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Abstract

This paper is concerned with the findings related to the robust first-stage F-statistic
in the Monte Carlo analysis of Andrews (2018), who found in a heteroskedastic de-
sign that even for very large values of the robust F-statistic, the standard 2SLS
confidence intervals had large coverage distortions. This finding appears to dis-
credit the robust F-statistic as a test for underidentification. However, it is shown
here that large values of the robust F-statistic do imply that there is first-stage in-
formation, but this may not be utilised well by the 2SLS estimator, or the standard
GMM estimator. An estimator that corrects for this is a robust GMM estimator,
with the robust weight matrix not based on the structural residuals, but on the
first-stage residuals. For the grouped data setting of Andrews (2018), this estima-
tor gives the weights to the group specific estimators according to the group specific
concentration parameters in the same way as 2SLS does under homoskedasticity,
which is formally shown using weak instrument asymptotics. This estimator is
much better behaved than the 2SLS estimator in this design, behaving well in
terms of relative bias and Wald test size distortion at more ‘standard’values of
the robust F-statistic. We further derive the conditions under which the Stock
and Yogo (2005) weak instruments critical values apply to the robust F-statistic in
relation to the behaviour of this GMM estimator.

JEL Classification: C12, C36
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1 Introduction

It is commonplace to report the first-stage F-statistic as a test for underidentification in

linear single endogenous variable models estimated by two-stage least squares (2SLS).

This could either be a non-robust or robust version of the test, with robustness to for

example heteroskedasticity, serial correlation and/or clustering. Under maintained as-

sumptions, these are valid tests for the null H0 : π = 0 in the first-stage linear speci-

fication x = Zπ + v, where x is the endogenous explanatory variable in the model of

interest y = xβ + u, and Z are the instruments. If the null is not rejected, then this is

an indication that the relevance condition of the instruments does not hold and that the

2SLS estimator does not provide a meaningful estimate of the parameter of interest β. A

rejection of the null does, however, not necessarily imply that the 2SLS estimator is well

behaved. This follows the work of Staiger and Stock (1997) and Stock and Yogo (2005),

with the latter providing critical values for the first-stage non-robust F-statistic for null

hypotheses of weak instruments in terms of bias of the 2SLS estimator relative to that

of the OLS estimator and Wald test size distortion. These non-robust weak instruments

F-tests are valid only under conditional homoskedasticity, no serial correlation and no

clustering of both the first-stage errors v and the structural errors u, and do not apply

to the robust F-test in general designs, see Bun and de Haan (2010), Olea and Pflueger

(2013) and Andrews (2018). For general designs Olea and Pflueger (2013) proposed the

effective first-stage F-statistic and critical values linked to the Nagar bias of the 2SLS es-

timator, whereas Andrews (2018) obtained valid two-step identification robust confidence

sets.

This paper is concerned with the findings related to the robust F-statistic in the Monte

Carlo analysis of Andrews (2018, Supplementary Appendix (SA)). In a cross sectional

heteroskedastic design he found that even for very large values of the robust F-statistic,

the standard 2SLS confidence intervals had large coverage distortions. For example, for

a high endogeneity design, "the 2SLS confidence set has a 15% coverage distortion even

when the mean of the first-stage robust F-statistic is 100,000", Andrews (2018, SA, p

11). This is a striking finding and appears to discredit the robust F-statistic as a test for

underidentification. However, I show here that large values of the robust F-statistic do

imply that there is first-stage information, but this may not be utilised well by the 2SLS
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estimator, or GMM estimators that incorporate heteroskedasticity in the structural error

u only.

Andrews (2018) design is the same as a grouped data one, see Angrist (1991) and the

discussion in Angrist and Pischke (2009), where the instruments are mutually exclusive

group membership indicators. Denoting the groups by s = 1, ..., S, the group specific

concentration parameter values are determined by the ratios π2s/σ
2
v,s, where σ

2
v,s is the

group specific variance of the first-stage error v. The 2SLS estimator is a weighted average

of the group specific estimators of β, giving more weight to large concentration parameter

groups if v is homoskedastic. However, as shown in Section 3, this may not happen under

heteroskedasticity, where 2SLS gives more weight to high variance σ2v,s groups, everything

else constant. In the design of Andrews (2018) we consider here, there is one informative

group, leading to the large value of the robust F-statistic, but this group has a small

variance σ2v,s, and therefore gets only a relatively small weight in the 2SLS estimator.

