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Abstract

This paper develops the links between overidentification tests, underidentification
tests, score tests and the Cragg-Donald (1993, 1997) and Kleibergen-Paap (2006)
rank tests in linear instrumental variables (IV) models. This general framework
shows that standard underidentification tests are (robust) score tests for overiden-
tification in an auxiliary linear model, x1 = X2δ + ε1, where X = [x1 X2] are the
endogenous explanatory variables in the original model, estimated by IV estima-
tion methods using the same instruments as for the original model. This simple
structure makes it possible to establish valid robust underidentification tests for
linear IV models where these have not been proposed or used before, like clustered
dynamic panel data models estimated by GMM. The framework also applies to
general tests of rank, including the I test of Arellano, Hansen and Sentana (2012),
and, outside the IV setting, for tests of rank of parameter matrices estimated by
OLS. Invariant rank tests are based on LIML or continuously updated GMM esti-
mators of the first-stage parameters. This insight leads to the proposal of a new
two-step invariant asymptotically effi cient GMM estimator, and a new iterated
GMM estimator that converges to the continuously updated GMM estimator.
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1 Introduction

It is common practice when reporting estimation results of standard linear instrumental

variables (IV) models to include the first-stage F, Cragg-Donald (Cragg and Donald, 1993,

1997) and/or Kleibergen-Paap (Kleibergen and Paap, 2006) test statistics. These are

underidentification tests, testing the null hypothesis that the instruments have insuffi cient

explanatory power to predict the endogenous variable(s) in the model for identification of

the parameters. In the linear projection model for the endogenous explanatory variables

X on the instruments Z, X = ZΠ + V , they are tests on the rank of Π, with the

standard tests testing the null, H0 : r (Π) = kx − 1 against H1 : r (Π) = kx, where kx

is the number of explanatory variables. Partition X =
[
x1 X2

]
, then we show that

these underidentification tests are tests for overidentification in the auxiliary model x1 =

X2δ+ε1, estimated by IVmethods using Z as instruments. The non-robust Cragg-Donald

statistic is then equal to the Sargan (1958) or Basmann (1960) tests for overidentifying

restrictions after estimating the parameters in the auxiliary model by limited information

maximum likelihood (LIML). A version of the robust Cragg-Donald statistic is the Hansen

J-test (Hansen, 1983), based on the continuously updated generalised method of moments

(CU-GMM) estimator. Robustness here is with respect to the variance of the limiting

distribution of Z ′ε1/
√
n, and robust to heteroskedasticity, time series correlation and/or

clustering. These LIML and CU-GMM estimators and tests are invariant to the choice

of normalisation (or choice xj as the dependent variable) in the auxiliary regression.

We further show that the robust Kleibergen-Paap test is a LIML based invariant

robust score test. In order to develop these arguments, we first discuss general testing

for overidentifying restrictions for the standard linear model of interest y = Xβ + u,

estimated by IV methods using instruments Z. Following Davidson and MacKinnon

(1993), we show that (robust) tests for overidentifying restrictions are (robust) score

tests for the null H0 : γ = 0 in the specification y = Xβ + Z2γ + u, where Z2 is any

kz − kx subset of instruments. As this is a just identified model, it follows that the

local asymptotic power of the tests is not affected by the choice of IV estimator in the

restricted model. We further show that the standard robust two-step GMM estimator

based Hansen J-test is a robust score test which is a function of the data and the one-step

GMM estimator only. The one-step GMM estimator enters the Hansen J-test through
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the consistent variance estimator, and hence the local asymptotic power of the test is not

affected by the choice of one-step estimator.

The robust Kleibergen-Paap and Cragg-Donald statistics as tests for overidentification

are robust score tests for H0 : γ = 0. The standard Kleibergen-Paap robust score test is

based on the LIML estimators for β and Π in the restricted model, whereas the Cragg-

Donald robust score test is based on the CU-GMM estimators for β and Π. They achieve

invariance by incorporating the LIML or CU-GMM estimator for Π to form the optimal

combination of instruments. This differs from the standard two-step GMM framework

which uses the OLS estimator for Π in both one-step and two-step estimators for β.

We use this observation to propose a two-step invariant asymptotically effi cient GMM

estimator that is based on the LIML estimator for β as the one-step estimator and

uses the LIML estimator for Π to construct the optimal instruments for the second

step. Alternatively, one can update the estimator for Π from the first-order conditions of

the CU-GMM estimator, which leads to a different invariant two-step estimator and an

iterated GMM estimator that converges to the CU-GMM estimator, also when starting

from any non-invariant one-step estimator.

Consider the linear projection
[
y X

]
= Z

[
πy Π

]
+
[
vy V

]
= ZΠ∗ + V ∗,

then the Kleibergen-Paap and Cragg-Donald statistics for overidentifying restrictions are

invariant rank tests for H0 : r (Π∗) = kx against H1 : r (Π∗) = kx + 1. We therefore

establish here the link between the test for overidentifying restrictions, score tests and

rank tests. This carries over directly to the tests for underidentification, which are

(robust) tests for H0 : γ = 0 in the specification x1 = X2δ + Z2γ + ε1, using generic

notation for Z2 and γ. Here, Z2 is any kz − kx + 1 subset of instruments.

Instead of a single invariant underidentification test, Sanderson and Windmeijer

(2016) considered per endogenous explanatory variable non-invariant tests. These are

tests for overidentification in the kx specifications xj = X−jδj + εj, where X−j is X with-

out xj. In the homoskedastic case, these are 2SLS based non-robust Sargan or Basmann

tests. Robust tests are then easily obtained as two-step GMM Hansen J-tests.

For the homoskedastic case, the non-robust Cragg-Donald and Sanderson-Windmeijer

tests can be used for testing for weak instruments. This is the framework developed by

Staiger and Stock (1997) and Stock and Yogo (2005) and considers the situation where the

test for underidentification rejects the null, but the information content of the instruments
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is such that the IV estimator is biased and the Wald test on the structural parameters is

size distorted. This leads to larger critical values for the tests with the null hypotheses

now being in terms of the maximal relative bias of the IV estimator, relative to that of the

OLS estimator and/or the size distortion of the Wald test. However, the Stock and Yogo

(2005) weak-instrument test results do not apply when using robust test statistics for

when the errors are conditionally heteroskedastic, correlated over time and/or clustered,

see Bun and De Haan (2010), Andrews (2017) and Kim (2017).

Linear dynamic panel data models for panels with a large cross-sectional dimension

n and short time series dimension T are a leading example of linear IV models with

clustered and potentially heteroskedastic data. The commonly used Arellano and Bond

(1991) and Blundell and Bond (1998) estimation procedures are robust one-step, or effi -

cient two-step GMM estimators, where lagged levels are instruments for first-differences

of economic series, or lagged first-differences are instruments for levels. Whilst the prob-

lem of weak instruments for these models have been well documented and are mainly

due to the persistence over time of many economic series, see e.g. Blundell and Bond

(1998), Bun and Windmeijer (2010) and Hayakawa and Qi (2017), estimation results

rarely include test results for underidentification. Bazzi and Clemens (2013) considered

the Kleibergen-Paap test for this setting, but only in a per period cross-sectional setting,

following the analysis of Bun and Windmeijer (2010). This is not a valid approach for

testing for underidentification as it does not take clustering into account.

From the exposition above, robust testing for underidentification in dynamic panel

data models is quite straightforward. For example for the first-differenced Arellano-Bond

procedure, the auxiliary model is ∆x1 = (∆X2) δ + ε1, and the robust Cragg-Donald

statistic is the J-test based on the cluster robust CU-GMM estimator for δ. The non-

robust Cragg-Donald statistic needs to be obtained here with iterative methods due to the

clustered nature of the errors. The robust Kleibergen-Paap test does not need iterative

methods as it is the cluster robust score test based on the pooled LIML estimator. The

robust Sanderson-Windmeijer tests are simply the per endogenous explanatory variables

Hansen two-step J-tests. The latter are particularly easy to compute as the estimation

procedure of the auxiliary model is the same as that of the original model.

The relationships between rank tests, score tests and overidentification tests readily

extend to testing for general rank, which establishes a direct link with the underiden-
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tification test for linear models as proposed by Arellano, Hansen and Sentana (2012).

The results are also not specific to IV models, but apply to general settings of parameter

matrices that are estimated by OLS, as considered by for example Al-Sadoon (2017).

Even within this OLS setting, the Cragg-Donald and Kleibergen-Paap rank tests are

LIML/CU-GMM based overidentification tests. For example, in the model Y = XB+U ,

with X now exogenous variables and kx ≥ ky, for testing H0 : r (B) = ky − 1 against

H1 : r (B) = ky, the auxiliary model is y1 = Y2δ + ε1 estimated by IV methods using X

as the instruments. We show that when kx ≤ ky, and for testing H0 : r (B′) = kx − 1

against H1 : r (B′) = kx, the auxiliary model is x1 = X2δ+ ε1 with Y as the instruments.

