sls,k∗ , (A.4)

where k∗ = k + 1 (k < j). The estimator for the variance of θ̂j,2sls is given by

V âr
(
θ̂j,2sls

)
= σ̂2

uj

(
X′jPZXj

)−1
, (A.5)

where σ̂2
uj

= û′j,2slsûj,2sls/n, ûj,2sls = y −Xθ̂j,2sls, and hence

V âr
(
β̂j,2sls

)
= σ̂2

uj

(
X′jPZXj

)−1

11
(A.6)

V âr
(
π̂

[j]
k,2sls

)
= σ̂2

uj

(
X′jPZXj

)−1

k∗,k∗
. (A.7)

31



The following proposition establishes the equivalences of β̂j and β̂j,2sls; V âr
(
β̂j

)
and

V âr
(
β̂j,2sls

)
; π̂[j]

k and π̂[j]
k,2sls; and V âr

(
π̂

[j]
k

)
and V âr

(
π̂

[j]
k,2sls

)
.

Proposition A1 Consider the estimators β̂j, β̂j,2sls, π̂
[j]
k and π̂[j]

k,2sls as given in (9),

(A.3), (15) and (A.4) respectively, and the variance estimators V âr
(
β̂j

)
, V âr

(
β̂j,2sls

)
,

V âr
(
π̂

[j]
k

)
and V âr

(
π̂

[j]
k,2sls

)
as defined in (11), (A.6), (16) and (A.7) respectively. Then

β̂j = β̂j,2sls; π̂
[j]
k = π̂

[j]
k,2sls; V âr

(
β̂j

)
= V âr

(
β̂j,2sls

)
; and V âr

(
π̂

[j]
k

)
= V âr

(
π̂

[j]
k,2sls

)
.

Proof. Recall that we have the reduced-form and first-stage specifications

y = ZΓ + εy

d = Zγ + εd

with the OLS estimators denoted Γ̂ and γ̂. The estimators for βj are given β̂j =
Γ̂j
γ̂j
and

the Guo et al. (2018) hard thresholding method is based on comparing the estimators

π̂
[j]
k = Γ̂k− β̂j γ̂k = Γ̂k− Γ̂j

γ̂j
γ̂kto 0. Define π̂[j] =

(
π̂

[j]
1 , ..., π̂

[j]
j−1, π̂

[j]
j+1, ..., π̂

[j]
kz

)′
. Let the OLS

residuals be ε̂y = y − ZΓ̂ and ε̂d = y − Zγ̂, and define Ω̂ = 1
n

(
ε̂y ε̂d

)′ (
ε̂y ε̂d

)
.

Then the estimator for the variance of β̂j, using the delta method, is given by

V âr
(
β̂j

)
=
τ̂ 2
j

γ̂2
j

(Z′Z)
−1
jj ,

where

τ̂ 2
j =

(
1 −β̂j

)
Ω̂

(
1

−β̂j

)
=

1

n

(
ε̂y − β̂j ε̂d

)′ (
ε̂y − β̂j ε̂d

)
=

1

n

(
y − β̂jd

)′
MZ

(
y − β̂jd

)
.

For π̂[j]
k we have the variance estimator

V âr
(
π̂

[j]
k

)
= τ̂ 2

j

(
(Z′Z)

−1
kk − 2

(
γ̂k
γ̂j

)
(Z′Z)

−1
kj +

(
γ̂k
γ̂j

)2

(Z′Z)
−1
jj

)
.

For ease of exposition and wlog, let j = 1, and partition Z =
[

Z.1 Z2

]
, where Z2

is an n× (kz − 1) matrix. Equivalently, partition γ =
(
γ1 γ ′2

)′
and Γ =

(
Γ1 Γ′2

)′
.

Then consider the specification

y = dβ1 + Z2π
[1] + u1.
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Let Z∗ =
[

d̂ Z2

]
, then Z∗ = ZĤ, with

Ĥ =

[
γ̂1 0
γ̂2 Ikz−1

]
; Ĥ−1 =

[
γ̂−1

1 0

−γ̂2γ̂
−1
1 Ikz−1

]
.

The 2SLS estimator for θ1 =
(
β1 π[1]′ )′ is given by

θ̂1,2sls = (Z∗′Z∗)
−1

Z∗′y = Ĥ−1 (Z′Z)
−1

Z′y

= Ĥ−1Γ̂.

Hence

β̂1,2sls =
Γ̂1

γ̂1

= β̂1

π̂
[1]
2sls = Γ̂2 − γ̂2

Γ̂1

γ̂1

= Γ̂2 − β̂1γ̂2

= π̂[1].

