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WHEN DOES AN ADDITIONAL STAGE IMPROVE WELFARE IN
CENTRALIZED ASSIGNMENT?

BATTAL DOĞAN AND M. BUMIN YENMEZ

ABSTRACT. We study multistage centralized assignments to allocate scarce resources based
on priorities in the context of school choice. We characterize the capacity-priority profiles of
schools under which an additional stage of assignment may improve student welfare when
the deferred acceptance algorithm is used at each stage. If the capacity-priority profile is
acyclic, then no student prefers any subgame-perfect Nash equilibrium (SPNE) outcome of
the 2-stage enrollment system to the truthful equilibrium outcome of the 1-stage enrollment
system. If the capacity-priority profile is not acyclic, then an SPNE outcome of the 2-stage
enrollment system may Pareto dominate the truthful equilibrium outcome of the 1-stage
enrollment system.

1. Introduction

Centralized clearinghouses are used to allocate scarce resources when money cannot
be used as a medium of exchange. For example, pupils are assigned to schools, families
to public housing, and college students to courses and dormitory rooms.1 In this paper,
we study when an additional stage of assignment improves welfare in centralized clea-
ringhouses. We answer this question in the context of assigning students to public schools,
the so-called school choice problem. In this context, families submit preferences that are
used, together with school priorities, to create an assignment. In the last decade, many
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2 DOĞAN AND YENMEZ

school districts have adapted the celebrated deferred acceptance (DA) algorithm of Gale
and Shapley (1962) for this purpose.

The DA algorithm has a number of attractive properties. First of all, it is strategy-
proof in the sense that families do not have any incentives to misreport their preferences.
Furthermore, it produces the student-optimal fair matching — every student finds the DA
outcome at least as good as any other fair matching. However, these properties crucially
depend on the assumption that there is no second stage of assignment to match students
who are either unmatched in the first stage or who are not satisfied with their first-stage
assignments. In practice, however, school districts have additional stages of assignment.
For example, the newly adapted system in Chicago has two stages in which each student,
at the end of the first stage, can accept his assigned school or reject it and participate in a
second stage of assignment (Doğan and Yenmez, 2018).

To study the welfare effects of an additional stage, we assume that there are two stages
of assignment, as in Chicago. At each stage, families submit preferences over schools and
then DA is used to make an offer to students. Each student can accept the offer at the end
of the first stage as their permanent assignment or reject it and participate at the second
stage. We compare the equilibrium outcomes of this 2-stage enrollment system with the
benchmark 1-stage enrollment system, which produces the DA outcome, and characterize
when the introduction of a second stage may improve student welfare. A second stage
can naturally improve welfare when there are frictions such as information asymmetries,
application costs, limited choice for students,2 and so on. In contrast, we conduct our
analysis in a model without any such frictions.

First, we consider the environment in which students truthfully submit their preferences
at each stage in which they participate, but strategically accept or reject their offers. This
environment paves the way for our subsequent analysis where students are more sophisti-
cated and, in particular, they are also strategic in reporting their preferences. In addition,
this environment provides several insights that are common with the environment in
which students are more sophisticated.

We show that, when students are strategic only in acceptance-rejection decisions, any
strategy-profile outcome, in particular any Nash equilibrium outcome, of the 2-stage
enrollment system either Pareto dominates or is the same as the 1-stage enrollment outcome
(Theorem 1). That is, an additional stage of assignment cannot hurt any student. This result
is essentially driven by the following property of DA: When some students leave a problem
with their DA assignments, no student is worse off in the DA outcome for the reduced
problem (Lemma 1). This result also implies that it is a weakly dominant strategy to reject

2This is the so-called constrained school choice problem in which students can only rank up to a given
number of schools, see Haeringer and Klijn (2009) and Calsamiglia et al. (2010).
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the first-stage offer at the 2-stage enrollment system. Hence, every student rejecting their
first-stage offer is a Nash equilibrium of the 2-stage enrollment system, which produces
the same outcome as the one-stage enrollment system.

When students are strategic only in acceptance-rejection decisions, although an additio-
nal stage of assignment cannot hurt any student, it is not guaranteed that an additional
stage will improve welfare. We next identify conditions on capacity-priority profiles under
which a second stage may improve welfare and conditions under which a second stage
cannot improve welfare. We focus on conditions on the capacity-priority profile because
school capacities and priorities are typically observable and commonly known, while
students’ preferences are their private information. The acyclicity condition on capacity-
priority profiles, due to Ergin (2002), turns out to be critical. If the capacity-priority profile
is acyclic, then any strategy profile of the 2-stage enrollment system is a Nash equilibrium
that produces the same outcome as the 1-stage enrollment outcome; and, if the capacity-
priority profile is not acyclic, then there exists a student preference profile such that a
Nash equilibrium outcome of the 2-stage enrollment system Pareto dominates the 1-stage
enrollment outcome (Theorem 2).

The critical nature of the acyclicity condition in how equilibrium outcomes of 1-stage
and 2-stage enrollment systems compare to each other is essentially due to the fact that it
is closely related to consistency: DA is consistent under a given capacity-priority profile if
whenever some students leave a problem with their DA assignments, the assignments of
the students at the DA outcome for the reduced problem does not change compared to
their DA assignments at the original problem (Thomson, 1990). DA is consistent under a
capacity-priority structure if, and only if, the capacity-priority structure is acyclic (Ergin,
2002). Given a problem, some students accepting their offers at the end of the first stage
resembles a scenario where the same students leave the problem with their DA assignments
and a new DA outcome is calculated for the remaining students and schools. In our setting,
consistency is equivalent to acceptance and rejection strategies being outcome equivalent.
Although consistency has been studied in the resource allocation literature mostly in
reference to its normative appeal, in our setting consistency is important due to its relation
to strategic behavior.

Second, we consider the environment in which students are also strategic in submitting
their preferences. Since DA is strategy-proof, we assume that students submit their
preferences truthfully and accept their offers at the second stage. Therefore, we consider
the environment in which students strategically submit their preferences and decide
whether to accept or reject their offers at the first stage. Unlike the first environment, a
second stage may hurt a student at a subgame-perfect Nash equilibrium (SPNE). In fact,
the 2-stage enrollment system may have an SPNE outcome at which all the students are
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worse off compared to the truthful equilibrium outcome of the 1-stage enrollment system
(Example 3).

As before, we identify conditions on capacity-priority profiles under which a second
stage may improve welfare and conditions under which a second stage cannot improve
welfare. Again, the acyclicity condition on capacity-priority profiles is critical. If the
capacity-priority profile is acyclic, then every student weakly prefers the truthful equili-
brium outcome of the 1-stage enrollment system to any pure-strategy SPNE outcome of the
2-stage enrollment system (Theorem 3), and, if the capacity-priority profile is not acyclic,
then there exists a preference profile such that an SPNE of the 2-stage enrollment system
Pareto dominates the truthful equilibrium of the 1-stage enrollment system (Theorem 4).
The intuition behind the acyclicity condition being critical for the equilibria comparisons is
the same as the previous environment. The proofs to show that when acyclicity is violated,
an SPNE of the 2-stage enrollment system Pareto dominates the truthful equilibrium of the
1-stage enrollment system in each environment, are both constructive, and the construction
for the latter environment is more complex since profitable one-shot deviations must be
avoided at more decisions.

Related Literature. In an influential study, Ergin (2002) shows that DA is consistent (or
Pareto efficient) if, and only if, the capacity-priority profile is acyclic. Acyclic capacity-
priority profiles play a key role in our analysis. We show that acyclicity of the capacity-
priority profile is essential to how the DA outcome compares to the equilibrium outcomes
of the 2-stage enrollment system. In a related study, Kesten (2010) introduces a modification
of the DA algorithm that gives a Pareto efficient matching under any capacity-priority
profile.