The latter representation fits the setting of linear asset pricing factor models when

the number of asset returns is larger than the number of factors, as considered recently

by Gospodinov, Kan and Robotti (2017). They consider the robust Cragg-Donald rank

test/CU-GMM J-test for overidentifying restrictions. They derive the limiting distri-

bution of the test for overidentifying restrictions in underidentified models under ho-

moskedasticity. We show that their result applies directly to the LIML based Sargan

test. It follows that the test has no power to detect invalid overidentifying restrictions

in underidentified models. This is therefore clearly another important reason to report

underidentification tests. Also, the underidentification test is not adversely effected if

the matrix is of lower rank than the null, as it will be undersized and hence does not

lead to erroneous conclusions. We repeat the Monte Carlo analysis of Gospodinov, Kan

and Robotti (2017) and find that the underidentification tests perform well, with the

Sanderson-Windmeijer tests able to identify the spurious factors that cause underidenti-

fication.

The structure of the paper is as follows, Section 2 introduces the linear IV model

and assumptions. Section 3 derives the results for the tests for overidentifying restric-

tions, establishes the links with score tests and rank tests, and introduces the invariant

two-step GMM estimator and iterated CU-GMM estimator. Section 4 discusses the tests

for underidentification and Section 5 develops these for use in dynamic panel data mod-

els. Section 6 extends the analysis to testing for general rank and links to the testing

procedure of Arellano, Hansen and Sentana (2012). Section 7 generalises the results to

rank tests outside the linear IV setting. Section 8 considers the limiting distribution of

the Sargan test in underidentified models and Section 9 repeats the Monte Carlo analy-
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sis of Gospodinov, Kan and Robotti (2017), but includes testing for underidentification.

Section 10 concludes.

2 Model and Assumptions

We consider the linear model

y = Xβ + u, (1)

where y and u are the n-vectors (yi) and (ui), and X is the n × kx matrix [x′i], for the

sample i = 1, .., n. The explanatory variables are endogenous, and Z is an n× kz matrix
[z′i] of instrumental variables, with kz > kx. Note that exogenous explanatory variables

have been partialled out. The first-stage, linear projection for X is given by

X = ZΠ + V, (2)

where Π is a kz × kx matrix, and V the n× kx matrix [v′i].

We make the following standard assumptions, see e.g. Stock and Yogo (2005),

Assumption 1 E (ziz
′
i) = Qzz. Qzz is nonsingular.

Assumption 2 E (ziui) = 0.

Assumption 3 E (zix
′
i) = Qzx has rank kx.

Assumption 4 E

[(
ui
vi

)(
ui v′i

)]
= Σ =

[
σ2
u σ′uv

σuv Σv

]
.

Assumption 5 plim
(

1
n
Z ′Z

)
= Qzz; plim

(
1
n
Z ′X

)
= Qzx;

plim

[
1
n

∑n
i=1

(
ui
vi

)(
ui v′i

)]
= Σ;

1√
n
Z ′u→ N (0,Ωzu); 1√

n
vec (Z ′V )

d→ N (0,Ωzv).

These assumptions can hold for cross-sectional or time series data. As in Arellano,

Hansen and Sentana (2012), time series data are stationary and ergodic. If the obser-

vations are independent/not correlated and conditionally homoskedastic, E (u2
i |zi) = σ2

u,

then Ωzu = σ2
uQzz. Throughout, we refer to this case simply as the homoskedastic case.

We defer discussion of a clustered design to Section 5 on dynamic panel data models.
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Moment restrictionE (ziui) = 0, Assumption 2, is the exclusion restriction that is gen-

erally tested by a test of overidentifying restrictions, like Hansen’s J-test. Assumption 3,

E (zix
′
i) has full column rank kx, is the relevance condition, which is commonly tested by

a rank test like the Cragg-Donald (1993) statistic, which tests H0 : r (E (zix
′
i)) = kx − 1

against H1 : r (E (zix
′
i)) = kx. If r (E (zix

′
i)) = kx − 1, then there is a δ∗, such that

E (zix
′
iδ
∗) = 0. The similarity of testing procedures for over- or underidentification is then

easily seen as, defining wi =
(
yi x′i

)′
and ψ =

(
1 −β′

)′
, E (ziui) = E (ziw

′
iψ) = 0.

Therefore, partitioning X =
[
x1 X2

]
, a test for underidentification is an overidenti-

fication test for H0 : E (ziε1i) = 0 in the model x1 = X2δ + ε1, with the test invariant

to which explanatory variable is chosen as the dependent variable when it is based on

an invariant estimator like LIML. Equivalently, a test for overidentification is a test for

H0 : r (E (ziw
′
i)) = kx against H1 : r (E (ziw

′
i)) = kx + 1.

Throughout the paper, we use the following notation for projection matrices. For a full

column rank n× kA matrix A, the projection matrix PA is defined as PA = A (A′A)−1A′

and MA = In − PA.

3 Overidentification Tests

Under Assumptions 1-5, standard IV estimators for β, like 2SLS, LIML, GMM and

CU-GMM are consistent and asymptotically normally distributed. The test for overiden-

tifying restrictions is a test for H0 : E (ziui) = 0, and is a score test for the hypothesis

H0 : γ = 0 in the model

y = Xβ + Z2γ + u, (3)

where Z2 is any kz − kx subset of instruments, see e.g. Davidson and MacKinnon (1993,
p. 235). The score test is invariant to the choice of instruments included in Z2, unlike the

Wald test. However, as (3) is a just identified model, different IV estimators all produce

the same robust Wald test, the one based on the just-identified IV/2SLS estimator. The

robust score and Wald tests have the same local asymptotic power, i.e. for alternatives

γ = c/
√
n, see e.g. Wooldridge (2010, p 417). As asymptotically valid robust tests for

overidentifying restrictions are robust score tests, it therefore follows that all tests have

the same local asymptotic power, independent of the estimator the overidentification test

is based on.
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We will first discuss and derive some results for the standard two-step GMM Hansen

J-test, in particular showing that it is equal to the robust score test based on a one-step

estimator.

The one-step GMM estimator for β in model (1) is given by

β̂1 =
(
X ′ZW−1

n Z ′X
)−1

X ′ZW−1
n Z ′y,

where Wn is such that n−1Wn
p→ W , a finite and positive definite matrix. The 2SLS

estimator is a one-step GMM estimator with Wn = Z ′Z. The one-step residual is given

by û1 = y−Xβ̂1. The two-step GMM estimator is asymptotically effi cient under general

forms of heteroskedasticity and serial correlation, and is given by

β̂2 =
(
X ′Z (Z ′Hû1Z)

−1
Z ′X

)−1

X ′Z (Z ′Hû1Z)
−1
Z ′y,

where Z ′Hû1Z is an estimator for Ωzu such that n−1Z ′Hû1Z
p→ Ωzu. For example, a

Newey-West estimator robust to conditional heteroskedasticity and autocorrelation is

given by

Z ′Hû1Z = Γû1 (0) +

p∑
l=1

(
1− l

p+ 1

)(
Γû1 (l) + Γû1 (l)′

)
,

where Γû1 (0) =
∑n

i=1 û
2
1iziz

′
i, and Γû1 (l) =

∑n
i=l+1 û1iû1,i−lziz

′
i−l.

Let û2 = y −Xβ̂2, then the Hansen J-test is given by

J
(
β̂2, β̂1

)
= û′2Z (Z ′Hû1Z)

−1
Z ′û2, (4)

and J
(
β̂2, β̂1

)
d→ χ2

kz−kx under Assumptions 1-5.

Let Π̂ = (Z ′Z)−1 Z ′X be the OLS estimator of Π, and X̂ = ZΠ̂. The following

Proposition shows the equivalence of the robust score test and the J-test.

Proposition 1 The robust score test for H0 : γ = 0 in model (3) based on a one-step

GMM estimator β̂1 is given by

Sr

(
β̂1

)
= û′1MX̂Z2

(
Z ′2MX̂Hû1MX̂Z2

)−1
Z ′2MX̂ û1

= y′MX̂Z2

(
Z ′2MX̂Hû1MX̂Z2

)−1
Z ′2MX̂y,

with Sr
(
β̂1

)
d→ χ2

kz−kx under Assumptions 1-5.

Let the Hansen J-test J
(
β̂2, β̂1

)
be as defined in (4). Then

J
(
β̂2, β̂1

)
= Sr

(
β̂1

)
.
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Proof. See Appendix

This result clearly shows that the two-step estimator is irrelevant in the calculation

of the score test, and that the choice of one-step estimator does not affect the local

asymptotic power of the test, as the one-step estimator enters the score test only through

the variance estimator.

The non-robust version of the score test is given by

S
(
β̂1

)
=
û′1MX̂Z2

(
Z ′2MX̂Z2

)−1
Z ′2MX̂ û1

û′1û1/n
,

with S
(
β̂1

)
d→ χ2

kz−kx under Assumptions 1-5 in the homoskedastic case. From standard

score test theory, for the effi cient 2SLS estimator the score test becomes

S
(
β̂2sls

)
=
û′2slsPZ û2sls

û′2slsû2sls/n
,

which also follows directly from the fact that X̂ ′û2sls = 0.

Let γ̂ be the 2SLS or IV estimator of γ in model (3),

γ̂ =
(
Z ′2MX̂Z2

)−1
Z ′2MX̂y. (5)

It then follows from Proposition 1 that the Hansen test for overidentifying restrictions is

equal to the robust score test

J
(
β̂2, β̂1

)
= γ̂′ (V ârr,û1 (γ̂))−1 γ̂,

where V ârr,û1 (γ̂) is a robust estimator of the variance of γ̂ under the null,

V ârr,û1 (γ̂) =
(
Z ′2MX̂Z2

)−1 (
Z ′2MX̂Hû1MX̂Z2

)−1 (
Z ′2MX̂Z2

)−1
.