An estimator that correctly gives larger weights to more informative groups is a

robust GMM estimator, not using the structural residuals û, but the first-stage residuals

v̂ in the robust weight matrix. This estimator, called GMMf, is introduced in Section

4 and gives the weights to the group specific estimators according to the group specific

concentration parameters in the same way as 2SLS does under homoskedasticity. This

is further formally shown using weak instrument asymptotics in Section 5. Section 6

discusses the potential problems of the standard GMM estimator that uses a robust

weight matrix based on the conditional variances of the structural errors u. Monte Carlo

results in Section 7 show that the GMMf estimator exploits the available information well,

with much better relative bias and Wald test size properties than the 2SLS estimator

for values of the robust F-statistic in line with those of the non-robust F-statistic and

behaviour of the 2SLS estimator in the homoskedastic case.

For a general setting, we report in Section 8 the conditions under which the Stock

and Yogo (2005) critical values can be applied to the robust F-statistic in relation to

the behaviour of the GMMf estimator. These conditions are derived in Appendix A.2.

Whilst these have limited applicability, the fully homoskedastic design is a special case.
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2 Model and Assumptions

We consider the model as in Andrews (2018, SA C.3), which is the same as a grouped

data IV setup,

yi = xiβ + ui

xi = z′iπ + vi,

for i = 1, ..., n, where zi is a vector of mutually exclusive binary indicator variables,

zi ∈ {e1, ..., eS}, with es is a S × 1 vector with 1 in the sth entry and zeros everywhere

else. Assumptions for standard asymptotic normality results hold and the robust variance

of the limiting distribution of the parameters can be estimated consistently.

The variance-covariance structure for the errors is modelled fully flexibly by group,

and specified as ((
ui
vi

)
|zi = es

)
∼ (0,Σs) .

Σs =

[
σ2u,s σuv,s
σuv,s σ2v,s

]
.

At the group level, we therefore have for group member j

yjs = xjsβ + ujs (1)

xjs = πs + vjs (2)(
ujs
vjs

)
∼ (0,Σs)

for j = 1, ..., ns and s = 1, ..., S, with ns the number of observations in group s,
∑S

s=1 ns =

n, see also Bekker and Van der Ploeg (2005). We assume that limn→∞
ns
n

= fs, with

0 < fs <∞.

3 First-Stage F and 2SLS Weights

The OLS estimator of πs is given by π̂s = xs = 1
ns

∑ns
j=1 xjs and V ar (π̂s) = σ2v,s/ns. The

OLS residual is v̂js = xjs − xs and the estimator for the variance is given by V âr (π̂s) =

σ̂2v,s/ns, where σ̂
2
v,s = 1

ns

∑ns
j=1 v̂

2
js. Let Z be the n × S matrix of instruments. For the

vector π the OLS estimator is given by

π̂ = (Z ′Z)
−1
Z ′x = (x1, x2, ..., xS)′ .
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Let

Ω̂v =
n∑
i=1

v̂2i ziz
′
i (3)

= diag
(
nsσ̂

2
v,s

)
where diag (as) is a diagonal matrix with sth diagonal element as. Then the robust

estimator of V ar (π̂) is given by

V ârr (π̂) = (Z ′Z)
−1

Ω̂v (Z ′Z)
−1

= diag
(
σ̂2v,s/ns

)
.

The non-robust variance estimator is

V âr (π̂) =

(
1

n

n∑
i=1

v̂2i

)
(Z ′Z)

−1

=

(
S∑
s=1

ns
n
σ̂2v,s

)
diag

(
1

ns

)
.

The group (or instrument) specific IV estimators for β are given by

β̂s =
z′sy

z′sx
=
ys
xs
, (4)

with ys = 1
ns

∑ns
j=1 yjs, and the 2SLS estimator for β is, with PZ = Z (Z ′Z)−1 Z ′,

β̂2sls = (x′PZx)
−1
x′PZy

=

∑S
s=1 nsxsys∑S
s=1 nsx

2
s

=

∑S
s=1 nsx

2
s (ys/xs)∑S

s=1 nsx
2
s

=

S∑
s=1

w2sls,sβ̂s,

the standard result that β̂2sls is a linear combination of the instrument specific IV esti-

mators, (see e.g. Windmeijer, 2018). The weights are given by

w2sls,s =
nsx

2
s∑S

l=1 nlx
2
l

≥ 0 (5)

and hence the 2SLS estimator is here a weighted average of the group specific estimators.
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For the group specific estimates, the first-stage F-statistics are equal to the Wald

statistics for testing the null hypotheses H0 : πs = 0, and are given by

Fπs =
π̂2s

V âr (π̂s)
=
nsx

2
s

σ̂2v,s
(6)

for s = 1, ..., S. For each group specific IV estimator β̂s the standard weak instruments

results of Staiger and Stock (1997) and Stock and Yogo (2005) apply. As these are just-

identified models, we can relate the values of the F-statistics to Wald test size distortions.