Let û1,2sls = y − dβ̂1,2sls − Z2π̂
[1]
2sls. As the model is just identified, it follows that

Z′û1,2sls = 0, hence û1,2sls = MZû1,2sls = MZ

(
y − β̂1d

)
. Therefore,

σ̂2
u1

=
1

n
û′1,2slsû1,2sls =

1

n
û′1,2slsMZû1,2sls

=
(
y − β̂1d

)′
MZ

(
y − β̂1d

)
= τ̂ 2

1.

The estimator of the variance of the 2SLS estimator θ̂1,2sls is given by

V âr
(
θ̂1,2sls

)
= σ̂2

u1
(Z∗′Z∗)

−1
= σ̂2

u1
Ĥ−1 (Z′Z)

−1
Ĥ−1′.

Let Ĥ−1
1. be the first row of Ĥ−1. Then

V âr
(
β̂1,2sls

)
= σ̂2

u1
Ĥ−1

1. (Z′Z)
−1
(
Ĥ−1

1.

)′
= σ̂2

u1

(
γ̂−1

1 0
)

(Z′Z)
−1

(
γ̂−1

1

0

)
=

τ̂ 2
1

γ̂2
1

(Z′Z)
−1
11 = V âr

(
β̂1

)
.

For k = 2, ..., kz, let ek−1
kz−1 be a kz−1 dimensional unit vector with (k − 1)-th element
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equal to 1. Then,

V âr
(
π̂

[1]
k,2sls

)
= σ̂2

u1
Ĥ−1
k. (Z′Z)

−1
(
Ĥ−1
k.

)′
= τ̂ 2

1

(
− γ̂k
γ̂1

(
ek−1
kz−1

)′ )
(Z′Z)

−1

(
− γ̂k
γ̂1

ek−1
kz−1

)

= τ̂ 2
1

(
(Z′Z)

−1
kk − 2

(
γ̂k
γ̂1

)
(Z′Z)

−1
k1 +

(
γ̂k
γ̂1

)2

(Z′Z)
−1
11

)
= V âr

(
π̂

[1]
k

)
.

It therefore follows that the t-test statistic for testing H0 : π
[1]
k = 0, given by

t
[1]
k =

π̂
[1]
k√

V âr
(
π̂

[1]
k

) ,
is identical to the 2SLS t-statistic for testing the null H0 : π

[1]
k in the just identified model

y = dβ1 + Z2π
[1] + u1.

This generalises to any j.

Next, partition Z =
[

Z.1 Z.2 Z3

]
, π[1] =

(
π

[1]
2 π

[1]′
3

)′
and consider the test for

H0 : π
[1]
2 = 0 in

y = dβ1 + Z.2π
[1]
2 + Z3π

[1]
3 + u1.

The model under the null is then given by

y = dβ1 + Z3π
[1]
3 + u1 (A.8)

and the score test for H0 : π
[1]
2 = 0 is then the same as the Sargan test for overidentifying

restrictions in (A.8) after estimation by 2SLS using instruments Z, see Newey and West

(1987). The Guo et al. (2018) method is a Wald test approach, which is asymmetric,

that is t[1]
2 6= t

[2]
1 , whereas the Sargan test is symmetric, i.e. the score test for testing

H0 : π
[1]
2 = 0 is identical to the score test for testing H0 : π

[2]
1 = 0 in the specification

y = dβ2 + Z.1π
[2]
1 + Z3π

[2]
3 + u2.
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A.2 Formulation of Threshold Set by Guo et al. (2018)

In their formulation of the model, Guo et al. (2018) explicitly include exogenous ex-

planatory variables X, and their matrixW =
[

Z X
]
. In the low dimension setting we

consider here, theX variables have been partialled out, andW = Z, where it is implicitly

understood that Z are the residuals after linear regression on X. Then, following their

notation, Û = (Z′Z/n)−1 and σ̂2
[j]
is the same as τ̂ 2

j as defined in (11). The formulation

of the threshold set V̂ [j] is given in Guo et al. (2018, equation (7), page 9) as

V̂ [j] =

k :
∣∣∣π̂[j]
k

∣∣∣ ≤√σ̂2
[j]

∥∥∥W{
Û.k −

(
γ̂k
γ̂j

)
Û.j

}∥∥∥
2√

n

√
2.012 log (max (kz, n))

n

 .