Equivalently, the non-robust score test S
(
β̂1

)
can be obtained by using the non-robust

variance estimator V ârû1 (γ̂) =
û′1û1
n

(
Z ′2MX̂Z2

)−1
. These versions of the test can alter-

natively be obtained as a test for H0 : γ = 0 after OLS regression of the specification

û1 = X̂η + Z2γ + ξ1, (6)

and estimating the (robust) variance of γ̂ under the null. Wooldridge (1995) considered

this score test approach for the 2SLS estimator, but did not establish its equivalence with

the Hansen J-test, see also Baum, Schaffer and Stillman (2007).
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Alternatively, one could base the (robust) variance estimator of γ̂ in (6) on the resid-

uals

ξ̂1 = MZ û1 = v̂y − V̂ β̂1,

where v̂y = MZy and V̂ = MZX are the first-stage OLS residuals in the linear projection

specifications

y = Zπy + vy, (7)

and (2). This leads to the robust score test

Br

(
β̂1

)
= y′MX̂Z2

(
Z ′2MX̂Hξ̂1

MX̂Z2

)−1

Z ′2MX̂y,

which is equivalent to the Hansen J-test based on the two-step GMM estimator

β̂2,ξ̂1
=

(
X ′Z

(
Z ′Hξ̂1

Z
)−1

Z ′X

)−1

X ′Z
(
Z ′Hξ̂1

Z
)−1

Z ′y.

The versions Sr
(
β̂1

)
and Br

(
β̂1

)
can be characterised as robust Sargan and Basmann

score tests, as per the proposals by Sargan (1958) and Basmann (1960) for the LIML

estimator as discussed below. As they can be seen to be the score and Wald tests

respectively for the null H0 : γ = 0 in specification (6), they are sometimes referred to

as the LM and Wald versions of the test, see e.g. Baum, Schaffer and Stillman (2007)

and Bazzi and Clemens (2013) in their discussions of the Cragg-Donald and Kleibergen-

Paap rank tests. This is perhaps confusing as both versions are score tests for the null

H0 : γ = 0 in model (3), but with the variance based on different versions of the residual

under the null. From (1), (7) and (2), it follows that πy = Πβ and u = vy − V β, and so
both û1 and ξ̂1 are proxies for the same error.

Let Z =
[
Z1 Z2

]
, with Z1 an n × kx matrix. Partition πy and Π accordingly as

πy =
[
π′y1 π′y2

]′
and Π =

[
Π′1 Π′2

]′
. Assume that Π1 has full rank kx. From the

linear projections (7) and (2), we have that

y = Z1πy1 + Z2πy2 + vy

= Z1Π1Π−1
1 πy1 + Z2πy2 + vy

= XΠ−1
1 πy1 + Z2

(
πy2 − Π2Π−1

1 πy1
)

+ vy − VΠ−1
1 πy1 (8)

= Xκ+ Z2γ + w,
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where κ = Π−1
1 πy1. It follows that if πy = Πβ, then κ = β and γ = 0. Consider the IV

estimator for γ as in (5). Let Z∗ =
[
X̂ Z2

]
= ZD̂, with

D̂ =

[
Π̂1 0

Π̂2 Ikz−kx

]
; D̂−1 =

[
Π̂−1

1 0

−Π̂2Π̂−1
1 Ikz−kx

]
,

then the IV estimator of θ =
(
β′ γ′

)′
in (3) is given by

θ̂ = (Z∗′Z∗)
−1
Z∗′y = D̂−1 (Z ′Z)

−1
Z ′y

= D̂−1π̂y.

Hence β̂ = Π̂−1
1 π̂y1 and

γ̂ = π̂y2 − Π̂2Π̂−1
1 π̂y1 = π̂y2 − Π̂2β̂.

For later reference, note also that the OLS estimator for the parameters in (6) is given by

D̂−1 (Z ′Z)−1 Z ′û1 = D̂−1Π̂∗ψ̂1, where ψ̂1 =
(

1 −β̂1

)
, and Π̂∗ = (Z ′Z)−1 Z ′W is the

OLS estimator of Π∗ =
[
πy Π

]
, with W =

[
y X

]
. Hence γ̂ can also be expressed

as

γ̂ =
[
−Π̂2Π̂−1

1 Ikz−kx

]
Π̂∗ψ̂1. (9)

3.1 LIML and CU-GMM

Whilst the above score tests remain valid also for the LIML estimator β̂L of β, treating it

as a one-step GMM estimator, the test statistics using the projection X̂ are not invariant

to normalisation, i.e. the choice of endogenous variable as the dependent variable. The

LIML estimator estimates both β and the first stage parameters Π. Whilst these are

equal to the 2SLS and OLS estimators respectively in the just-identified unrestricted

model (3), they are equal to β̂L and Π̂L in the restricted model.

Let Σ̂w = 1
n
W ′W , V̂ ∗ =

[
v̂y V̂

]
and Σ̂v∗ = 1

n
V̂ ∗′V̂ ∗. Following Alonso-Borrego and

Arellano (1999) the LIML estimator for β can be obtained as the Continuous Updating

Estimator,

β̂L = arg min
β
S (β) = arg min

β
B (β) , (10)
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where

S (β) =
(y −Xβ)′ PZ (y −Xβ)

(y −Xβ)′ (y −Xβ) /n
=
ψ′W ′PZW

′ψ

ψ′Σ̂wψ

B (β) =
(y −Xβ)′ PZ (y −Xβ)(
v̂y − V̂ β

)′ (
v̂y − V̂ β

)
/n

=
ψ′W ′PZW

′ψ

ψ′Σ̂v∗ψ

and the second equality in (10) is easily shown to hold as V̂ ∗ = MZW .

The LIML estimator of ψ is therefore equal to Σ̂
−1/2
w v[1] where v[1] is the eigenvector

associated with e[1], the minimum eigenvalue of Σ̂
−1/2
w W ′PZW Σ̂

−1/2
w , and

S
(
β̂L

)
= e[1]. (11)

Denote π∗ = vec (Π∗) and π̂∗ = vec
(

Π̂∗
)
. Under the standard assumptions we have

that
√
n (π̂∗ − π∗) d→ N (0, Vπ∗) ,

with, in the homoskedastic case, Vπ∗ = Σv∗ ⊗Q−1
zz . An estimator for the variance of π̂

∗ is

therefore V ârv∗ (π̂∗) = Σ̂v∗ ⊗ (Z ′Z)−1. Let π = vec (Π) and π̂ = vec
(

Π̂
)
, then the LIML

estimator for β and Π can be obtained as the minimum distance estimator(
β̂L, Π̂L

)
= arg min

β,Π
MDv (β,Π) ;

MDv (β,Π) =

(
π̂y − Πβ
π̂ − π

)′
(V ârv∗ (π̂∗))

−1

(
π̂y − Πβ
π̂ − π

)
(12)

=

(
π̂y − Πβ
π̂ − π

)′ (
Σ̂−1
v∗ ⊗ (Z ′Z)

)( π̂y − Πβ
π̂ − π

)
,

and MDv

(
β̂L, Π̂L

)
= B

(
β̂L

)
, see Alonso-Borrego and Arellano (1999).

Equivalently, if we specify the variance estimator as V ârw (π̂∗) = Σ̂−1
w ⊗ (Z ′Z) instead

we obtain (
β̂L, Π̂L

)
= arg min

β,Π
MDw (β,Π) ;

MDw (β,Π) =

(
π̂y − Πβ
π̂ − π

)′ (
Σ̂−1
w ⊗ (Z ′Z)

)( π̂y − Πβ
π̂ − π

)
and MDw

(
β̂L, Π̂L

)
= S

(
β̂L

)
. Note that V ârw (π̂∗) is an estimator of the variance of

π̂∗ under the null that Π∗ = 0. Although this is not a valid restriction, it results in

11



using ûL = y−Xβ̂L as the residual, whereas the use of V ârv∗ (π̂∗) results in the residual

ξ̂L = MZ ûL = v̂y − V̂ β̂L.
We have the following general result for a class of minimum distance estimators that

includes LIML.

Lemma 1 Consider the minimum distance estimators(
β̂A, Π̂A

)
= arg min

β,Π

(
π̂y − Πβ
π̂ − π

)′
(A⊗ (Z ′Z))

(
π̂y − Πβ
π̂ − π

)
,

with A a symmetric nonsingular kx × kx matrix. Let X̂A = ZΠ̂A , then

β̂A =
(
X̂ ′AX

)−1

X̂ ′Ay

=
(
X̂ ′AX̂A

)−1

X̂ ′Ay.

Proof. See Appendix

For the LIML estimator, let X̂L = ZΠ̂L. It is well known that β̂L =
(
X̂ ′LX

)−1

X̂ ′Ly,

see e.g. Bowden and Turkington (1984, p.113), but it follows from Lemma 1 that we also

have that β̂L =
(
X̂ ′LX̂L

)−1

X̂ ′Ly. Let ûL = y −Xβ̂L and ĈL =
[
β̂L Ikx

]′
⊗ Ikz . From

the minimum distance first-order condition we get

vec
(

Π̂L

)
=
(
Ĉ ′L (V âr (π̂∗))

−1
ĈL

)−1

Ĉ ′L (V âr (π̂∗))
−1
π̂∗. (13)

As Godfrey and Wickens (1982) show, Π̂L can equivalently be calculated as

Π̂L = (Z ′MûLZ)
−1
Z ′MûLX.