The robust first-stage F-statistic for testing H0 : π = 0 is given by

Fr =
1

S
π̂′ (V ârr (π̂))−1 π̂

=
1

S

S∑
s=1

nsx
2
s

σ̂2v,s
=

1

S

S∑
s=1

Fπs .

It is therefore clear, that if Fr is large, then at least one of the Fπs is large.

The non-robust F-statistic is given by

F =
1

S
π̂′ (V âr (π̂))−1 π̂

=
1

S

∑S
s=1 nsx

2
s(∑S

s=1
ns
n
σ̂2v,s

) =
1

S

S∑
s=1

σ̂2v,s(∑S
l=1

nl
n
σ̂2v,l

)Fπs .
From (5) and (6) it follows that the weights for the 2SLS estimator are related to the

individual F-statistics as follows

w2sls,s =
nsx

2
s∑S

l=1 nlx
2
l

=
σ̂2v,sFπs∑S
l=1 σ̂

2
v,lFπl

.

Under homoskedasticity, σ̂2v,s ≈ σ̂2v,l for all s, l, and hence F ≈ 1
S

∑S
s=1 Fπs . Then the

weights are given by w2sls,s ≈ Fπs∑S
l=1 Fπl

≈ Fπs
SF
, so we see that then the groups with

the larger individual F-statistics get the larger weights in the 2SLS estimator under

homoskedasticity.

This is not necessarily the case under heteroskedasticity. For two groups with equal

value of the F-statistic, the group with the larger variance gets the larger weight, and

indeed, a large variance weakly identified group could dominate the 2SLS estimator. As

shown in the Monte Carlo exercises below, this is exactly what happens in the design of

Andrews (2018). The robust F-statistic is large because one of the groups has a large

5



value of the individual F-statistic. However, this group has a very small variance σ2v,s
and hence gets a small weight in the 2SLS estimator, resulting in a poor performance of

the estimator in terms of (relative) bias and Wald test size.

4 Alternative GMM Estimator

Clearly, one would like to use an estimator that gives larger weights to more strongly

identified groups, independent of the value of σ2v,s, mimicking the weights of the 2SLS es-

timator under homoskedasticity of the first-stage errors. This is achieved by the following

GMM estimator, denoted GMMf, with the extension f for first-stage,

β̂gmmf =
(
x′ZΩ̂−1v Z ′x

)−1
x′ZΩ̂−1v Z ′y

=
(
π̂′Z ′ZΩ̂−1v Z ′Zπ̂

)−1
π̂′Z ′ZΩ̂−1v Z ′y,

with Ω̂v =
∑n

i=1 v̂
2
i ziz

′
i as defined in (3). This looks like the usual GMM estimator, but

instead of the structural residuals û, the first-stage residuals v̂ are used in the weight

matrix. It clearly links directly to the robust F-statistic, as the denominator is equal to

SFr.

It follows that

β̂gmmf =

∑S
s=1 nsxsys/σ̂

2
v,s∑S

s=1 nsx
2
s/σ̂

2
v,s

=

∑S
s=1

(
nsx

2
s/σ̂

2
v,s

)
β̂s∑S

s=1 nsx
2
s/σ̂

2
v,s

(7)

=
S∑
s=1

wgmmf,sβ̂s,

with

wgmmf,s =
Fπs∑S
l=1 Fπl

=
Fπs
SFr

,

and hence the groups with the larger F-statistics get the larger weights, independent of

the values of σ2v,s, mimicking the 2SLS weights under homoskedasticity of the first-stage

errors.
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5 Weak Instrument Asymptotics

We can formalise the results obtained above further using weak instruments asymptotics

(WIA). For each group s = 1, ..., S define

πs =
cs√
ns
.

The limit of the group specific concentration parameters are then given by

µ2s =
c2s
σ2v,s

. (8)

Then

π̂s = xs =
1

ns

ns∑
j=1

(
cs√
ns

+ vjs

)
=

cs√
ns

+ vs,

and

nsx
2
s = ns

(
cs√
ns

+ vs

)2
=

(
c2s + 2cs

√
nsvs + (

√
nsvs)

2
)

d→ (cs + σv,sas)
2 = σ2v,s (µs + as)

2

where µs = cs/σv,s and αs ∼ N (0, 1). We get the standard WIA result that

Fπs =
nsx

2
s

σ̂2v,s

d→ (µs + as)
2 ∼ χ21,µ2s ,

where χ21,µ2s is the non-central chi-squared distribution with 1 degree of freedom and

non-centrality parameter µ2s.