Denote
√

2.012 log (max (kz, n)) = ψn. Then consider

σ̂2
[j]

n2

∥∥∥∥W{
Û.k −

(
γ̂k
γ̂j

)
Û.j

}∥∥∥∥2

2

=
σ̂2

[j]

n2

∥∥∥∥Z{Û.k −
(
γ̂k
γ̂j

)
Û.j

}∥∥∥∥2

2

= τ̂ 2
j

(
(Z′Z)

−1
.k −

(
γ̂k
γ̂j

)
(Z′Z)

−1
.j

)′
Z′Z

(
(Z′Z)

−1
.k −

(
γ̂k
γ̂j

)
(Z′Z)

−1
.j

)
= τ̂ 2

j

(
(Z′Z)

−1
kk − 2

(
γ̂k
γ̂j

)
(Z′Z)

−1
kj +

(
γ̂k
γ̂j

)2

(Z′Z)
−1
jj

)
= V âr

(
π̂

[j]
k

)
,

as defined in (16).

Therefore,

√
σ̂2

[j]

∥∥∥W{
Û.k −

(
γ̂k
γ̂j

)
Û.j

}∥∥∥
2√

n

√
2.012 log (max (kz, n))

n

=

√
σ̂2

[j]

n

∥∥∥∥Z{Û.k −
(
γ̂k
γ̂j

)
Û.j

}∥∥∥∥
2

ψn

=

√
V âr

(
π̂

[j]
k

)
ψn
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and hence

V̂ [j] =

{
k :
∣∣∣π̂[j]
k

∣∣∣ ≤√V âr
(
π̂

[j]
k

)
ψn

}

=

k :

∣∣∣∣∣∣∣∣
π̂

[j]
k√

V âr
(
π̂

[j]
k

)
∣∣∣∣∣∣∣∣ ≤ ψn

 =
{
k :
∣∣∣t[j]k ∣∣∣ ≤ ψn

}

A.3 Some Further Monte Carlo Results

Table A1 presents results for the same design as in Guo et al. (2018, Table 2), with kz = 7,

kA = 4, α = ca (ι′2, 0.5ι
′
2,0
′
3)′, ρz = 0, cα = 0.2, and cγ = 0.6. The results for mae and

CI length for the HT2kz estimator are very similar to those reported in Guo et al. (2018).

There are some differences in coverage probabilities, but this is due to the fact that they

report results from only 500 Monte Carlo repetitions, whereas we do 10,000 replications.

The results show again a better performance of the CIsar estimator in terms of mae and

coverage probability compared to the HT estimators, although the difference are overall

smaller than those presented in Table 2 due to the smaller number of instruments.
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Table A1: Estimation Results, kz = 7

mae coverage CI length
∣∣∣Ân∣∣∣ por pallinv

n = 500
2SLS or 0.029 0.949 0.169 4.000 1.000 1.000
2SLS 0.143 0.002 0.110 0.000 0.000 0.000
HT4kz 0.136 0.059 0.114 0.441 0.000 0.000
HT2kz 0.120 0.194 0.127 1.691 0.000 0.004
CIsar 0.102 0.291 0.127 1.756 0.001 0.001
n = 1000
2SLS or 0.020 0.946 0.119 4.000 1.000 1.000
2SLS 0.144 0.000 0.078 0.000 0.000 0.000
HT4kz 0.123 0.076 0.087 1.405 0.000 0.001
HT2kz 0.096 0.266 0.120 3.454 0.026 0.113
CIsar 0.071 0.332 0.099 2.674 0.044 0.044
n = 2000
2SLS or 0.015 0.946 0.084 4.000 1.000 1.000
2SLS 0.143 0.000 0.055 0.000 0.000 0.000
HT4kz 0.088 0.206 0.088 3.657 0.039 0.143
HT2kz 0.040 0.590 0.098 4.236 0.385 0.601
CIsar 0.026 0.654 0.079 3.568 0.558 0.558
n = 5000
2SLS or 0.009 0.950 0.053 4.000 1.000 1.000
2SLS 0.143 0.000 0.035 0.000 0.000 0.000
HT4kz 0.010 0.892 0.055 4.054 0.900 0.953
HT2kz 0.010 0.924 0.057 4.114 0.871 0.970
CIsar 0.009 0.938 0.053 4.009 0.985 0.988
n = 10000
2SLS or 0.007 0.952 0.038 4.000 0.000 0.000
2SLS 0.143 0.000 0.025 0.000 0.000 0.000
HT4kz 0.007 0.951 0.038 4.020 0.986 0.999
HT2kz 0.007 0.932 0.040 4.115 0.879 0.975
CIsar 0.007 0.943 0.038 4.011 0.989 0.993
Notes: Results from 10,000 MC replications; median absolute error; 95% CI
coverage and length; number of instruments selected as invalid; frequency of
selecting oracle model; frequency of selecting all invalid instruments as invalid.
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