It then follows straightforwardly that the robust score test for overidentifying restric-

tions based on the LIML estimators for Π and β in the restricted model, and which is

invariant to normalisation, is given by

Sr

(
β̂L

)
= û′LMX̂L

Z2

(
Z ′2MX̂L

HûLMX̂L
Z2

)−1

Z ′2MX̂L
ûL. (14)

As β̂L =
(
X̂ ′LX̂L

)−1

X̂ ′Ly, we get from standard score test theory for the non-robust

version of the test, as above for the 2SLS estimator,

S
(
β̂L

)
=
û′LPZ ûL
û′LûL/n

,

12



which is Sargan’s (1958) test of overidentifying restrictions.

Let ξ̂L = v̂y − V̂ β̂L, then the Basmann (1960) version of the overidentification test is
given by

B
(
β̂L

)
=
û′LPZ ûL

ξ̂
′
Lξ̂L/n

,

with robust version

Br

(
β̂L

)
= û′LMX̂L

Z2

(
Z ′2MX̂L

Hξ̂L
MX̂L

Z2

)−1

Z ′2MX̂L
ûL. (15)

As for the GMM analysis above, we can obtain the LIML based test statistics as (robust)

tests for H0 : γ = 0 after OLS estimation of the specification

ûL = X̂Lη + Z2γ + ξL.

Another robust invariant test of overidentifying restrictions is the Hansen J-test

J
(
β̂cu

)
, based on the continuously updated CU-GMM estimator

β̂cu = arg min
β
J (β) ;

J (β) = (y −Xβ)′ Z
(
Z ′Hu(β)Z

)−1
Z ′ (y −Xβ) ,

where u (β) = y −Xβ, and J
(
β̂cu

)
d→ χ2

kz−kxunder Assumptions 1-5.

The Basmann CU-GMM version is given by Jv
(
β̂cu,v

)
, obtained as

β̂cu,v = arg min
β
Jv (β) ;

Jv (β) = (y −Xβ)′ Z
(
Z ′Hξ(β)Z

)−1
Z ′ (y −Xβ) ,

with ξ (β) = v̂y − V̂ β.
If we specify a robust estimator for the variance of π̂∗ on the basis of the OLS residuals

V̂ ∗, denoted V ârr,v∗ (π̂∗), then Kleibergen and Mavroeidis (2008, Appendix) show that(
β̂cu,v, Π̂cu,v

)
= arg min

β,Π
MDv,r (β,Π) ;

MDv,r (β,Π) =

(
π̂y − Πβ
π̂ − π

)′
(V ârr,v∗ (π̂∗))

−1

(
π̂y − Πβ
π̂ − π

)
and

Jv

(
β̂cu,v

)
= MDv,r

(
β̂cu,v, Π̂cu,v

)
,

13



see also Gospodinov, Kan and Robotti (2017). Alternatively, specifying the robust esti-

mator of the variance of π̂∗ under the null that Π∗ = 0 and denoted V ârr,w (π̂∗), results

in (
β̂cu, Π̂cu

)
= arg min

β,Π
MDr (β,Π) ;

MDr (β,Π) =

(
π̂y − Πβ
π̂ − π

)′
(V ârr,w (π̂∗))

−1

(
π̂y − Πβ
π̂ − π

)
J
(
β̂cu

)
= MDr

(
β̂cu, Π̂cu

)
.

J
(
β̂cu

)
is equal to the robust score test evaluated at the CU-GMM estimates

J
(
β̂cu

)
= Sr

(
β̂cu

)
= û′cuMX̂cu

Z2

(
Z ′2MX̂cu

HûcuMX̂cu
Z2

)−1
Z ′2MX̂cu

ûcu,

where ûcu = y −Xβ̂cuand X̂cu = ZΠ̂cu.

The standard CU-GMM estimator in the literature is β̂cu. Use of the alternative

estimator β̂cu,v is less common. However, Chernozhukov and Hansen (2008) propose a

method for weak instrument robust inference as follows. For a sequence of values b ∈ B,
test the null H0 : α = 0 in the regression model

y −Xb = Zα + ε

by a (robust) Wald test, denoted W (b). Then construct the 1− p confidence regions as
the set of b such that W (b) ≤ c (1− p), where c (1− p) is the (1− p)th percentile of the
χ2
kz
distribution, see Chernozhukov and Hansen (2008, p. 69). As the Wald test uses the

residuals MZε = v̂y − V̂ b = ξ (b) it is clear that this procedure is equivalent to finding

the values b such that

Jv (b) = (y −Xb)′ Z
(
Z ′Hξ(b)Z

)−1
Z ′ (y −Xb) ≤ c (1− p) .

The LIML and CU-GMM based score tests achieve their invariance properties by

changing the estimator for γ in (3) as compared to the IV estimator (5). As in (9), we

get for the LIML estimator that

γ̂L =
[
−Π̂2LΠ̂−1

1L Ikz−kx

]
Π̂∗ψ̂L (16)

=
(
ψ̂
′
L ⊗

[
−Π̂2LΠ̂−1

1L Ikz−kx

])
vec
(

Π̂∗
)
.

Equivalently, for the CU-GMM estimator, we get

γ̂cu =
(
ψ̂
′
cu ⊗

[
−Π̂2,cuΠ̂

−1
1,cu Ikz−kx

])
vec
(

Π̂∗
)
.
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3.2 Relationship to CD and KP Rank Tests

The test for overidentifying restrictions is equivalent to testing whether the rank of the

kz × (kx + 1) matrix Π∗ is equal kx. The Cragg and Donald (1993, 1997) rank test is

defined as

CD = minπ∗ (π̂∗ − π∗) (V âr (π̂∗))
−1′

(π̂∗ − π∗) ;

s.t. r (Π∗) = kx,

or equivalently,

CD = min
Π,β

(
π̂y − Πβ
π̂ − π

)′
(V âr (π̂∗))

−1

(
π̂y − Πβ
π̂ − π

)
.

CD is therefore equal to the minimum distance criterionMDv

(
β̂L, Π̂L

)
= B

(
β̂L

)
, when

the variance estimator is specified as the non-robust V ârv∗ (π̂∗). The CD statistic is equal

to S
(
β̂L

)
when specifying it as V ârw (π̂∗). Specifying robust variance estimators results

in the CD statistic to be equal to either the CU-GMM tests Jv
(
β̂cu,v

)
or J

(
β̂cu

)
.

For the Kleibergen and Paap (2006) rank test, let G and F be kz × kz and (kx + 1)×
(kx + 1) finite non-singular matrices respectively, and define

Θ = GΠ∗F ′; Θ̂ = GΠ̂∗F ′.

For testing H0 : r (Π∗) = q, Kleibergen-Paap (KP) propose use of the singular value

decomposition (SVD)

Θ = USU∗′,

where U and U∗ are kz × kz and (kx + 1) × (kx + 1) orthonormal matrices respectively,

and S is a kz×(kx + 1) matrix that contains the singular values of Θ on its main diagonal

and is equal to zero elsewhere. KP show that the SVD results in the decomposition of

Θ as

Θ = AqBq + Aq,⊥ΛqBq,⊥,

where Aq is a kz×q matrix, Bq is a q× (kx + 1) matrix, Aq,⊥ is a kz× (kz − q) matrix, Λq

is (kz − q) ((kx + 1)− q) matrix, Bq,⊥ is a ((kx + 1)− q) × (kx + 1) matrix; A′qAq,⊥ = 0

and Bq,⊥B
′
q = 0. As Λq = 0 under the null H0 : r (Π∗) = q, the KP test is a test for

H0 : vec (Λq) = 0.
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The SVD applied to Θ̂ yields the decomposition,

Θ̂ = ÂqB̂q + Âq,⊥Λ̂qB̂q,⊥;

Λ̂q = Â′q,⊥Θ̂B̂′q,⊥,

and the KP test statistic is given by

rk (q) = λ̂
′
qΩ̂
−1
q λ̂q, (17)

where λ̂q = vec
(

Λ̂q

)
=
(
B̂q,⊥ ⊗ Â′q,⊥

)
vec
(

Θ̂
)

=
(
B̂q,⊥F ⊗ Â′q,⊥G

)
π̂∗; and Ω̂q is an

estimator of the asymptotic variance of λ̂q. Robust versions of the test are obtained by

specifying a robust estimator of the variance of π̂∗.

As vec
(

Θ̂
)

= (F ⊗G) π̂∗ it follows that V ar
(

vec
(

Θ̂
))

= (F ⊗G)V ar (π̂∗) (F ′ ⊗G′)
and KP argue that it is best to specify F and G such that (F ⊗G)Vπ∗ (F ′ ⊗G′) is close
to the identity matrix. Hence, assuming homoskedasticity, one would choose F and G

such that F ′F = Σ̂−1
v∗ and G

′G = Σ̂z = Z ′Z/n.

The next Proposition gives the relationship between the Kleibergen-Paap test and

the robust score test.

Proposition 2 Consider the Kleibergen-Paap rank test (17) for H0 : r (Π∗) = kx. Given

choices of F and G, define the estimators β̂GF and Π̂GF as(
β̂GF , Π̂GF

)
= arg min

β,Π

((
π̂y
π̂

)
−
(

Πβ
π

))′
(F ′F ⊗G′G)

((
π̂y
π̂

)
−
(

Πβ
π

))
.