The distinguishing feature of our model is that the enrollment system may run in more
than one stage. Manjunath and Turhan (2016) also consider a multistage enrollment
system, where students submit preferences only once, at the beginning of the first stage.
Furthermore, they assume that students participate at all stages. In contrast, a first-stage
acceptance by a student is permanent in our 2-stage enrollment system. Furthermore,
students are strategic in our setting. In a follow-up work, Turhan (2018) analyzes the
mechanism introduced in Manjunath and Turhan (2016) for different partitions of schools
from incentive and welfare perspectives.

Another paper that considers student assignment in multiple stages is Dur and Kesten
(2018). Their main focus is understanding whether any sequential enrollment mechanism
satisfying certain design goals such as non-wastefulness, strategy-proofness, fairness, and
respecting improvements exists, while we take the mechanism to be used at each stage
of the sequential process as given (DA) and compare the 2-stage and 1-stage enrollment
system outcomes. In a recent work, Haeringer and Iehlé (2017) study college admissions in
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France, which features multiple stages of admissions. They introduce a dynamic stability
notion and study mechanisms that satisfy this property.

Finally, Pycia (2012) studies non-cooperative games for the coalition formation problem
and shows that if preferences are aligned, then there is a Nash equilibrium that produces
the unique stable outcome (Proposition 5). Preference alignment imposes that if two
agents are members of two different coalitions, then the agents should have the same
preferences over the coalitions. In our setting, preference alignment cannot hold because a
school and a student can be members of two different coalitions in which the student is
indifferent between them (since there are no peer effects in our model) whereas the school
can have strict preferences. Furthermore, our research question is the comparison of the
two enrollment systems, which is different than that of Pycia.

2. Model

In this section, we formally introduce the primitives, notation, enrollment systems, and
solution concepts.

2.1. Preliminary Definitions. Let S = {s1, . . . , s|S|} be a set of students and C =

{c1, . . . , c|C|} be a set of schools. Each student s ∈ S has a preference relation Rs over
C ∪ {s},3 where s represents an outside option for the student, which can be a private
school or homeschooling. Given c, c′ ∈ C ∪ {s}, we write c Ps c′ if c 6= c′ and c Rs c′, i.e.,
student s strictly prefers c to c′. A school c is acceptable to student s if the school is strictly
more preferred than the outside option.

Each school c ∈ C has a capacity qc ∈ N, which represents the maximum number of
students the school can admit and a priority ranking �c over the set of students S ∪ {c}.4

Here, c denotes the option of having an empty seat. The strict part of the priority ranking
�c is denoted as �c, so, for any s, s′ ∈ S ∪ {c}, if s �c s′ and s 6= s′, then s �c s′. A student
s is acceptable to school c if s �c c.

The admissions policy of each school c ∈ C is represented by a choice function Chc :
2S × {1, . . . , qc} → 2S , which maps each nonempty set S ⊆ S of students and each
q ∈ {1, . . . , qc} to a subset Chc(S; q) ⊆ S of chosen students such that |Chc(S; q)| ≤ q. Here,
q represents the remaining capacity, so the school cannot admit more than q students. In
a 2-stage enrollment system, the admissions policy may depend on the number of seats
available since a school needs to specify how to allocate the remaining seats at the second
stage after some of the seats are allocated in the first stage. We assume that for each

3More formally, a preference relation over C ∪ {s} is a complete, transitive, and anti-symmetric binary
relation over C ∪ {s}. Binary relation Rs over C ∪ {s} is complete if, for every c1, c2 ∈ C ∪ {s}, c1 Rs c2 or
c2 Rs c1. It is transitive if, for every c1, c2, c3 ∈ C ∪ {s}, c1 Rs c2 and c2 Rs c3 imply c1 Rs c3. It is anti-symmetric
if, for every c1, c2 ∈ C ∪ {s}, c1 Rs c2 and c2 Rs c1 imply c1 = c2.

4The priority ranking �c is a complete, transitive, and anti-symmetric binary relation over S ∪ {c}.
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school c ∈ C, Chc is responsive to the priority ranking �c, i.e., for each S ⊆ S , Chc(S; q)
is obtained by choosing the highest-priority acceptable students in S until q students are
chosen or no acceptable student is left.

A (school choice) problem is a tuple (S , C, (Rs)s∈S , (qc,�c)c∈C). Sometimes, we fix all
the primitives of a problem other than the student preference-relation profile; in that case,
we refer to the student-preference relation profile (Rs)s∈S as the problem.

A matching µ is an assignment of students to schools respecting the capacity constraints:

• for each student s, µ(s) ∈ C or µ(s) = s,
• for each school c, µ(c) ⊆ S and |µ(c)| ≤ qc, and
• for each student s and school c, µ(s) = c if, and only if, s ∈ µ(c).

In words, every student is either matched with a school or matched to his outside option
(which we also refer to as being unmatched), and every school is assigned a set of students
with cardinality less than or equal to its capacity. In addition, there is a feasibility constraint
so that if a student gets matched with a school, then the student is in the set of students
that is assigned to the school.

A matching µ Pareto dominates another matching ν, if, for every student s, µ(s) is
weakly more preferred than ν(s), and, for one student, it is strictly more preferred. A
matching that is not Pareto dominated is called Pareto efficient.

A matching µ is stable if it satisfies the following properties:

• (individual rationality for students) for each student s, µ(s) Rs s,
• (individual rationality for schools) for each school c, Chc(µ(c); qc) = µ(c), and
• (no blocking) there exists no student-school pair (s, c) such that c Ps µ(s) and

s ∈ Chc(µ(c) ∪ {s}; qc).

Individual rationality for a student means that she weakly prefers the outcome to the
outside option. On the other hand, for a school, it means that the school would like to keep
all the students assigned to it. More explicitly, since choice functions are responsive, only
acceptable students are matched with the school and the number of students is no more
than its capacity. No blocking rules out the existence of a student-school pair such that
the student strictly prefers the school to his match and the school would like to admit the
student. In student-assignment settings, the stability of a matching is viewed as a fairness
notion (Abdulkadiroğlu and Sönmez, 2003).

A stable matching is student optimal if every student weakly prefers the outcome in
this matching to the outcome in any other stable matching.

An assignment rule associates each problem with a matching. The deferred acceptance
(DA) rule due to Gale and Shapley (1962) is used in many school districts that have
reformed their school choice systems. The DA rule associates each problem with the
matching determined by the following deferred acceptance algorithm.
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Step 1. Each student applies to his top-ranked acceptable school. If there is
no such school, then she is unmatched. Each school c considers its applicants,
say A1(c). Among these, it tentatively accepts Chc(A1(c); qc). It rejects all
the other applicants. If there is no rejection by any school at this step, then
stop and return ∪c∈CChc(A1(c); qc).
Step t ≥ 2. Each student who is rejected at Step t− 1 applies to his top-
ranked acceptable school among the ones that have not rejected him. If there
is no such school, she is unmatched. Each school c considers the students
that it tentatively accepted at Step t− 1 and the new applicants at Step t, say
At(c). Among these, it tentatively accepts Chc(At(c); qc). It rejects all the
other applicants. If there is no rejection by any school at this step, then stop
and return ∪c∈CChc(At(c); qc).

The algorithm stops in finite time since there can only be a finite number of rejections.
The DA algorithm produces the student-optimal stable matching (Gale and Shapley, 1962).

2.2. Enrollment Systems and Games. The student enrollment systems in many dis-
tricts have supplementary stages for students who are unmatched or matched with less-
preferred schools. Thus, we consider two centralized enrollment systems depending on
whether the enrollment system has two stages or only one stage.

1-Stage Enrollment System: Each student reports a preference relation. Then, a matching
is determined by the DA rule. Finally, each student either accepts her match or rejects it (in
which case she is matched to her outside option).