From (5) it then follows that

w2sls,s
d→

σ2v,s (µs + as)
2∑S

l=1 σ
2
v,l (µl + al)

2
,

with the al independent N (0, 1) variables, for l = 1, ..., S.

For the weights wgmmf,s,

wgmmf,s
d→ (µs + as)

2∑S
l=1 (µl + al)

2
.

Consider for illustration the case where there are two groups. Table 1 presents some

results for the average values of w2sls,1 and wgmmf,1 after randomly drawing 100,000 values

of a1 and a2.
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Table 1. WIA weights for 2SLS and GMMf
σ2v,1 σ2v,2 µ21 µ22 w2sls,1 wgmmf,1
5 5 5.76 5.76 0.50 0.50
5 0.1 5.76 5.76 0.95 0.50
5 0.1 1.96 5.76 0.84 0.32

Notes: Average weights from 100, 000 draws of a1 and a2.

If there is homoskedasticity, σ2v,1 = σ2v,2, and both groups have equal concentration

parameters, µ21 = µ22, then E (w2sls,1) = E (wgmmf,1) = 0.5, both estimators will give

on average equal weight to the group specific estimators. Next consider the case where

there is a large difference in the variances, σ2v,1 = 5, and σ2v,2 = 0.1, and µ21 = µ22 = 5.76,

which is the value of the concentration parameter for the group specific Wald tests to

have a maximal rejection frequency of 10% at the 5% level. We find for this case that

E (w2sls,1) = 0.95, i.e. almost all weight will on average be given to the high variance

group 1. The expected weight for the GMMf estimator is in this case not affected by the

relative values of the σ2v,s and remains at E (wgmmf,1) = 0.5. If we subsequently reduce

the value of c1 such that µ21 = 1.96, then E (w2sls,1) = 0.84, i.e. the 2SLS estimator

will give more weight to β̂1, the estimator in the group with the smaller concentration

parameter, but larger variance. In contrast, E (wgmmf,1) = 0.32 for this case, giving less

weight to the less informative group.

6 Variance of u

So far, we have focused on the first-stage heteroskedasticity, with the robust GMMf

estimator exploiting the first-stage information by assigning larger weights to the groups

with larger group specific concentration parameters independent of the values of σ2v,s.

Next, consider the infeasible robust GMM group IV estimator, given by

β̂gmm =

∑S
s=1 nsxsys/σ

2
u,s∑S

s=1 nsx
2
s/σ

2
u,s

=

∑S
s=1

(
nsx

2
s/σ

2
u,s

)
β̂s∑S

s=1 nsx
2
s/σ

2
u,s

=

S∑
s=1

wgmm,sβ̂s.

Whereas β̂gmm is the best, normal, consistent and effi cient estimator under standard

asymptotics, from the analysis above, it is clear that the weights may not be optimal
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under WIA. We have under WIA that

nsx
2
s

σ2u,s

d→
σ2v,s
σ2u,s

(µs + as)
2

and so

wgmm,s
d→

σ2v,s
σ2u,s

(µs + as)
2∑S

l=1

σ2v,l
σ2u,l

(µs + as)
2
.

Clearly, if u is homoskedastic, σ2u,s = σ2u,l for all s, l, then the infeasible GMM estimator

has the same WIA limiting distribution as the 2SLS estimator and suffers from the same

problems as described above for 2SLS. If σ2u,s = κσ2v,s for all s then β̂gmm behaves like

the GMMf estimator, the latter in that case also the effi cient estimator under standard

asymptotics. For other cases the behaviour of β̂gmm clearly depends on whether σ
2
v,s/σ

2
u,s

assigns relatively larger or smaller weights to the more informative groups.

An alternative is to weight by σ2u,sσ
2
v,s, such that

β̂gmmuf =
S∑
s=1

wgmmuf,sβ̂s,

wgmmuf,s =
nsx

2
s/
(
σ2u,sσ

2
v,s

)∑S
l=1 nlx

2
l /
(
σ2u,sσ

2
v,s

) d→
1

σ2u,s
(µs + as)

2∑S
l=1

1
σ2u,l

(µs + as)
2
.

The resulting weights are then as for the standard GMM estimator under first-stage

homoskedasticity. This would clearly improve effi ciency if σ2u,s is relatively small for the

more informative groups, but can assign again less weight to more informative groups if

their values of σ2u,s are relatively large.

7 Some Monte Carlo Results

We consider here the heteroskedastic design of Andrews (2018) with 10 groups, β = 0 and

moderate endogeneity. Results for the high endogeneity case are given in the Appendix.

We multiply the first-stage parameters by 0.04, such that the value of the robust Fr is

just over 80 on average for 10, 000 replications and sample size n = 10, 000. The group

sizes are equal in expectation with Pr {zi = es} = 1
S
for all s ∈ {1, ..., S}.