Let ûGF = y − Xβ̂GF , X̂GF = ZΠ̂GF and let Z2 be a matrix of any kz − kx subset of

instruments. Then

rk (kx) = û′GFMX̂GF
Z2

(
Z ′2MX̂GF

Hr̂MX̂GF
Z2

)−1

Z ′2MX̂GF
ûGF ,

where the residual r̂ is either equal to ûGF or equal to ξ̂GF = v̂y − V̂ β̂GF . This choice
of residual and the robustness of the test is determined by the choice of the estimator of

V ar (π̂∗) used in the estimator Ω̂q of V ar
(
λ̂q

)
.

Proof. See Appendix

It follows from Proposition 2 that the various versions of the KP test can be obtained

as the tests for H0 : γ = 0 in the specification

ûGF = X̂GFη + Z2γ + ξGF ,

16



estimated by OLS.

The estimator β̂GF can alternatively be obtained as the continuous updating estimator

β̂GF = arg min
β

(y −Xβ)′ Z (Z ′Z)−1G′G (Z ′Z)−1 Z ′ (y −Xβ)(
1 −β′

)′
(F ′F )−1 ( 1 −β′

)′ . (18)

It is clear that choosing F and G such that F ′F = Σ̂−1
v∗ or F

′F = Σ̂−1
w and G′G = Σ̂z

results in the LIML estimators for β and Π. Choosing alternatively F ′F = Ikx and

G′G = Σ̂z results in the symmetrically normalised 2SLS estimator, see Alonso-Borrego

and Arellano (1999).

The robust KP tests commonly reported in standard estimation routines, like ivreg2

in Stata (Baum, Schaffer and Stillman, 2010), are based on the LIML normalisation.

It therefore follows that these LIML based versions of rk (kx) are equal to Sr
(
β̂L

)
or

Br

(
β̂L

)
as defined in (14) and (15) respectively, depending on the choice of robust

estimator of V ar (π̂∗).

3.3 A Two-Step Invariant Estimator and Test for Overidenti-
fying Restrictions

If Π were known, then the natural just-identifying linear combination of instrument would

be Z̃ = ZΠ, which would be the effi cient combination in the homoskedastic model. 2SLS

and LIML are asymptotically effi cient in that case by estimating Π consistently by Π̂ and

Π̂L respectively.

For a general known Ωzu, the optimal combination of instruments for known Π is

Z̃ = Z ′Ω−1
zuZ

′ZΠ

and the effi cient IV estimator is given by

β̂ =
(
Z̃ ′X

)−1

Z̃ ′y

=
(
Π′Z ′ZΩ−1

zuZ
′X
)−1

Π′Z ′ZΩ−1
zuZ

′y,

with limiting distribution

√
n
(
β̂ − β

)
d→ N

(
0,
(
Π′QzzΩ

−1
zuQzzΠ

)−1
)
. (19)
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For the 2SLS estimator and associated two-step GMM estimator, Π is estimated by

OLS, Π̂ = (Z ′Z)−1 Z ′X, and

β̂2sls =
(

Π̂′Z ′X
)−1

Π̂′Z ′y.

Letting û2sls = y −Xβ̂2sls, the two-step GMM estimator is given by

β̂2 =
(

Π̂′Z ′Z (Z ′Hû2slsZ)
−1
Z ′X

)−1

Π̂′Z ′Z (Z ′Hû2slsZ)
−1
Z ′y

=
(
X ′Z (Z ′Hû2slsZ)

−1
Z ′X

)−1

X ′Z (Z ′Hû2slsZ)
−1
Z ′y,

which is asymptotically effi cient with the same limiting distribution as the infeasible

estimator (19).

For the LIML estimator of β, we have

β̂L =
(

Π̂′LZ
′X
)−1

Π̂′LZ
′y,

with Π̂L the LIML estimator of Π. An optimal invariant two-step estimator is then given

by

β̂2L =
(

Π̂′LZ
′Z (Z ′HûLZ)

−1
Z ′X

)−1

Π̂′LZ
′Z (Z ′HûLZ)

−1
Z ′y, (20)

with ûL = y −Xβ̂L. β̂2L has the same limiting distribution as the infeasible estimator,

and, like LIML, is invariant to normalisation. The Hansen J-statistic calculated as

J
(
β̂2L

)
= û′2LZ (Z ′Hû2LZ)

−1
Z ′û2L, (21)

with û2L = y −Xβ̂2L is also invariant to normalisation.

3.4 CU-GMM as an Iterated GMM Estimator

For the CU-GMM estimator we have the following result. For brevity we focus on β̂cu
and Π̂cu, but results straightforwardly carry over to β̂cu,v and Π̂cu,v.

Lemma 2 Consider the CU-GMM minimum distance estimators(
β̂cu, Π̂cu

)
= arg min

(
π̂y − Πβ
π̂ − π

)′
(V ârr,w (π̂∗))

−1

(
π̂y − Πβ
π̂ − π

)
,

and let ûcu = y −Xβ̂cu. Then

β̂cu =
(

Π̂′cuZ
′Z (Z ′HûcuZ)

−1
Z ′X

)−1

Π̂′cuZ
′Z (Z ′HûcuZ)

−1
Z ′y.

18



Proof. See Appendix

From Lemma 2 it is clear that the main difference between the two-step GMM es-

timator and the CU-GMM estimator is the estimator for Π, with the two-step GMM

estimator keeping this fixed at the OLS estimator Π̂.

Similar to the first-order condition (13) for the LIML estimator of Π, we have for Π̂cu

vec
(

Π̂cu

)
=
(
Ĉ ′cu (V ârr,w (π̂∗))

−1
Ĉcu

)−1

Ĉ ′cu (V ârr,w (π̂∗))
−1
π̂∗, (22)

where Ĉcu =
[
β̂cu Ikx

]′
⊗ Ikz .

Let β̂1 be an initial consistent and normal estimator for β. Let Ĉ1 =
[
β̂1 Ikx

]′
⊗Ikz ,

and

vec
(

Π̂1

)
=
(
Ĉ ′1 (V ârr,w (π̂∗))

−1
Ĉ1

)−1

Ĉ ′1 (V ârr,w (π̂∗))
−1
π̂∗.

Then an alternative two-step GMM estimator is given by

β̂2 =
(

Π̂′1Z
′Z (Z ′Hû1Z)

−1
Z ′X

)−1

Π̂′1Z
′Z (Z ′Hû1Z)

−1
Z ′y,

and a general iteration scheme then is

β̂j+1 =
(

Π̂′jZ
′Z
(
Z ′HûjZ

)−1
Z ′X

)−1

Π̂′jZ
′Z
(
Z ′HûjZ

)−1
Z ′y,

resulting in β̂cu and Π̂cu upon convergence.

It is interesting to note that if β̂1 is not an invariant estimator, we obtain a sequence of

effi cient estimators converging to an invariant estimator. If β̂1 is an invariant estimator,

for example the LIML estimator β̂L, we obtain a sequence of effi cient invariant estimators.

Note that therefore an alternative invariant two-step estimator to β̂2L in (20) is given by

β̂2L,r =
(

Π̂′L,rZ
′Z (Z ′HûLZ)

−1
Z ′X

)−1

Π̂′L,rZ
′Z (Z ′HûLZ)

−1
Z ′y,

where

vec
(

Π̂L,r

)
=
(
Ĉ ′L (V ârr,w (π̂∗))

−1
ĈL

)−1

Ĉ ′L (V ârr,w (π̂∗))
−1
π̂∗,

with invariant Hansen test

J
(
β̂2L,r

)
= û′2L,rZ

(
Z ′Hû2L,rZ

)−1
Z ′û2L,r,

where û2L,r = y −Xβ̂2L,r.
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4 Underidentification Tests

Assumption 5, E (zix
′
i) = Qzx has full column rank kx, is a necessary condition for the

identification of β using the instrumental variables zi. As Π = Q−1
zz E (zix

′
i) it follows

that the rank of Π is equal to the rank of E (zix
′
i). This means that β is identified iff

r (Π) = kx.

Standard tests for underidentification, like the Cragg-Donald and Kleibergen-Paap

tests are tests for H0 : r (Π) = kx−1 against H1 : r (Π) = kx. If r (Π) = kx−1, then there

is a kx-vector δ
∗, such that Πδ∗ = 0. Partition X =

[
x1 X2

]
, with x1 an n-vector

and X2 an n × (kx − 1) matrix, and equivalently V =
[
v1 V2

]
, Π =

[
π1 Π2

]
and

δ∗ =
[
δ∗1 δ∗′2

]′
. Assuming δ∗1 6= 0, then π1 = Π2δ, with δ = −δ∗2/δ∗1 and hence

x1 = Zπ1 + v1 = ZΠ2δ + v1

= X2δ + v1 − V2δ

= X2δ + ε1. (23)

Therefore, under H0 : r (Π) = kx − 1, we have that

E (ziε1i) = E (zi (v1i − v′2iδ)) = 0, (24)

as E (ziv
′
i) = 0 from standard the linear projection results.

Let Z =
[
Z1 Z2

]
, with Z1 an n × (kx − 1) matrix and Z2 an n × (kz − kx + 1)

matrix. Partition π1 and Π2 accordingly as π1 =
[
π′11 π′12

]′
and Π2 =

[
Π′21 Π′22

]′
.