2-Stage Enrollment System: In the first stage, a matching is determined through the 1-
stage enrollment system described above. In the second stage, if there are any remaining
students (those who were unmatched or rejected their matches at the end of the first
stage) and there are available seats, another matching is determined through the 1-stage
enrollment system among the unmatched students and schools with reduced capacities.

We assume that students may be strategic when reporting their preferences or making
their acceptance/rejection decisions, but schools are not strategic, and their priority ran-
kings and capacities are common knowledge. Each enrollment system, at each preference
profile, induces an extensive-form game. We study the Nash equilibria and subgame-perfect
Nash equilibria (SPNE) of these games and compare the equilibria of the two enrollment
systems.

In the extensive-form game at a given preference profile, a student’s strategy should
recommend, at each stage, what preference relation to report and whether to accept a
matched school as a function of the history. Let us call a student’s strategy truthful if it
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recommends reporting, at each stage and for each history, the true preference relation. Note
that there can be many different truthful strategies, which differ in the acceptance-rejection
recommendations but always report the preferences truthfully.

We say that a student’s strategy weakly dominates another strategy if, for each strategy
profile of the other students, the former strategy yields an outcome that is weakly preferred
by the student to the outcome of the latter strategy.5 We say that two student strategies
are outcome equivalent if, for each strategy profile of the other students, the student is
indifferent between the outcomes of the two strategies.

It is a weakly dominant strategy for each student to truthfully report his preferences in
DA (Dubins and Freedman, 1981). In other words, the game induced by DA has a truthful
Nash equilibrium with weakly-dominant strategies. As a result, most of the literature focuses
on this particular equilibrium, even though the game induced by DA may have other Nash
equilibria.6

Under the 1-stage enrollment system, it is a weakly dominant strategy to accept any
offer that is weakly more preferred than the outside option. Therefore, there is a truhful
SPNE in which students accept their offers. We also focus on this truthful equilibrium of
the 1-stage enrollment system.

2.3. Consistency and Acyclic Capacity-Priority Profiles. An assignment rule is consis-
tent under a given capacity-priority profile if, for each problem with that capacity-priority
profile and for each reduced problem obtained by the departure of an arbitrary subgroup
of students with their assigned seats at the original problem, the matching outcome of the
assignment rule for the reduced problem is the restriction of the matching chosen for the
original problem to that subgroup.

More formally, given a problem (S , C, (Rs)s∈S , (qc,�c)c∈C), a set of students S ⊆ S ,
and a matching µ, let (S , C, (Rs)s∈S , (qc,�c)c∈C)|(S,µ) denote the reduced problem when
students in S leave the problem with their assigned seats in µ. We say that an assignment
rule ϕ is consistent under the capacity-priority profile (qc,�c)c∈C if, for each preference
profile R, set of students S ⊆ S , and student s ∈ S \ S, we have ϕs(S , C, (Rs)s∈S , (qc,�c

5This is the definition of weak domination used in mechanism design (Jackson, 2003) and matching
theory (Roth and Sotomayor, 1990, Definition 4.2). However, in the game-theory literature, weak domination
also requires that there exists a strategy profile of the other students for which the outcome of the former
strategy is strictly preferred to the outcome of the latter strategy.

6This equilibrium has been commonly used in the literature in the analysis of DA. For instance, Ergin
and Sönmez (2006) analyze Nash equilibrium outcomes of the game induced by another well-known system,
the Boston mechanism, and compare those outcomes with the truthful equilibrium outcome of DA. Yet, DA
may have other Nash equilibria, even with an unstable outcome (Sotomayor, 2008). Furthermore, Bando
(2014) shows that the outcome of the efficiency-adjusted deferred acceptance mechanism (Kesten, 2010) is a
strict Nash equilibrium of DA, which is weakly more preferred than the truthful equilibrium outcome of DA
for every student.



MULTISTAGE ASSIGNMENT 9

)c∈C) = ϕs((S , C, (Rs)s∈S , (qc,�c)c∈C)|(S,ϕ(S ,C,(Rs)s∈S ,(qc,�c)c∈C ))). We say that an assign-
ment rule is consistent if it is consistent under any capacity-priority profile (Thomson,
1990).

A capacity-priority profile (qc,�c)c∈C includes a cycle if there exist a pair of schools c
and c′, and three students s, s′, and s′′ such that

i. s �c s′ �c s′′ �c′ s and
ii. there exist (possibly empty) disjoint sets of students Sc, Sc′ ⊂ S \ {s, s′, s′′} such

that Sc ⊂ {i ∈ S : i �c s′}, Sc′ ⊂ {i ∈ S : i �c′ s}, |Sc| = qc − 1, and |Sc′ | = qc′ − 1.

A capacity-priority profile (qc,�c)c∈C is acyclic if it does not include any cycle. Ergin
(2002) shows that DA is consistent (or Pareto efficient) under the capacity-priority profile
(qc,�c)c∈C if, and only if, (qc,�c)c∈C is acyclic. Acyclic capacity-priority profiles play a
crucial role in our analysis.

The following interpretation of acyclicity provides some intuition. Given a problem
(S , C, (Rs)s∈S , (qc,�c)c∈C), we say that student s is an interrupter at school c if there is a
step of the DA algorithm where student s is tentatively accepted by school c but another
student is rejected, while at a later step student s is also rejected. Note that according to
this definition, student s could be accepted by the school for the first time at an earlier
step without rejecting any student, but the school may reject another student at a later step
while still accepting student s. In this case, student s would still be an interrupter if she is
rejected at a still later step. Kesten (2010) shows that a problem with the capacity-priority
profile (qc,�c)c∈C does not have an interrupter if, and only if, (qc,�c)c∈C is acyclic.

3. Students Are Strategic Only in Acceptance-rejection Decisions

To compare the outcomes of the 1-stage and 2-stage enrollment systems, we first consider
the case when students use truthful strategies: Suppose that each student reports her
preferences truthfully in the first stage, and also in the second stage, if she rejects her offer
at the end of the first stage. In addition, accepting the offer after the second stage is optimal
for students, so the only strategic decision for a student is the acceptance-rejection decision
at the end of the first stage.

Consider the game in which students observe their assigned schools at the first stage
and decide whether to accept or reject an offer, and students who reject their offers move
to the second stage, where they report truthfully and accept their offers. At each problem,
this game can be represented by a one-stage simultaneous-move game where the strategy
set of each student consists of accepting the first-stage offer or rejecting it.

Theorem 1. Suppose that students are strategic only in acceptance-rejection decisions. Then any
strategy profile outcome, in particular any Nash equilibrium outcome, of the 2-stage enrollment
system either Pareto dominates or is the same as the 1-stage enrollment outcome.
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To show this result, we use the following property of DA. Given a problem, consider
the DA outcome. Let a set of students leave the problem with their assigned seats in DA,
reducing the capacities of the matched schools. Run DA again in the reduced problem. In
this setting, it is known that the matching for the remaining students may change, i.e., DA
may not be consistent, unless the capacity-priority profile is acyclic (Ergin, 2002). Lemma 1
shows that each student remaining in the problem gets a weakly more preferred school
(Chen, 2017). This implies that rejecting the offer after the first stage is a weakly dominant
strategy since at the second stage every student is matched with a weakly more preferred
school, regardless of what other students decide. Hence, at any strategy profile of the
2-stage system, a student either accepts his offer at the first stage and is assigned to his
1-stage enrollment school, or some students leave with their 1-stage enrollment schools
and in the second stage the student is assigned a school that he weakly prefers to his
1-stage enrollment school.

Also note that in the 2-stage enrollment system, all students rejecting their first-stage
offers is a Nash equilibrium, which produces the same outcome as the 1-stage enrollment
system.