Table 2 presents the estimation results. The non-robust F-statistic is small, F = 1.41

and the effective F-statistic of Olea and Pflueger (2013), denoted Feff , is equal to the
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non-robust F in this group IV design. Although the robust F-statistic is large, Fr = 80.2,

the 2SLS estimator β̂2sls is poorly behaved. Its relative bias equal to 0.699 and the Wald

test rejection frequency for H0 : β = 0 is equal to 0.534 at the 5% level. In contrast, the

GMMf estimator is unbiased and its Wald test rejection frequency equal to 0.049 at the

5% level.

Table 2. Estimation results for S = 10, moderate endogeneity

F Feff Fr β̂OLS β̂2sls β̂gmmf W2sls Wgmmf

1.411 1.411 80.23 -0.608 -0.424 -0.001 0.534 0.049
(0.011) (0.257) (0.563)

Notes: means and (st. dev.) of 10, 000 replications. Rej. freq. of
robust Wald tests W at 5% level.

The details as given in Table 3 make clear what is happening. It reports the fixed

values of πs, σ2v,s and µ
2
n,s = 1000π2s/σ

2
v,s and the mean values of Fπs , w2sls,s and wgmmf,s =

Fπs/
∑S

l=1 Fπl . Identification in the first group is strong, with an average value of Fπ1 =

789.5, whereas identification in all other 9 groups is very weak, with the largest average

value for Fπ5 = 2.23. But the variance in group 1 is very small, and some of the variances

in the other groups are quite large. This leads to the low average value of w2sls,1 = 0.127,

showing that the 2SLS estimator doesn’t utilise the identification strength of the first

group, with larger weight given to higher variance, but lower concentration parameter

groups.

Table 3. Group information and estimator weights
s 1 2 3 4 5 6 7 8 9 10
πs 0.058 -0.023 0.049 0.015 0.022 0.008 -0.017 0.011 -0.036 -0.040
σ2v,s 0.004 2.789 4.264 0.779 0.395 7.026 1.226 0.308 1.709 6.099

µ2n,s 785.7 0.184 0.556 0.284 1.190 0.009 0.236 0.387 0.770 0.266
Fπs 789.5 1.170 1.564 1.279 2.225 0.997 1.203 1.372 1.798 1.246

w2sls,s 0.126 0.098 0.178 0.035 0.031 0.180 0.049 0.015 0.096 0.192
wgmmf,s 0.984 0.002 0.002 0.002 0.003 0.001 0.002 0.002 0.002 0.002

Notes: µ2n,s= 1000π2s/σ
2
v,s.
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Table 3 further shows that for the GMMf estimator almost all weight is given to the

first group, with the average of wgmmf,1 equal to 0.984, resulting in the good behaviour

of the GMMf estimator in terms of bias and Wald test size. In this case the standard

deviation of the GMMf estimator is quite large relative to that of the 2SLS estimator.

This is driven by the value of σ2u,1, which in this design is equal to 1.10, much larger than

σ2v,1. Reducing the value of σ
2
u,1 (and the value for σuv,1 accordingly to keep the same

correlation structure within group 1), will reduce the standard deviation of the GMMf

estimator.

Figure 1 displays the rejection frequencies of the robust Wald tests for testing H0 :

β = 0 for varying values of the robust F-statistic Fr for the 2SLS and GMMf estimators.

Different values of Fr are obtained by different values of d when setting the first-stage

parameters π = dπ0. It is clear that the Wald test based on the GMMf estimator is much

better behaved in terms of size than that based on the 2SLS estimator, with hardly any

size distortion for mean values of Fr larger than 5. Figure 2 shows that the bias of the

GMMf estimator, relative to that of the OLS estimator, is also a lot smaller than that of

the 2SLS estimator, with the relative bias smaller than 0.10 for mean values of Fr larger

than 9.

0 2 4 6 8 10 12 14 16 18 20
mean Fr

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
ej

. F
re

q. 2sls
gmmf
0.05

Figure 1. Rejection frequencies of robust Wald tests
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Figure 2. Relative bias

8 Testing for Weak Instruments

Using the GMMf estimator as a generalisation of the 2SLS estimator to deal with general

forms of first-stage heteroskedasticity, we derive in the Appendix under what conditions

the weak instruments Stock and Yogo (2005) critical values derived for the non-robust

F-test and the properties of the 2SLS estimator under full homoskedasticity apply to the

robust F-test and the properties of the GMMf estimator. We focus here on standard

cross-sectional heteroskedasticity, but results apply to cluster and/or serially correlated

designs.