Assume that Π21 has full rank kx − 1, then, as in (8), we have

x1 = Zπ1 + v1

= X2Π−1
21 π11 + Z2

(
π12 − Π22Π−1

21 π11

)
+ v1 − V2Π−1

21 π11

= X2κ+ Z2γ + w1, (25)

where κ = Π−1
21 π11. If π1 = Π2δ, then κ = δ and γ = 0. When π1 6= Π2δ the overi-

dentifying instruments are in general not "valid" instruments in (23) in the sense that

E (ziε1i) 6= 0. Note that the standard overidentification test is a score test for testing

H0 : γ = 0, as in (3).

The intuition of orthogonality condition (24) is clear. If the instruments are not corre-

lated with ε1, then they have no explanatory power to predict x1 after having controlled

for the other endogenous explanatory variables in the model.
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Let δ̂L and Π̂2L be the LIML estimators of δ and Π2 in model (23). Let ε̂1L =

x1−X2δ̂L and X̂2L = ZΠ̂2L.From the results derived above for the tests of overidentifying

restrictions it follows that the non-robust Cragg-Donald and robust Kleibergen-Paap

rank tests for H0 : r (Π) = kx − 1 can be obtained as (robust) tests for H0 : γ = 0 in the

specification

ε̂1L = X̂2Lη + Z2γ + ζ1L

after estimation by OLS.

Specifying the variance estimator of γ̂ only valid under conditional homoskedasticity

and either based on the residual ζ̂1L = v̂1− V̂2δ̂L or ε̂1L results in the Basmann or Sargan

version of the non-robust CD test

B
(
δ̂L

)
=

ε̂′1LPZ ε̂1L

ζ̂
′
1Lζ̂1L/n

;

S
(
δ̂L

)
=

ε̂′1LPZ ε̂1L

ε̂′1Lε̂1L/n
.

Equivalently, specifying a robust variance estimator for γ̂ results in the robust versions

of the Kleibergen-Paap test

Br

(
δ̂L

)
= ε̂′1LMX̂2L

Z2

(
Z ′2MX̂2L

Hζ̂1L
MX̂2L

Z2

)−1

Z ′2MX̂2L
ε̂1L;

Sr

(
δ̂L

)
= ε̂′1LMX̂2L

Z2

(
Z ′2MX̂2L

Hε̂1LMX̂2L
Z2

)−1

Z ′2MX̂2L
ε̂1L.

The robust versions of the CD test are obtained as the Hansen J-test in model (23)

after CU-GMM estimation, as either the Basmann version Jv
(
δ̂cu,v

)
or the Sargan version

J
(
δ̂cu

)
. The test statistics have a limiting χ2

kz−kx+1 distribution under the null and

maintained assumptions. An alternative to the robust KP and CD statistics is J
(
δ̂2L

)
,

based on the two step LIML based procedure outlined above in (21), or J
(
δ̂2L,r

)
There is a direct correspondence between S

(
δ̂L

)
and the canonical correlation test

of Anderson (1951). Denote the signed canonical correlations of xi and zi by ρj, j =

1, ..., kx, ordered such that ρ1 ≥ ρ2 ≥ ... ≥ ρkx ≥ 0. The canonical correlation test for

H0 : r (Π) = kx−1 is a test for H0 : ρkx = 0, see Anderson (1951). Let ρ̂2
kx be the smallest

sample squared canonical correlation, which is given by

ρ̂2
kx = min eval

(
(X ′X)

−1
X ′PZX

)
.
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It follows that

S
(
δ̂L

)
= nρ̂2

kx

d→ χ2
kz−kx+1, (26)

under the null and maintained assumptions. The relationship between B
(
δ̂L

)
and

S
(
δ̂L

)
is given by

B
(
δ̂L

)
=
S
(
δ̂L

)
1− ρ̂2

kx

,

from which it follows that B
(
δ̂L

)
≥ S

(
δ̂L

)
, with the discrepancy increasing with in-

creasing value of ρ̂2
kx .

All the above tests are invariant to normalisation, i.e. the results are the same if an

explanatory variable different from x1 is chosen as the dependent variable in (23). In

contrast, Sanderson and Windmeijer (2016) (SW) proposed conditional F-statistics for

testing for underidentification or weak instruments for each endogenous variable sepa-

rately. Their conditional tests statistics are based on the Basmann version of the under-

identification test. Let δ̂j be the 2SLS estimator of δj in the model

xj = X−jδj + εj (27)

for j = 1, ..., kx, using instruments Z, where X−j is X without xj. Let ε̂j = xj −X−j δ̂j.
SW proposed use of the Basmann tests

B
(
δ̂j

)
=
ε̂′jPZ ε̂j

ζ̂
′
j ζ̂j/n

,

where ζ̂j = v̂j− V̂−j δ̂j, and provided the theory for testing for weak instruments based on
the F -test version, Fj = B

(
δ̂j

)
/ (kz − kx + 1). The weak instrument asymptotics they

considered was that of r (Π) local to a rank reduction of 1, or πj = Π−jδj+ l/
√
n. Clearly,

instead of the Basmann tests, one could equivalently consider the Sargan versions S
(
δ̂j

)
.

SW showed that the conditional Fj can provide additional information to that pro-

vided by the CD statistic about the nature of the weak instruments problem. This is

related to the cardinality, i.e. the number of non-zero elements of δ̂∗. If |δ∗| = kx then

the null holds for all j in (27) and so none of the B
(
δ̂j

)
will reject the null in large

samples. If |δ∗| = kx − s, then s of the B
(
δ̂j

)
will reject the null in large samples.
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A simple generalisation to robust tests for underidentification is then to compute the

robust versions Br

(
δ̂j

)
or Sr

(
δ̂j

)
. From the results in Section 3 if follows that the latter

are simply the two-step Hansen J-tests in (27), for j = 1, ..., kx.

5 Testing for Underidentification in Dynamic Panel
Data Models

We consider an i.i.d. sample {yi, Xi}ni=1, where yi is the T -vector (yit) and Xi is the

T × kx matrix [x′it]. The linear panel data model is specified as

yit = x′itβ + ηi + uit

for i = 1, ..., n, t = 1, ...T , where xit can contain lags of the dependent variable. The

Arellano and Bond (1991) procedure to estimate the parameters β is to first-difference

the model

∆yit = (∆xit)
′ β + ∆uit

and estimate by GMM, using lagged levels of the explanatory and dependent variables as

sequential instruments. Assuming that xit contains a the lagged dependent variable and

that all other explanatory variables are endogenous, the available moment conditions at

period t are given by

E
(
xt−2
i ∆uit

)
, (28)

where xt−2
i =

(
x′i1 x′i2 . . . x′i,t−2

)′
. The moments (28) can be expressed as

E (Z ′i∆ui) = 0,

for i = 1, ..., n, where ∆ui is the (T − 2)-vector (∆uit)
T
t=3, and Zi is the (T − 2) × kz

matrix

Zi =


x1′
i 0 · · · 0

0 x2′
i

. . .
...

...
. . . . . . 0

0 · · · 0 xT−2′
i

 ,
with kz = kx (T − 1) (T − 2) /2.

For testing underidentification in this setup, consider the first-stage linear projection

model

∆Xi = ZiΠ + Vi,
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where ∆Xi =
[
(xit − xi,t−1)′

]T
t=3
is a (T − 2)×kx matrix, Π is a kz×kx matrix and Vi is a

(T − 2)×kx matrix. For the errors Vi we now have E
(
vec (Vi) vec (Vi)

′) = Σvec(V ). Whilst

we can still make an assumption of conditional homoskedasticity, E
(
vec (Vi) vec (Vi)

′ |Zi
)

=

Σvec(V ), it seems implausible to assume Σvec(V ) = Σv⊗In. For example, due to the nature
of the sequential moments, the variances E

(
v2
ijt

)
will be varying over time.

Therefore, the non-robust version of the CD test for testing H0 : r (Π) = kx − 1 will

be the minimum distance criterion based on a variance estimator of the OLS estimator

π̂ = vec
(

Π̂
)
, that takes the clustering into account whilst making an assumption of

conditional homoskedasticity. As this variance does not have a kronecker representation,

this no longer is a simple minimum eigenvalue problem and the solution needs to be

obtained via iterative methods.

Partition ∆Xi =
[

∆x1i ∆X2i

]
and Π =

[
π1 Π2

]
. The robust CD statistic is

obtained as the CU-GMM J-test statistic in the model

∆x1i = (∆X2i) δ + ε1i, (29)

using instruments Zi. The CU-GMM criterion is given by

J
(
δ̂cu

)
= min

δ

(
n∑
i=1

Z ′iε1i (δ)

)′( n∑
i=1

Z ′iε1i (δ) ε1i (δ)
′ Zi

)−1( n∑
i=1

Z ′iε1i (δ)

)
,

where ε1i (δ) = ∆x1i − (∆X2i) δ. The CU-GMM estimator can be obtained from the

iterative procedure described in Section 3.4, using a cluster robust variance estimator of

π̂.