The following example illustrates that a Nash equilibrium outcome of the 2-stage en-
rollment system may indeed Pareto dominate the 1-stage enrollment outcome when the
capacity-priority profile has a cycle (i.e., it is not acyclic).

Example 1. Let S = {s1, s2, s3} and C = {c1, c2, c3}. Each school has capacity one. Let the
student preference profile (Rs)s∈S and the school priority profile (�c)c∈C be as below.

Rs1 Rs2 Rs3 �c1 �c2 �c3
c1 c1 c2 s3 s2 s1
c3 c2 c1 s1 s3 s2
c2 c3 c3 s2 s1 s3
s1 s2 s3 c1 c2 c3

In the first stage, student s1 gets an offer from school c3, student s2 gets an offer from
school c2, and student s3 gets an offer from school c1. Consider the strategy profile where
student s1 accepts her offer and the other two students reject their offers. The outcome of
this strategy profile is that student s1 gets school c3, student s2 gets school c1, and student
s3 gets school c2. Since students s2 and s3 get their best schools, they do not have any
profitable unilateral deviation. If student s1 instead rejects, he still receives school c3, so he
also does not have a profitable unilateral deviation. Therefore, we have a Nash equilibrium
outcome that Pareto dominates the 1-stage enrollment outcome in which student s1 gets
school c3, student s2 gets school c2, and student s3 gets school c1. �
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We next show that a capacity-priority profile with a cycle is necessary and sufficient
for the 2-stage enrollment system to feature a Nash equilibrium outcome which Pareto
improves upon the 1-stage enrollment outcome.

Theorem 2. Suppose that students are strategic only in acceptance-rejection decisions.

i. If the capacity-priority profile is acyclic, then any strategy profile of the 2-stage enrollment
system is a Nash equilibrim, which produces the same outcome as the 1-stage enrollment
outcome.

ii. If the capacity-priority profile has a cycle, then there exists a student preference profile such
that a Nash equilibrium outcome of the 2-stage enrollment system Pareto dominates the
1-stage enrollment outcome.

The proof of Theorem 2 is provided in the Appendix. Part i follows from the fact that
DA is consistent under an acyclic capacity-priority profile and therefore, for any student,
accepting the first stage offer or rejecting it are outcome equivalent. The proof of Part
ii is constructive. The intuition can be given using Example 1, which has a cycle in the
capacity-priority profile because s3 �c1 s1 �c1 s2 �c2 s3 and school capacities are one.
Student s1 is an interrupter because student s2 is rejected while student s1 is tentatively
accepted, and student s1 is eventually rejected as well. If we consider the equilibrium
strategy profile in which the interrupter student s1 accepts her offer and the other two
students reject their offers, both students s2 and s3 get strictly more preferred schools.

Remark 1. The first statement in Theorem 2 holds for any assignment rule that is consistent
under a capacity-priority profile. Kesten (2006) characterizes capacity-priority profiles
under which the top trading cycles rule is consistent. Kojima and Ünver (2014) and Doğan
and Klaus (2018) characterize the Boston (or immediate acceptance) rule with some desirable
properties which include consistency. Ergin (2000) studies consistent sequential rules for
house allocation problems.7 Therefore, our result holds for the top trading cycles rule
under the assumptions stated in Kesten (2006), the sequential rules, and the Boston rule.

Remark 2. When students are strategic only in acceptance-rejection decisions, Theorems 1
and 2 hold for the comparison between k-stage and 1-stage enrollment systems for every
k ≥ 2. Furthermore, if k is sufficiently large, there exists a pure-strategy SPNE of the k-stage
enrollment system that has the outcome of the efficiency-adjusted deferred acceptance
algorithm (Kesten, 2010), which is Pareto efficient.

7See also Sönmez and Ünver (2010b) for house allocation problem with existing tenants.
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4. Students Are Strategic Also When Reporting First-stage Preferences

Suppose now that students are strategic also when reporting their first-stage preferences,
in addition to the acceptance-rejection decisions at the end of the first stage.

Consider the complete information game where students report preference relations,
then observe the reported preferences at the first stage (and also the profile of offers), and
decide whether to accept an offer or not, and the students who reject their offers move to
the second stage, where they report truthfully and accept the new offer. At each problem
(Rs)s∈S , this game can be represented by an extensive-form complete-information game
where a student strategy is a complete-contingent plan that specifies which preference
relation to report and whether to accept or reject the offer following each possible reported
preference profile. We compare the SPNE of this game with the truthful equilibrium of the
1-stage enrollment system.

The following example illustrates that an SPNE outcome of the 2-stage enrollment
system may Pareto dominate the 1-stage enrollment system outcome.

Example 2. Consider the school choice problem in Example 1 again. The 1-stage enrollment
outcome is that student s1 gets school c3, student s2 gets school c2, and student s3 gets
school c1. Consider the following strategy profile. Student s1 reports only school c3 as
acceptable in the first stage, and accepts an offer if, and only if, it is strictly more preferred
than her 1-stage enrollment outcome school c3. Each other student reports truthfully in
the first stage and at each possible preference profile realization, and they accept an offer
if, and only if, it is strictly more preferred than their 1-stage enrollment outcome.

Consider student s1. Consider her preference-revelation decision node. By changing
her preference report, she either causes an outcome where student s2 gets school c2 and
student s3 gets school c1, or an outcome where student s2 gets school c1 and student s3

gets school c2. In the former case, all students reject their offers, and student s1 in the end
receives school c3. In the latter case, only student s1 rejects her offer, and in the end she still
receives school c3. So there is no one-shot profitable deviation at her preference-revelation
decision node. Consider any of her acceptance-rejection decision nodes. If she is offered
school c1, she clearly cannot be strictly better off by rejecting it. If she is offered school
c3 and she rejects it, in the worse case she receives school c3 in the second stage, so again
there is no one-shot profitable deviation. If she receives school c2 and rejects it, then she
receives a school at the second stage that cannot be strictly less preferred than school c2.
Again, there is no profitable one-shot deviation.

Consider student s2. Consider his preference-revelation decision node. Clearly, there
is no one-shot profitable deviation since he gets his best school. Consider any of his
acceptance-rejection decision nodes. If he is offered school c1, he can clearly not be better
off by rejecting the offer. If he is offered school c2 and he rejects it, in the worse case he
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receives school c2 in the second stage, so there is no one-shot profitable deviation either. If
he is offered school c3 in the first stage, by rejecting this offer he gets a school at the second
stage that cannot be worse than school c3. Again there is no profitable one-shot deviation.

The case for student s3 is symmetrical to the case for student s2. Thus, student s3 does
not have a profitable one-shot deviation either. �

Therefore, an SPNE outcome of the 2-stage enrollment system may Pareto dominate the
truthful equilibrium outcome of the 1-stage enrollment system. We show that this is not
possible under an acyclic capacity-priority profile. In fact, we prove a stronger result:

Theorem 3. Suppose that the capacity-priority profile is acyclic. Then every student weakly prefers
the truthful equilibrium outcome of the 1-stage enrollment system to any pure-strategy SPNE
outcome of the 2-stage enrollment system.

In particular, when the capacity-priority profile is acyclic, an SPNE outcome of the
2-stage enrollment system is either the same as the truthful equilibrium outcome of the
1-stage enrollment system, or it is Pareto dominated by the latter. To show this result,
we first show that an SPNE outcome of the 2-stage enrollment system cannot have a
blocking pair. The intuition is that, if the priority of student s is violated by another
student s′ at a school c, then students s and s′ must be receiving their final assignments
at different stages of the 2-stage enrollment system. Moreover, student s, by a one-shot
deviation, can instead participate at the stage where student s′ receives school c, and can
guarantee himself at least school c, since a lower-priority student is receiving c before his
arrival into the problem. Here, the acyclic capacity-priority profile assumption is crucial
because, otherwise, student s could have been an interrupter in the new problem and
could have ended up with a strictly less-preferred school than c, although without his
presence a lower-priority student is able to receive school c. Once we show that there is
no blocking pair, the rest follows from the fact that the 1-stage enrollment outcome is the
student-optimal stable matching.