Consider again the standard linear model

yi = xiβ + ui;

xi = z′iπ + vi,

where zi is a kz-vector of instruments, and where other exogenous variables, including

the constant have been partialled out. General conditional heteroskedasticity is specified

as

E
[
u2i |zi

]
= σ2u (zi) ;

E
[
v2i |zi

]
= σ2v (zi) ;

E [uivi|zi] = σuv (zi) .
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Further, let

Ωu = E
[
σ2u (zi) ziz

′
i

]
; Ωv = E

[
σ2v (zi) ziz

′
i

]
; Ωuv = E [σuv (zi) ziz

′
i] ,

and the unconditional variances and covariance

σ2u = Ez
[
σ2u (zi)

]
; σ2v = Ez

[
σ2v (zi)

]
; σuv = Ez [σuv (zi)] .

The robust F-statistic and GMMf estimator are given by

Fr = x′ZΩ̂−1v Z ′x/kz

β̂gmmf =
(
x′ZΩ̂−1v Z ′x

)−1
x′ZΩ̂−1v Z ′y

Stock and Yogo (2005) derived critical values for the non-robust F-statistic under ho-

moskedasticity for the weak instruments hypothesis on the relative bias of the 2SLS

estimator, relative to that of the OLS estimator. In Appendix A.2 we show that these

critical values apply to the robust F-statistic for relative bias of the GMMf estimator,

relative to that of the OLS estimator if Ωuv = δΩv and σuv = δσ2v.

For the Wald test size distortion, we show in Appendix A.2 that the Stock and Yogo

(2005) critical values apply to the GMMf basedWald test if Ωuv = δΩv and Ωu = κΩv, the

latter implying that the GMMf estimator is also the effi cient estimator under standard

asymptotics.

Whilst these conditions imply a limited applicability of the Stock and Yogo (2005)

critical values for the robust F-statistic in relation to the behaviour of the GMMf estima-

tor, it is a generalisation of, and includes, the homoskedastic case. It also encompasses

the illustrative example of Olea and Pflueger (2013, Section 3.1), where they considered

a design with E
[
(ui vi)

′ (ui vi)
]

= Σ and E
[(

(ui vi)
′ (ui vi)

)
⊗ ziz′i

]
= a2Σ ⊗ Ikz , and

where the non-robust F-statistic gives an overestimate of the information content for the

2SLS estimator when a > 1.

9 Conclusions

This paper has shown why large values of the first-stage robust F-statistic may not trans-

late in good behaviour of the 2SLS estimator. In the heteroskedastic grouped data design

of Andrews (2018), this is the case because a highly informative group had a relatively
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small first-stage variance, and the 2SLS estimator gives more weight to groups with small

concentration parameters but large first-stage variances. A robust GMM estimator, called

GMMf, with the robust weight matrix estimated using the first-stage residuals, remedies

this problem and gives larger weights to more informative groups. This is independent

of the values of the first-stage variances and is a generalisation of the 2SLS estimator in

that it mimics what the 2SLS estimator does under first-stage homoskedasticity. A large

value of the robust F-statistic indicates that there is first-stage information resulting in a

well behaved GMMf estimator. We have provided the conditions under which the Stock

and Yogo (2005) weak instruments critical values developed for the non-robust F-statistic

and relative bias and Wald test size distortion of the 2SLS estimator apply to the robust

F-statistic and the behaviour of the GMMf estimator.
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Appendix

A.1 Results for high endogeneity design

Tables A1 and A2 present estimation results for the s = 10, high endogeneity design of

Andrews (2018). As in Section 7, the first stage parameters have been multiplied by a

factor such that the robust F-statistic has an average value of just over 80. As shown

in Table A1, the pattern of group information is similar to that in that in the moderate

endogeneity case, with one informative group, group s = 10, with an average value of

Fπ10 = 792.2. However, the variance σ2v,10 is now so small in relative terms, that the

2SLS weight for group 10 has an average value of only w2sls,10 = 0.003. The GMMf

estimator corrects this, with the average value of wgmmf,10 = 0.989, and is again much

better behaved than the 2SLS estimator both in terms of (relative) bias and Wald test

size, as displayed in Table A2.

Table A1. Group information and estimator weights, high endogeneity
s 1 2 3 4 5 6 7 8 9 10
100 · πs -0.021 0.095 -0.484 -0.069 0.159 -0.028 0.101 -0.418 0.450 -0.546
σ2v,s 1.600 0.478 2.975 1.142 0.174 0.145 4.658 1.963 2.990 0.38·a

µ2n,s 0.28·a 0.002 0.008 4.2·a 0.015 5.6·a 2.2·a 0.009 0.007 789.9
Fπs 0.998 1.017 0.979 1.010 1.034 0.984 0.977 1.031 0.997 792.2

w2sls,s 0.111 0.040 0.177 0.085 0.016 0.013 0.242 0.134 0.181 0.003
wgmmf,s 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.989

Notes: a = 10−4; µ2n,s= 1000π2s/σ
2
v,s.