The LIML normalised robust Kleibergen-Paap test is based on the pooled LIML

estimator of δ in (29), i.e. the estimator that would be effi cient if Σvec(V ) = Σv ⊗ In. Let
δ̂L and Π̂2L again denote the LIML estimators of δ and Π2, and let ε̂1L,i = ∆x1i−∆X2iδ̂L

and ∆X̂2L,i = ZiΠ̂2L. Z2i is any kz − kx + 1 subset of instruments. Then the cluster

robust KP test is obtained as the test for H0 : γ = 0 in the specification

ε̂1L,i = ∆X̂2L,iη + Z2iγ + ζ1L,i,

estimated by OLS and specifying a cluster robust variance estimator for γ̂. Under the

null that r (Π) = kx − 1, these test statistics are invariant and have a limiting χ2
kz−kx+1

distribution under the maintained assumptions. Although the pooled LIML estimator
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will not be an effi cient estimator, this does not affect the local asymptotic power of the

test.

The robust Sargan versions of the Sanderson-Windmeijer individual conditional un-

deridentification tests is to estimate the specifications

∆xj,i = (∆X−j,i) δj + εj,i

by two-step GMM, again using Zi as the instruments, and to test the nullH0 : E (Z ′iεj,i) =

0 with the Hansen J-test. These tests are particularly easy to perform with gmm esti-

mation routines like xtabond2, as one simply has to perform the same estimation as for

the original dependent variable, replacing the latter by one of the explanatory variables,

and keeping the instrument specification the same. As an example, consider the model of

interest that has as endogenous explanatory variables the lagged dependent variable and

two further variables x1 and x2. The estimation command for the model using xtabond2

(Roodman, 2009) in Stata is

xtabond2 y l.y x1 x2 i.year, gmm(y x1 x2, lag (2 .)) iv(i.year) nol rob.

Then the per endogenous explanatory variable conditional robust underidentification

tests can be obtained as the Hansen tests from the GMM estimation sequence

xtabond2 l.y x1 x2 i.year, gmm(y x1 x2, lag(2 .)) iv(i.year) nol rob;

xtabond2 x1 l.y x2 i.year, gmm(y x1 x2, lag(2 .)) iv(i.year) nol rob;

xtabond2 x2 l.y x1 i.year, gmm(y x1 x2, lag(2 .)) iv(i.year) nol rob.

The above methods extend straightforwardly to the system estimator of Blundell and

Bond (1998).

Table 1 presents results for the underidentification tests for the production function

estimation example of Blundell and Bond (2000). The estimated model is

yit = ρyi,t−1 + βnnit + γnni,t−1 + βkkit + γkki,t−1 + δt + ηi + uit, (30)

where yit is log sales of firm i in year t, nit is log employment and kit is log capital stock.

The data used is a balanced panel of 509 R&D-performing US manufacturing companies

observed for 8 years, 1982-89. Model specification (30) is a Cochran-Orcutt transformed
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model to deal with serial correlation of the errors in the static Cobb-Douglas production

function. Although there is therefore more information due to the non-linear relationships

between the parameters, γn = −ρβn and γk = −ρβk, we ignore this information for
illustrative purposes. The instruments specified by Blundell and Bond (2000) for the

first-differenced model are the lagged levels of y, n and k, dated t − 3 up till t − 5.

The t− 2 lag was not used as an instrument due to measurement error problems in the

variables. The System estimator then additionally includes ∆yi,t−2, ∆ni,t−2 and ∆ki,t−2

as per period instruments for the model in levels.

Table 1. P-values for underidentification tests

Sr

(
δ̂L

)
Sr

(
δ̂j

)
yi,t−1 nit ni,t−1 kit ki,t−1

1st Differences 0.527 0.001 0.153 0.008 0.108 0.018
System 0.178 0.002 0.119 0.041 0.000 0.001

The Kleibergen-Paap LIML based cluster robust score test Sr
(
δ̂L

)
clearly indicates

that the instruments do not identify the parameters in the first-differenced model with the

p-value of the test equal to 0.527. From the individual Hansen J-test statistics Sr
(
δ̂j

)
,

it becomes clear that the lagged levels instruments do not have predictive power for the

endogenous variables ∆nit and ∆kit, after having to predict ∆ni,t−1, ∆ki,t−1 and ∆yi,t−1.

The underidentification test for the System estimator also does not reject the null of

underidentification, with a p-value of 0.178. The individual test statistics indicate that

the instruments for the System estimator mainly fail to predict current log employment.

6 Testing for General Rank

We return to the original models (1), (2) and data wi =
(
yi x′i

)′
and consider testing

a general null hypothesis on the rank of Π∗. For ease of exposition, we consider the

situation where there are two linear relationships between the variables such that

E
(
ziw

′
i

(
ψ1 ψ2

))
= E (ziw

′
iΨ) = 0

or r (Π∗) = kx−1. As in Arellano, Hansen and Sentana (2012), we start by standardising

Ψ =

[
I2

B

]
. Partition w =

[
y x1 X2

]
and Π =

[
πy π1 Π2

]
. We then have the
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two equations

y = X2βy + uy (31)

x1 = X2βx + ux (32)

and the test for overidentifying restrictions is a test for H0 : E (ziu
′
i) = 0, where here

ui =
(
uy,i ux,i

)′
.

Let Z2 be any selection of kz − kx + 1 instruments, and specify

y = X2βy + Z2γy + uy

x1 = X2βx + Z2γx + ux,

then a test for H0 : E (ziu
′
i) = 0 is a score test for H0 : γy = γx = 0. Both equations are

again just identified, and hence the IV estimators for γy and γx are given by
(
γ̂y γ̂x

)
=(

Z ′2MX̂2
Z2

)−1
Z ′2MX̂2

(
y x1

)
, where X̂2 = ZΠ̂2. These IV estimators are also effi cient

under conditional homoskedasticity, V ar (ui|zi) = Σu, by standard SURE arguments.

Let β̂1 =
(
β̂
′
y,1 β̂

′
x,1

)′
, with β̂y,1 and β̂x,1 initial IV/GMM estimators of βy and βx

in the restricted models (31) and (32), with û1 =
(
û′y,1 û′x,1

)′
the associated residuals.

Analogous to the test derived in Section 3, the robust score test for H0 : γy = γx = 0 is

then given by

Sr

(
β̂1

)
=

(
γ̂y
γ̂x

)′(
V ârr,û1

(
γ̂y
γ̂x

))−1(
γ̂y
γ̂x

)
(33)

=

(
y
x1

)′
Z̃2

(
Z̃ ′2Hû1Z̃2

)−1

Z̃ ′2

(
y
x1

)
=

(
ûy,1
ûx1,1

)′
Z̃2

(
Z̃ ′2Hû1Z̃2

)−1

Z̃ ′2

(
ûy,1
ûx1,1

)
,

where Z̃2 = I2 ⊗MX̂2
Z2, 1√

n
Z̃ ′2u→ N (0,Ωz̃2u), where u =

(
u′y, u

′
x

)′
and n−1

(
Z̃ ′2Hû1Z̃2

)
is a consistent estimator of Ωz̃2u. Under the maintained assumptions and H0, Sr

(
β̂1

)
d→

χ2
2(kz−kx+1).

The 2SLS based non-robust version which is valid in the homoskedastic case, has

Z̃ ′2Hû2slsZ̃2 = Σ̂û2sls ⊗ Z ′2MX̂2
Z2, and so

S
(
β̂2sls

)
= û′2sls

(
Σ̂−1
û2sls
⊗MX̂2

Z2

(
Z ′2MX̂2

Z2

)−1
Z ′2MX̂2

)
û2sls

= û′2sls

(
Σ̂−1
û2sls
⊗ PZ

)
û2sls.
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Let Ż = (I2 ⊗ Z). For a general one-step estimator β̂1, the two-step GMM estimator is

given by

β̂2 = arg min
βy ,βx

(
y −X2βy
x1 −X2βx

)′
Ż
(
Ż ′Hû1Ż

)−1

Ż ′
(

y −X2βy
x1 −X2βx

)
,

with the Hansen J-test given by

J
(
β̂2, β̂1

)
= û′2Ż

(
Ż ′Hû1Ż

)−1

Ż ′û2

= Sr

(
β̂1

)
.

Next let ψ̂1L and ψ̂2L be the LIML estimates of ψ1 and ψ2. These are obtained as

ψ̂1L = Σ̂
−1/2
w v[1] and ψ̂2L = Σ̂

−1/2
w v[2] where v[1] and v[2] are the orthonormal eigenvec-

tors associated with the 2 smallest eigenvalues of Σ̂
−1/2
w W ′PZW Σ̂

−1/2
w . These estimates

therefore have the normalisation ψ̂
′
1LΣ̂wψ̂1L = ψ̂

′
2LΣ̂wψ̂2L = 1 and ψ̂

′
1LΣ̂wψ̂2L = 0. Let

ûL = vec
(
W Ψ̂L

)
, where Ψ̂L =

[
ψ̂1L ψ̂2L

]
. Then the Sargan, non-robust version of

the score test is given by

S
(

Ψ̂L

)
= û′L

(
Σ̂−1
ûL
⊗ PZ

)
ûL.

However, as

Σ̂ûL =
1

n
Ψ̂′LW

′W Ψ̂L = I2,

it follows that

S
(

Ψ̂L

)
= e[1] + e[2],

the sum of the two smallest eigenvalues of Σ̂
−1/2
w W ′PZW Σ̂

−1/2
w .