The next result shows that the acyclic capacity-priority profile assumption is necessary
for the previous result that students weakly prefer the 1-stage enrollment system outcome
to any pure-strategy SPNE outcome of the 2-stage enrollment system.

Theorem 4. Suppose that the capacity-priority profile has a cycle. Then there exists a prefe-
rence profile such that an SPNE of the 2-stage enrollment system Pareto dominates the truthful
equilibrium of the 1-stage enrollment system.

The proof of Theorem 4, which is provided in the Appendix, is constructive. The
construction builds upon the idea in Example 2 and resembles the construction in the proof
of Theorem 2. Yet, the constructed strategy profile is more complex than the constructed
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strategy profile in the proof of Theorem 2 since profitable one-shot deviations at many
more decisions nodes must be avoided.

Unlike the case when the students are strategic only in acceptance-rejection decisions,
the truthful equilibrium outcome of the 1-stage enrollment system may indeed Pareto
dominate a pure-strategy SPNE outcome of the 2-stage enrollment system, as illustrated
by the following example.

Example 3. Let S = {s1, s2, s3} and C = {c1, c2, c3}. Each school has capacity one. The
student preference profile and school priority profile can be depicted as below.

Rs1 Rs2 Rs3 �c1 �c2 �c3
c1 c2 c3 s3 s1 s2
c2 c3 c1 s2 s3 s1
s1 s2 s3 s1 s2 s3
c3 c1 c2 c1 c2 c3

In the 1-stage enrollment system, each student is matched with his top-ranked school:
student s1 is matched with school c1, student s2 is matched with school c2, and student s3

is matched with school c3.
Let R′ be a preference profile such that student s1 finds only school c2 acceptable at

R′s1
, student s2 finds only school c3 acceptable at R′s2

, and student s3 finds only school
c1 acceptable at R′s3

. Consider the following strategy profile for the 2-stage enrollment
system: Each student s reports R′s in the first stage and accepts his offer following a
preference profile realization R if, and only if, Rs = R′s and there is at least one other
student s′ ∈ S \ {s} such that Rs′ = R′s′ .

Note that the outcome of this strategy profile is that student s1 is matched with school
c2, student s2 is matched with school c3, and student s3 is matched with school c1, which is
Pareto dominated by the 1-stage enrollment outcome. We show that this strategy profile is
an SPNE. Consider student s1. Since student s2 has the top priority at school c3 and student
s3 has the top priority at school c1, by a one-shot deviation at his preference-revelation
decision node student s1 cannot affect the assignments of students s2 or s3, but can only
change his own assignment from school c2 to his outside option s1. At the given strategy
profile, students s2 and s3 accept their offers at the first stage, student s1 rejects his offer
and in the second stage he receives school c2. Thus, student s1 does not have a profitable
one-shot deviation at his preference-revelation decision node.

Consider the acceptance-rejection decision node of student s1 following an arbitrary
preference profile realization R. Suppose that R is such that at the given strategy profile,
it recommends student s1 to reject his offer at the acceptance-rejection decision node
following R. There are two possible cases. The first case is that Rs1 6= R′s1

, Rs2 = R′s2
, and

Rs3 = R′s3
. In this case, the first-stage offer of student s1 is either school c2 or his outside
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option s1, and the strategy recommends student s1 to reject his offer, student s2 to accept
school c3, and student s3 to accept school c1. Clearly, student s1 does not have a profitable
one-shot deviation at this decision node. The second case is that all the students reject
their offers at their decision nodes following R. In this case, student s1 is assigned to his
top-ranked school c1 and there is no profitable one-shot deviation.

Suppose that R is such that at the given strategy profile, it recommends student s1 to
accept his offer at the acceptance-rejection decision node following R. There are three
possible cases. The first case is that for each student s ∈ S , Rs = R′s, in which case student
s1 clearly does not have a profitable one-shot deviation at this decision node. The second
case is that Rs1 = R′s1

, Rs2 = R′s2
, and Rs3 6= R′s3

. In this case, if student s1 rejects his offer
by a one-shot deviation at this decision node, in the second stage he will still be assigned
to school c2 since his more preferred school c1 will be assigned to student s3, who has a
higher priority at school c1, which is therefore not a profitable deviation. The third case
is that Rs1 = R′s1

, Rs2 6= R′s2
, and Rs3 = R′s3

. In this case, if student s1 rejects his offer by a
one-shot deviation at this decision node, he will still be assigned to school c2 in the second
stage since his more preferred school c1 will be taken by student s3 in the first stage, which
is therefore not a profitable deviation.

Hence, student s1 has no profitable one-shot deviation. By symmetrical arguments, no
student has a profitable one-shot deviation. �

Even though the 2-stage enrollment system has a pure-strategy Nash equilibrium when
students are only strategic in acceptance-rejection decisions, it does not necessarily have
a pure-strategy SPNE when students are also strategic in submitting their first-stage
preferences. Note that each subgame that follows a preference-revelation profile resembles
an allocation problem where each student has an endowment school (the school that
she is assigned to at the first stage) and has to decide on whether to stay out of the
second stage and enjoy her endowment or stay in together with her endowment. In the
second stage, a student can possibly be assigned a strictly more preferred school than her
endowment, which is an incentive to reject the first-stage offer. However, a school being
your endowment does not provide any additional priority at that school in the second
stage, which is an incentive to accept the first-stage offer. The following example shows
that there exists a subgame where these incentives cannot be balanced, or in particular
there exists a problem at which the 2-stage enrollment system does not have a pure-strategy
SPNE even when all schools have the same priority ranking of students.

Example 4. Let S = {s1, s2, s3, s4} and C = {a, ω(s1), ω(s2), ω(s3), ω(s4)}. Each school has
capacity one. Let the student preference profile R and the school priority profile � be
depicted as below. The part of the preference profile denoting the unacceptable schools are
not relevant and not depicted. School have a common priority ordering over students.
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Rs1 Rs2 Rs3 Rs4 (�c)c∈C
ω(s3) ω(s4) a a s1
ω(s1) a ω(s3) ω(s4) s2

s1 ω(s2) s3 s4 s3
s2 s4

Consider the subgame that follows after student si reports school ω(si) as the only
acceptable school, for each i ∈ {1, . . . , 5}. Note that student si gets an offer from school
ω(si) at the first stage, for each i ∈ {1, . . . , 5}. Suppose that that this subgame has a pure
strategy Nash equilibrium, say σ.

Since a Ps2 ω(s2) and student s2 has the top priority from among the students who find
a acceptable, it must be that student s2 rejects his offer at σ since he can guarantee himself
at least a by participating in the second stage. Now, we claim that student s4 must accept
his offer, ω(s4), at σ. Suppose not, that is, suppose that student s4 rejects his offer at σ and
participates in the second stage. Now, if student s3 also rejects his offer and participates
in the second stage, irrespective of the strategy that student s1 chooses, student s3 will
receive a and student s4 will receive his outside option s4. Since a Ps3 ω(s3), student s3

must also reject his offer in the equilibrium. But then, student s4 accepting his offer and
not participating in the second stage is a unilateral profitable deviation, contradicting that
σ is a Nash equilibrium. Hence, student s4 accepts his offer at σ.

Now, if student s3 also accepts his offer at σ, irrespective of the strategy that student s1

chooses, student s4 will receive a if he rejects his offer and participates in the second stage,
which would be a unilateral profitable deviation. Hence, student s3 rejects his offer at σ.