Table A2. Estimation results for S = 10, high endogeneity

F Feff Fr β̂OLS β̂2sls β̂gmmf W2sls Wgmmf

0.994 0.994 80.12 0.754 0.749 0.007 1.000 0.067
(0.000) (0.023) (0.029)

Notes: means and (st. dev.) of 10, 000 replications. Rej. freq. of
robust Wald tests W at 5% level.
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Figures A1 and A2 show respectively the rejection frequencies of the robust Wald

tests and the relative bias of the 2SLS and GMMf estimators as a function of the value

of the robust F-statistic, showing a much better performance of the GMMf estimator.
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Figure A1. Rejection frequencies of robust Wald tests, high endogeneity
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Figure A2. Relative bias, high endogeneity

A.2 Testing for Weak Instruments

Using the GMMf estimator as a generalisation of the 2SLS estimator to deal with general

forms of first-stage heteroskedasticity, we investigate here under what conditions the
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Stock and Yogo (2005) weak instruments critical values derived for the non-robust F-test

and the properties of 2SLS estimator under full homoskedasticity apply to the robust

F-test and the properties of the GMMf estimator.

Consider again the standard linear model

yi = xiβ + ui;

xi = z′iπ + vi,

with conditional heteroskedasticity specified as

E
[
u2i |zi

]
= σ2u (zi) ;

E
[
v2i |zi

]
= σ2v (zi) ;

E [uivi|zi] = σuv (zi) ,

and, unconditionally,

σ2u = Ez
[
σ2u (zi)

]
; σ2v = Ez

[
σ2v (zi)

]
; σuv = Ez [σuv (zi)] .

Further, let

Ωu = E
[
σ2u (zi) ziz

′
i

]
; Ωv = E

[
σ2v (zi) ziz

′
i

]
; Ωuv = E [σuv (zi) ziz

′
i] ,

and assume that(
1√
n
Z ′u

1√
n
Z ′v

)
d→
(
ψzu
ψzv

)
∼ N

((
0
0

)
,

(
Ωu Ωuv

Ω′uv Ωv

))
(

Ω
−1/2
u

1√
n
Z ′u

Ω
−1/2
v

1√
n
Z ′v

)
d→
(
zu
zv

)
∼ N

((
0
0

)
,

(
Ikz R
R′ Ikz

))
,

where

R = Ω−1/2u ΩuvΩ
−1/2
v .

Let π̂ = (Z ′Z)−1 Z ′x be the OLS estimator of π and v̂ = x − Zπ̂ the OLS residual.
For the GMMf estimator, we have

β̂gmmf = β +
(
x′ZΩ̂−1v Z ′x

)−1
x′ZΩ̂−1v Z ′u
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where, as before, Ω̂v =
∑n

i=1 v̂
2
i ziz

′
i. Assume that conditions are such that

1

n
Z ′Z

p→ E [ziz
′
i] = Qzz

1

n
Ω̂v

p→ Ωv = E
[
σ2v (zi) ziz

′
i

]
.

For weak instrument asymptotics, let

π =
c√
n
,

then

x′ZΩ̂−1v Z ′x =

(
Z

c√
n

+ v

)′
ZΩ̂−1v Z ′

(
Z

c√
n

+ v

)
=

1

n
c′Z ′ZΩ̂−1v Z ′Zc+

2√
n
c′Z ′ZΩ̂−1v Z ′v + v′ZΩ̂−1v Z ′v

d→ (λ+ zv)
′ (λ+ zv)

where

λ = Ω−1/2v Qzzc.

It follows that

Fr =
1

kz
x′ZΩ̂−1v Z ′x

d→ χ2kz (λ′λ) /kz. (A.1)

For the numerator, we have

x′ZΩ̂−1v Z ′u =

(
Z

c√
n

+ v

)′
ZΩ̂−1v Z ′u

=
2√
n
c′Z ′ZΩ̂−1v Z ′u+ v′ZΩ̂−1v Z ′u

d→ (λ+ zv)
′Ω−1/2v Ω1/2

u zu.

For the OLS estimator,

β̂ols − β =
x′u

x′x
=

c′√
n
Z ′u+ v′u

1
n
c′Z ′Zc+ 2√

n
c′Z ′v + v′v

p→ σuv
σ2v

.