Since ω(s3) Ps1 ω(s1) and student s1 has the top priority, student s1 rejects his offer at σ

since he receives ω(s3) by participating at the second stage.
Therefore, students s1, s2, and s3 reject their offers and student s4 accepts his offer at

σ. But then, student s3 receives his outside option s3. Since ω(s3) Ps3 s3, student s3 has
a profitable unilateral deviation, contradicting that σ is a Nash equilibrium. Hence, the
subgame does not have a Nash equilibrium.

Since there is a subgame without a pure-strategy Nash equilibrium, there is no pure-
strategy SPNE. �

5. Conclusion

When designing a centralized clearinghouse to assign scarce resources based on priori-
ties, such as in school choice, fairness is a critical desideratum. As a result, school districts
that have reformed their admissions systems have employed the celebrated deferred
acceptance (DA) algorithm. Even though the DA algorithm produces the student-optimal
fair matching in one stage, in practice school districts have a second stage of assignment.
Our study provides an explanation of why an additional stage of assignment may be
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preferable. In particular, an additional stage of assignment may improve student welfare if,
and only if, the capacity-priority structure is not acyclic. Furthermore, in an environment
where students are only strategic in acceptance-rejection decisions, having a second stage
of assignment can never hurt any student.

Our analysis has the following policy implications. In an environment with an acyclic
capacity-priority profile, the student enrollment systems should not have additional
stages, as additional stages do not make students better off but may make them worse
off. However, in an environment with a capacity-priority profile that has a cycle, the
student welfare comparison can go both ways when students are sophisticated. However,
if the capacity-priority profile can be designed, then it should be ayclic and the enrollment
system should have only one stage. In this case, the 1-stage truthful outcome of DA Pareto
dominates or is the same as any SPNE of the 2-stage enrollment system.
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and Utku Ünver, “Course Bidding at Business Schools,” International Economic
Review, 2010, 51 (1), 99–123.

and , “House allocation with existing tenants: A characterization,” Games
and Economic Behavior, 2010, 69 (2), 425–445.

Sotomayor, Marilda, “The stability of the equilibrium outcomes in the admission games
induced by stable matching rules,” International Journal of Game Theory, 2008, 36, 621–640.

Thomson, William, “The Consistency Principle,” in Tatsuro Ichiishi, Abraham Neyman,
and Yair Tauman, eds., Game Theory and Applications, New York: Academic Press, 1990,
pp. 187–215.

Turhan, Bertan, “Welfare and incentives in partitioned school choice markets,” Games and
Economic Behavior, 2018.

Appendix: Proofs

In this section, we provide the omitted proofs. The next lemma is used in the proof of
Theorem 1, which is shown in Chen (2017) and called “weak consistency.” We provide a
proof for completeness.

Lemma 1. Suppose that DA produces matching µ. When a set of students is removed and the
capacities of their assigned schools in µ are reduced accordingly, the remaining students receive
weakly more preferred outcomes at DA of the new problem.

The mathematical formulation of the result is as follows: For each problem
(S , C, (Rs)s∈S , (qc,�c)c∈C), S ⊆ S , and s ∈ S \ S, the outcome of DA under (S \
S, C, (Rs)s∈S\S, (qc − |µ(c) ∩ S|,�c)c∈C) is weakly more preferred with respect to Rs than
the outcome of DA under (S , C, (Rs)s∈S , (qc,�c)c∈C).

Proof of Lemma 1. Let µ′ be the matching obtained from µ by removing the set of stu-
dents S together with their assigned seats at µ. Note that matching µ′ includes only
the students in S \ S. First we show that µ′ is a stable matching in the new problem
(S \ S, C, (Rs)s∈S\S, (qc − |µ(c) ∩ S|,�c)c∈C). Individual rationality for students holds
since µ is individually rational in (S , C, (Rs)s∈S , (qc,�c)c∈C). For any school c, individual
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rationality in (S , C, (Rs)s∈S , (qc,�c)c∈C) implies that Chc(µ(c); qc) = µ(c). In µ′, the set of
students matched to school c is µ(c) \ S and the capacity of c is qc − |µ(c) ∩ S|. Since Chc

is the responsive choice function, we get Chc(µ(c) \ S; qc − |µ(c) ∩ S|) = µ(c) \ S, which
shows that µ′ is individually rational for school c. Any blocking pair (s, c) for µ′ in the
new problem (S \ S, C, (Rs)s∈S\S, (qc − |µ(c) ∩ S|,�c)c∈C) would also be a blocking pair
in the original problem (S , C, (Rs)s∈S , (qc,�c)c∈C) because of responsiveness, so blocking
pairs cannot exist. Therefore, µ′ is stable in the new problem.

Since µ′ is stable in the new problem, the outcome of DA for the new problem is weakly
more preferred for the remaining students since DA produces the student-optimal stable
matching (Gale and Shapley, 1962). The conclusion follows. �

Proof of Theorem 1. Lemma 1 shows that removing students and their allotments in DA
weakly improves the outcome for the remaining students in DA. Since students submit
their preferences truthfully in both stages of the 2-stage enrollment system, and since
some students may leave by accepting their first-stage offers, the outcome of DA improves
weakly at the second stage for all the remaining students. Therefore, a student gets a
weakly more preferred school by rejecting the first-stage offer. Hence, at any strategy
profile of the 2-stage system, a student s either accepts his offer at the first stage and
is assigned to his 1-stage enrollment school, or some students leave with their 1-stage
enrollment schools and in the second stage student s is assigned a weakly better school by
Lemma 1.

�

Proof of Theorem 2. Part i. Since the capacity-priority profile is acylic, DA is consistent. The-
refore, for any student, accepting and rejecting the first-stage offer are outcome equivalent.
Hence, any strategy profile is an equilibrium, which produces the same outcome as DA.

Part ii. Let (qc,�c)c∈C be a capacity-priority profile that has a cycle. Then, there exist a
pair of schools c and c′, and three students s, s′, and s′′ such that

i. s �c s′ �c s′′ �c′ s and
ii. there exist (possibly empty) disjoint sets of students Sc, Sc′ ⊂ S \ {s, s′, s′′} with

Sc ⊂ {i ∈ S : i �c s′}, Sc′ ⊂ {i ∈ S : i �c′ s}, |Sc| = qc − 1, and |Sc′ | = qc′ − 1.

Consider a preference profile (Rs)s∈S such that

i. c′ Ps c Ps s Ps c′′ for every c′′ ∈ C \ {c, c′},
ii. c Ps′ s′ Ps′ c′′ for every c′′ ∈ C \ {c},

iii. c Ps′′ c′ Ps′′ s′′ Ps′′ c′′ for every c′′ ∈ C \ {c, c′},
iv. c Pi i Pi c′′ for every i ∈ Sc and every c′′ ∈ C \ {c},
v. c′ Pi i Pi c′′ for every i ∈ Sc′ and every c′′ ∈ C \ {c′}, and

vi. i Pi c′′ for every i ∈ S \ {{s, s′, s′′} ∪ Sc ∪ Sc′} and every c′′ ∈ C.
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The relevant part of the restriction of the preference relation profile and the priority
profile to {s, s′, s′′, c, c′} looks as follows.

Rs Rs′ Rs′′ �c �c′

c′ c c s s′′
c s′ c′ s′ s
s s′′ s′′

We construct a Nash equilibrium of the 2-stage enrollment system for the problem
(Rs)s∈S that Pareto dominates the truthful equilibrium of the 1-stage enrollment system.
In the truthful outcome of the 1-stage enrollment system, students in {s} ∪ Sc get matched
with c, and students in {s′} ∪ Sc′ get matched with c′, whereas the remaining students
(including s′) get their outside options.