As E [zu|zv] = Rzv, it follows for the relative bias that

E
[
β̂gmmf − β

]
E
[
β̂ols − β

] → σ2v
σvu

E

[
(λ+ zv)

′Ω
−1/2
v Ω

1/2
u Rzv

(λ+ zv)
′ (λ+ zv)

]
(A.2)
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=
σ2v
σuv

E

[
(λ+ zv)

′Ω
−1/2
v ΩuvΩ

−1/2
v zv

(λ+ zv)
′ (λ+ zv)

]
.

Therefore it follows that if Ωuv = δΩv and σuv = δσ2v, then

E
[
β̂gmmf − β

]
E
[
β̂ols − β

] → E

[
(λ+ zv)

′ zv

(λ+ zv)
′ (λ+ zv)

]
. (A.3)

The conditions Ωuv = δΩv and σuv = δσ2v are satisfied if σuv (zi) = δσ2v (zi) for all zi ∈ Z.
The results (A.1) and (A.3) are the same as the Staiger and Stock (1997) and Stock

and Yogo (2005) results for the 2SLS estimator and full conditional homoskedasticity,(
ψzu
ψzv

)
∼ N

((
0
0

)
,

(
σ2u σuv
σuv σ2v

)
⊗Qzz

)
and with λ = σ−1v Q

1/2
zz c. Therefore the Stock and Yogo (2005) critical values apply to

the robust F-statistic and relative bias (A.2) of the GMMf estimator if Ωuv = δΩv and

σuv = δσ2v. For the grouped data IV example, this condition is fulfilled if σuv,s = δσ2v,s

for all s = 1, ..., S.

For the Wald test, we have

V âr
(
β̂gmmf

)
=
(
x′ZΩ̂−1v Z ′x

)−1
x′ZΩ̂−1v Ω̂uΩ̂

−1
v Z ′x

(
x′ZΩ̂−1v Z ′x

)−1
and so

Wgmmf (β) =

(
β̂gmmf − β

)2 (
x′ZΩ̂−1v Z ′x

)−2
x′ZΩ̂−1v Ω̂uΩ̂−1v Z ′x

=

(
x′ZΩ̂−1v Z ′u

)2
x′ZΩ̂−1v Ω̂uΩ̂−1v Z ′x

.

Then,

1

n
Ω̂u =

1

n

n∑
i=1

û2i ziz
′
i

=
1

n

n∑
i=1

(
ui − xi

(
β̂gmmf − β

))2
ziz
′
i

=
1

n

n∑
i=1

(
u2i − 2uixi

(
β̂gmmf − β

)
+ x2i

(
β̂gmmf − β

)2)
ziz
′
i

d→ Ωu − 2Ωuv

(
β̂gmmf − β

)
+ Ωv

(
β̂gmmf − β

)2
,
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and so

x′ZΩ̂−1v Ω̂uΩ̂
−1
v Z ′x

d→ (λ+ zv)
′Ω−1/2v ΩuΩ

−1/2
v (λ+ zv)

−2 (λ+ zv)
′Ω−1/2v ΩuvΩ

−1/2
v (λ+ zv)

(
β̂gmmf − β

)
+ (λ+ zv)

′ (λ+ zv)
(
β̂gmmf − β

)2
.

This results in

Wgmmf
d→ q22
a− 2bq2/η1 + q22/η1

,

where

q2 = (λ+ zv)
′Ω−1/2v Ω1/2

u zu

a = (λ+ zv)
′Ω−1/2v ΩuΩ

−1/2
v (λ+ zv)

b = (λ+ zv)
′Ω−1/2v ΩuvΩ

−1/2
v (λ+ zv)

η1 = (λ+ zv)
′ (λ+ zv) .

If Ωu = κΩv and Ωuv = δΩv, so R = δ√
κ
Ikz , then

Wgmmf (β)
d→ κη22
κη1 − 2δ

√
κη2 + κη22/η1

=
η22/η1

1− 2ρη2/η1 + (η2/η1)
2 (A.4)

where

η2 = (λ+ zv)
′ zu

ρ =
δ√
κ
.

Conditions Ωu = κΩv and Ωuv = δΩv are satisfied if σuv (zi) = δσ2v (zi) and σ2u (zi) =

κσ2v (zi) for all zi ∈ Z, and then ρ = σuv
σuσv

.

Result (A.4) is the same as that of Staiger and Stock (1997) and Stock and Yogo

(2005) result for the 2SLS based Wald test under conditional homoskedasticity with the

maximum size distortion at ρ2 = 1. Hence the Stock and Yogo (2005) Wald size based

critical values apply in the heteroskedastic case to the GMMf basedWald test if Ωu = κΩv

and Ωuv = δΩv, with again the maximum size distortion at δ2/κ = 1.
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