Consider the following strategy profile σ for the 2-stage enrollment system in which
students s and s′′ reject and every other student accepts their offers. Therefore, only
students s and s′′ participate in the second stage with schools c and c′, both of which have
a remaining capacity of only one. At the second stage, s applies to c′ and s′′ applies to
c, both of which are accepted. In the outcome under the strategy profile σ, students in
{s, s′′} ∪ Sc ∪ Sc′ get their most preferred schools, whereas the other students get their
outisde options. Therefore, the outcome of the 2-stage enrollment system under σ Pareto
dominates the truthful outcome of the 1-stage enrollment system.

We now show that σ is a Nash equilibrium of the 2-stage enrollment system. Every
student other than s′ gets their most preferred outcome. Furthermore, if student s′ deviates
and rejects her offer, then students s, s′, and s′′ participate in the second stage with schools
c and c′ with remaining capacity of one. Then the outcome of DA at the second stage
matches s′ with her outside option, so student s′ does not have a unilateral deviation in
which she is matched with a more preferred outcome. Therefore, σ is a Nash equilibrium
of the 2-stage enrollment system. �

Proof of Theorem 3. Consider any SPNE outcome of the 2-stage enrollment system, say µ.
We first show that there is no blocking pair. Suppose, for contradiction, that there exist
students s, s′ and school c such that µ(s′) = c, c Ps µ(s), and s �c s′. Suppose, without loss
of generality, that student s′ is the lowest-priority student at school c in matching µ.

Case 1: Both students s and s′ accept their offers and get matched at the first stage. Let R̃s

denote the preference relation that student s reports. Since DA is used, the school assigned
to student s is better than school c with respect to preference relation R̃s.

Consider a one-shot deviation of student s at the preference-revelation decision node
where she instead reports another preference relation, say R̃′s, which is obtained from R̃s

just by moving school c to the top.
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Consider the subcase when student s receives school c at the first stage. In the following
subgame, his strategy either recommends he accept school c or recommends he reject
school c, in which case he receives a school at least as good as school c at the end of the
game, since his strategy induces a Nash equilibrium in every subgame. In any case, there
is a profitable one-shot deviation, which is a contradiction.

Consider the other subcase when student s does not receive school c at the first stage.
Since there cannot be any interrupter, in any step of DA where student s is tentatively
accepted by school c, no other student is rejected by c at the same step. And, as a result,
DA produces the same matching as when he reports R̃s. Therefore, student s′ is matched
with school c, which contradicts the stability of DA.

Case 2: Student s′ accepts his offer and student s rejects his offer at the first stage. Then, the
school that made student s an offer in the first stage, if any, must be worse than school c,
since otherwise student s would have a profitable one-shot deviation at an accept-reject
decision node where he instead accepts his offer. But then, due to the same arguments as in
Case 1, student s has a profitable one-shot deviation at the preference-revelation decision
node by moving school c to the top of his preference ranking.

Case 3: Student s accepts his offer and student s′ rejects his offer at the first stage. Consider a
one-shot deviation of student s at the accept-reject decision node where he instead rejects
his offer.

Now, in the second stage, there will be one additional student, s, and at most one more
seat for a school. Consider the subproblem without the additional seat, but only with the
additional student s. First note that there cannot be an interrupter in this problem. This
is not immediately implied by the acyclic capacity-priority profile assumption, since we
are looking at a subproblem where the capacities of the schools may be smaller than their
original capacities. However, by the argument in Case 2, for each student who receives
a seat in Stage 2, and for each school that he prefers to his assigned school in Stage 2,
all the students who receive that school in the first stage must have a higher priority.
Now, consider the problem obtained from the subproblem by adding the students who
received seats in the first stage and the seats that were allocated in the first stage, with
the new preference profile where the additional students find acceptable only the school
that they were assigned in the first stage. Clearly, any student who is an interrupter in the
subproblem will still be an interrupter in this new problem when the schools have their
original capacities, which is not possible since this new problem has the same capacity-
priority profile with the original problem, which is an acyclic capacity-priority profile.
Hence, there is no interrupter in the subproblem.

Next, we will show that, since initially student s′ receives school c and student s has
higher priority than student s′ at school c, student s gets either school c or something
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better in the subproblem after his one-shot deviation. Suppose, for contradiction, that
student s gets a school that is worse than school c. For any step of DA at which student s
is tentatively accepted by a school that he prefers to school c, no other student should be
rejected from that school at the same step, since there is no interrupter. Also, for any step
of DA at which student s is tentatively accepted by school c, no other student should be
rejected from c at the same step. Now, consider the step at which s is rejected by c. Note
that until student s gets rejected by school c, DA if student s had not deviated to participate
in the second stage and DA if he deviated to participate in the second stage run exactly
the same. Also note that, since student s gets a school that is worse than school c and the
allocation must be stable, student s′ must be rejected from school c at some step. If student
s′ is tentatively accepted at school c in the same step at which student s gets rejected by
school c, then student s is an interrupter at school c, which is a contradiction. Suppose
that student s′ is not one of the tentatively accepted students at school c in the step that
student s gets rejected by school c. Then, there exists a student s′′ who has lower priority
than student s′ at school c and gets tentatively accepted by school c at the step student s
gets rejected by school c, since in DA when student s had not deviated to participate in
the second stage, student s′ applies to school c at a later step and gets tentatively accepted.
But then, student s′′ gets rejected by school c at a later step, by the latest at the first step
student s′ applies to school c. Hence, student s′′ is an interrupter at school c, which is a
contradiction.

Thus, student s gets either school c or something better after his one-shot deviation
in the subproblem without the added seat. By resource monotonicity of DA (Kelso and
Crawford, 1982; Chambers and Yenmez, 2017), we conclude that student s gets either
school c or something better after his one-shot deviation, which is a profitable one-shot
deviation. Thus, we get a contradiction.

Case 4: Students s and s′ accept their offers at the second stage. Since students submit their
true preferences at the second stage and DA is stable, student s′ cannot be matched with
school c while student s does not receive an offer from school c or a better school with
respect to his preference ranking Rs because student s has a higher priority than student s′

at school c. This is a contradiction.
In all possible cases, we have established a contradiction. Hence, matching µ has no

blocking pairs. In addition, it must be individually rational since in equilibrium a student
does not accept an unacceptable school and a school never chooses unacceptable students.
Yet this does not mean that matching µ is stable because it can have waste: a student
may prefer an empty seat to his assigned seat. Consider the reduced problem obtained by
decreasing the capacities of the schools (by the amount of empty seats). Then, matching
µ is stable at this new problem. Let matching µ∗ be the student-optimal stable matching
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at this problem. Note that each student is weakly better off at matching µ∗ compared to
matching µ. Also, by resource monotonicity of the DA, when the school capacities are
increased to the initial levels, which is the 1-stage enrollment outcome, each student must
be weakly better off, compared to µ∗ and also compared to µ. Hence, there is no student at
µ who is better off compared to the outcome of the 1-stage enrollment system. �

Proof of Theorem 4. Let (qc,�c)c∈C be a capacity-priority profile that is not acyclic. Then,
there exist a pair of schools c and c′, and three students s, s′, and s′′ such that

i. s �c s′ �c s′′ �c′ s and
ii. there exist (possibly empty) disjoint sets of students Sc, Sc′ ⊂ S \ {s, s′, s′′} such

that Sc ⊂ {i ∈ S : i �c s′}, Sc′ ⊂ {i ∈ S : i �c′ s}, |Sc| = qc − 1, and |Sc′ | = qc′ − 1.

Consider a preference profile (Rs)s∈S such that

i. c′ Ps c Ps s Ps c′′ for every c′′ ∈ C \ {c, c′},
ii. c Ps′ s′ Ps′ c′′ for every c′′ ∈ C \ {c},

iii. c Ps′′ c′ Ps′′ s′′ Ps′′ c′′ for every c′′ ∈ C \ {c, c′},
iv. c Pi i Pi c′′ for every i ∈ Sc and every c′′ ∈ C \ {c},
v. c′ Pi i Pi c′′ for every i ∈ Sc′ and every c′′ ∈ C \ {c′}, and

vi. i Pi c′′ for every i ∈ S \ {{s, s′, s′′} ∪ Sc ∪ Sc′} and every c′′ ∈ C.

The relevant part of the restriction of the preference relation profile and the priority
profile to {s, s′, s′′, c, c′} looks as follows.

Rs Rs′ Rs′′ �c �c′

c′ c c s s′′
c s′ c′ s′ s
s s′′ s′′

We will construct an SPNE of the 2-stage enrollment system for the problem (Rs)s∈S
that Pareto dominates the truthful equilibrium of the 1-stage enrollment system. The
construction generalizes the idea in Example 2, and, essentially, students s, s′, and s′′ play
the roles of students s3, s1, and s2 in Example 2, respectively, schools c and c′ play the roles
of schools c2 and c1 in Example 2, respectively, and the outside option of student s2 plays
the role of school c3 in Example 2. As will be seen shortly, the strategy profile in Example 2
will need to be modified due to the additional students Sc and Sc′ .

First note that in the 1-stage enrollment outcome, students in {s} ∪ Sc get school c,
students in {s′′} ∪ Sc′ get school c′, and every other student gets his outside option.
Consider the following strategy profile for the 2-stage enrollment system:

i. Student s′ reports no school acceptable in the first stage and accepts his offer if, and
only if, it is strictly preferred to his 1-stage enrollment school, which is his outside
option s′.
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ii. Student s′′ reports truthfully in the first stage and accepts his offer if, and only if,
• either it is strictly preferred to his 1-stage enrollment school,
• or it is his 1-stage enrollment school and “student s has an offer from c′ or

student s′ has an offer from c.”
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iii. Student s reports truthfully in the first stage and accepts his offer if, and only if,
• either it is strictly preferred to his 1-stage enrollment school,
• or it is his 1-stage enrollment school and “student s′ has an offer from c and

student s′′ does not have an offer from c.”
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iv. Each other student in S \ {s, s′, s′′} reports truthfully in the first stage and accepts
his offer if, and only if, it is weakly preferred to his 1-stage enrollment school.

Consider student s′. By following the above strategy, he gets his outside option. His
only acceptable school is c. By unilaterally changing his preference report, even if he
applies to school c, he will not get an offer from c and he will make students s and s′′

get their best offers from their 1-stage enrollment schools, in which case both s and s′′

reject their offers. Then, in the second stage, student s′ will get his outside option, while
s and those students in Sc who did not get an offer from c and accepted in the first stage
will occupy the remaining seats of c. So there is no one-shot profitable deviation at his
preference-revelation decision node. Consider any of his acceptance-rejection decision
nodes. If he is offered school c, clearly he can not be strictly better off by rejecting it. If he
is offered his outside option or any school worse than that, and he rejects, in the worst case
he receives his outside option in the second stage, so again there is no one-shot profitable
deviation.

Consider student s′′. By following the above strategy, he gets school c, which is his top
choice. In the preference-revelation decision node, there is no one-shot profitable deviation
since he gets his best choice by following the prescribed strategy. Consider any of his
acceptance-rejection decision nodes. If he is offered a school strictly better than c′ or strictly
worse than c′, clearly he cannot be better off by a one-shot deviation at that decision node.
Suppose that he is offered school c′.

Case 1: s is offered c′ and s′ is offered c. The prescribed strategy recommends s′′ accept c′.
If he instead rejects, he cannot get c in the second stage since s′ accepts c in the first stage,
and, in the second stage, the remaining seats of c are taken by those students in Sc who did
not get an offer from c in the first stage. Therefore there is no one-shot profitable deviation.

Case 2: s is offered c′ and s′ is not offered c. The prescribed strategy recommends s′′ to
accept c′. If he instead rejects, he cannot get c in the second stage since s accepts c′ and s′

rejects his best offer in the first stage, and in the second stage seats of c are taken by s′ and
those students in Sc who did not get an offer from c in the first stage. Therefore there is no
one-shot profitable deviation.

Case 3: s is not offered c′ and s′ is offered c. The prescribed strategy recommends s′′

to accept c′. If s is offered c, both s and s′ accept their offers, and s′′ cannot get c in the
second stage since the remaining seats of c are taken by those students in Sc who did not
receive an offer from c in the first stage. If s is offered a school different than c and c′,
then s′ accepts c, s rejects his best offer, and s′′ cannot get c in the second stage since the
remaining seats of c are taken by those students in Sc ∪ {s} who did not receive an offer
from c in the first stage, except for the lowest-priority one (who may or may not be student
s). Therefore, there is no one-shot profitable deviation.
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Case 4: s is not offered c′ and s′ is not offered c. The prescribed strategy recommends s′′

reject c′, in which case s′′ eventually gets c′, which is equivalent to accepting. Therefore
there is no one-shot profitable deviation.

Consider student s. By following the above strategy, he gets school c′, which is his top
choice. In the preference-revelation decision node, there is no one-shot profitable deviation
since he gets his best choice by following the prescribed strategy. Consider any of his
acceptance-rejection decision nodes. If he is offered a school strictly better than c or strictly
worse than c, clearly he cannot be better off by a one-shot deviation at that decision node.
Suppose that he is offered school c.

Case 1: s′ is offered c and s′′ is not offered c. The prescribed strategy recommends s
accept c. Suppose that s′′ is offered offered c′. If s′ instead rejects, he cannot get c′ in the
second stage since s′′ accepts c′ in the first stage and in the second stage, the remaining
seats of c′ are taken by those students in Sc′ who did not get an offer from c′ in the first
stage. Suppose that s′′ is offered a school worse than c′. If s′ instead rejects, he still cannot
get c′ in the second stage since s′′ rejects his offer and s′ accepts c in the first stage, and, in
the second stage in the DA algorithm, s′′ will be rejected by c in the first step, and in turn
student s will be rejected by c′ in the second step. Therefore, there is no one-shot profitable
deviation.

Case 2: s′ is offered c and s′′ is also offered c. The prescribed strategy recommends s
reject c. Since both s′ and s′′ accept their offers from c, in the second stage student s gets c′

after rejecting in the first stage. Therefore, there is no one-shot profitable deviation.
Case 3: s′ is not offered c. The prescribed strategy recommends s reject c. If s′′ is offered c,

then s′′ accepts the offer, and, in the second stage, s gets c′, which he prefers to c, together
with those students in Sc′ who did not get an offer from c′ in the first stage. If s′′ is offered
c′, s′′ accepts c′ and in the second stage s′ gets c. If s′′ is offered a school different than c
and c′, then both s′ and s′′ reject their offers, and, in the second stage, s gets c together with
those students in Sc who did not get an offer from c in the first stage. Therefore, there is no
one-shot profitable deviation.

Consider any student s∗ ∈ S \ {s, s′, s′′}. By following the above strategy, he gets his top
choice. In the preference-revelation decision node, there is no one-shot profitable deviation
since he gets his best choice by following the prescribed strategy. Consider any of his
acceptance-rejection decision nodes. If he is offered his top choice, the prescribed strategy
recommends s∗ accept it, in which case, clearly there is no one-shot profitable deviation.
If he is not offered his top choice, then it must be that s∗ ∈ Sc ∪ Sc′ , and by rejecting s∗

can ensure an outcome at least as good as his outside option, which is his second-ranked
school and therefore at least as good as his first-stage offer. Therefore, there is no one-shot
profitable deviation. �
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