Next, partition Ψ̂L =

[
Ψ̂AL

Ψ̂BL

]
where Ψ̂AL is a 2× 2 matrix, and let Ψ̂∗L = Ψ̂LΨ̂−1

AL =[
I2

Ψ̂BLΨ̂−1
AL

]
. Then û∗L = vec

(
W Ψ̂∗L

)
=

((
Ψ̂−1
AL

)′
⊗ I2

)
ûL, and Σ̂û∗L

= 1
n
Ψ̂∗′LW

′W Ψ̂∗L =

Ψ̂−1′
AL Ψ̂−1

AL, and so

S
(

Ψ̂∗L

)
= û∗′L

(
Σ̂−1
û∗L
⊗ PZ

)
û∗L

= û′L

((
Ψ̂−1
AL

)
⊗ In

)((
Ψ̂ALΨ̂′AL

)
⊗ PZ

)((
Ψ̂−1
AL

)′
⊗ In

)
ûL

= S
(

Ψ̂L

)
.
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We can now link this to the Cragg-Donald minimum distance criterion, with the result

that

S
(

Ψ̂∗L

)
= min

Π2,βy ,βx

 π̂y − Π2βy
π̂1 − Π2βx

vec
(

Π̂2 − Π2

)

′ (

Σ̂−1
w ⊗ (Z ′Z)

) π̂y − Π2βy
π̂1 − Π2βx

vec
(

Π̂2 − Π2

)
 ,

and the resulting estimators
[
β̂yL β̂xL

]
= Ψ̂BLΨ̂−1

AL, see also Cragg and Donald (1993).

Clearly, this is the invariant LIML based rank test for H0 : r (Π∗) = kx − 1 against

H1 : r (Π∗) > kx − 1.

Let Π̂2L be the LIML estimator of Π2, and let X̂2L = ZΠ̂2L The LIML based

Kleibergen-Paap rank test is then the robust score test

Sr

(
β̂L

)
= û∗′L Z̃2L

(
Z̃ ′2LHû∗L

Z̃2L

)−1

Z̃ ′2Lû
∗
L

= û′LZ̃2L

(
Z̃ ′2LHûLZ̃2L

)−1

Z̃ ′2LûL.

where Z̃2L =
(
I2 ⊗MX̂2L

Z2

)
. Note that, as before, the estimator Π̂2L can be obtained

directly from the minimum eigenvalue LIML estimator Ψ̂L. Let ÛL = W Ψ̂L, then

Π̂2L =
(
Z ′MÛL

Z
)−1

Z ′MÛL
X2.

The CU-GMM robust invariant CD rank test is

J
(
β̂cu

)
= Sr

(
β̂cu

)
= min

Π2,βy ,βx

 π̂y − Π2βy
π̂1 − Π2βx

vec
(

Π̂2 − Π2

)

′

(V ârr,w (π̂∗))
−1

 π̂y − Π2βy
π̂1 − Π2βx

vec
(

Π̂2 − Π2

)
 .

These tests are versions of the Arellano, Hansen and Sentana (2012) I test for un-

deridentification for the standard linear IV model. They are easily generalised to testing

for general H0 : r (Π∗) = q against H1 : r (Π∗) > q, which are score type tests of the form

(33), with the LIML and CU-GMM versions being invariant to normalisation.

It is at this point illustrative to consider Example 3.4 in AHS (2012, pp. 262-263).

They considered a normalized four-input translog cost share equation system, resulting

in the equations

yj,t = βj,1p1,t + βj,2p2,t + βj,3p3,t + vj,t
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for j = 1, 2, 3, t = 1, ..., T , and where yj,t denotes the cost share of input j and pj,t is the

log price of input j relative to the omitted input, and wt = (y1,t y2,t y3,t p1,t p2,t p3,t)
′.

The symmetry constraints are given by

βj,k = βk,j j 6= k.

Prices are endogenous and there is a kz dimensional vector of instruments zt available to

instrument prices under the assumption that E (ztvj,t) = 0 for j = 1, 2, 3. For this case we

have Π∗ =
[
πy1 πy2 πy3 πp1 πp2 πp3

]
=
[

Πy Πp

]
. The test for overidentifying

restrictionsH0 : E (ztvj,t) = 0 for j = 1, 2, 3 is in this case a test forH0 : r (Π∗) = 3, which,

incorporating the restrictions, can for example be obtained as the CU-GMM criterion

J
(
B̂cu

)
= min

Πp,B

 vec
(

Π̂y − ΠpB
)

vec
(

Π̂p − Πp

) ′ (V ârr,w (π̂∗))
−1

 vec
(

Π̂y − ΠpB
)

vec
(

Π̂p − Πp

)  ,

with

B =

 β1,1 β1,2 β1,3

β1,2 β2,2 β2,3

β1,3 β2,3 β3,3

 .
As Π∗ is a kz × 6 matrix, it is clear that the necessary order condition is that kz ≥ 3.

Note that the degrees of freedom of the test is equal to kz × (6− 3)− (9− 3), so even if

kz = 3, the model is overidentified due to the symmetry restrictions.

Next, consider the AHS underidentification test H0 : r (Π∗) = 2. Let Πyp1 =[
Πy πp1

]
and Πp2 =

[
πp2 πp3

]
. We now add a linear relationship of the form

p1,t = δ2p2,t + δ3p3,t + ε1,t

and express the original equations in terms of p2,t and p3,t only. Hence,

yj,t =
(
βj,2 + δ2βj,1

)
p2,t +

(
βj,3 + δ3βj,1

)
p3,t + vj,t + βj,1ε1,t.

Then the robust rank test for H0 : r (Π∗) = 2, incorporating all restrictions, is given by

J
(
Êcu

)
= min

Πp2,E

 vec
(

Π̂yp1 − Πp2E
)

vec
(

Π̂p2 − Πp2

) ′ (V ârr,w (π̂∗))
−1

 vec
(

Π̂yp1 − Πp2E
)

vec
(

Π̂p2 − Πp2

)  ,

with

E =

[
β1,2 + δ2β1,1 β2,2 + δ2β1,2 β2,3 + δ2β1,3 δ2

β1,3 + δ3β1,1 β2,3 + δ3β1,2 β3,3 + δ3β1,3 δ3

]
=

[
e1,1 e2,1 e3,1 e4,1

e1,2 e2,2 e3,2 e4,2

]
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and the restriction (e3,1 − e2,2) = e4,1e1,2 − e4,2e1,1.

This shows that the parameter restrictions in the linear model can be incorporated

directly into the CD rank test procedure. Whilst the null hypothesis of the AHS test

is clear, the main issue with this test seems to be that it is unclear what a rejection

of the null implies. Rejecting the null H0 : r (Π∗) = 2 in the example above does

not necessarily mean that the model is meaningfully identified, as it could well be the

case that E (ztεt,1) = E (ztv2,t) = E (ztv3,t) = 0, but E (ztv1,t) 6= 0. As what matters

for identification in this model is whether the instruments can predict the endogenous

prices, the more natural test for underidentification seems to be H0 : E (ztε1,t) = 0 or

H0 : r (Πp) = 2 against H1 : r (Πp) = 3.

7 Testing the Rank of ParameterMatrices Estimated
by OLS

The LIML and CU-GMM based rank tests on the matrices Π∗ and Π may appear to

be specific to the linear IV setup, as the instruments Z are used as instruments for

both the over- and underidentification tests. This approach can, however, be applied to

more general settings testing the rank on parameter matrices that are estimated by OLS.

Consider for example the linear model specification as in Al-Sadoon (2017)

yi = B′xi + vi

for i = 1, ..., n, where yi and vi are ky-vectors, xi is a kx-vector and B is a kx× ky matrix
of unknown parameters. In matrix notation the model is

Y = XB + V,

where Y is the n × ky matrix [y′i], X is the n × kx matrix [x′i] and V is the n × ky

matrix [v′i]. It is assumed that E (xiv
′
i) = 0 and therefore the OLS estimator for B,

B̂ = (X ′X)−1X ′Y is consistent, with further regularity conditions in place for standard

limiting normal distribution results.

Consider first the situation where kx ≥ ky and testing the null hypothesis H0 : r (B) =

ky − 1. This is the setup as in Cragg and Donald (1993, 1997), and in analogy to the

IV results above, the CD rank test is a LIML/CU-GMM based score test. Partition
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Y =
[
y1 Y2

]
, B =

[
b1 B2

]
, B̂ =

[
b̂1 B̂2

]
and X =

[
X1 X2

]
where X2 is any

(kx − ky + 1) subset of variables in X. Then the rank test is the score test for H0 : γ = 0

in the specification

y1 = Y2δ +X2γ + ε1.

Let δ̂L and B̂2L be the LIML estimators of δ and B2 in the restricted model

y1 = Y2δ + ε1, (34)

using X as instruments. These can be obtained from the minimum eigenvalue solution

and projection as in Section 3.1, or as

(
δ̂L, B̂2L

)
= arg min

δ,B2

(
b̂1 −B2δ

vec
(
B̂2 −B2

) )′ (Σ̂−1
y ⊗ (X ′X)

)( b̂1 −B2δ

vec
(
B̂2 −B2

) ) ,
where Σ̂y = Y ′Y/n and Σ̂y ⊗ (X ′X)−1 is the estimator of V ar

(
vec
(
B̂
))

under condi-

tional homoskedasticity and B = 0.

Let Ŷ2L = XB̂2L and ε̂1L = y1 − Y2δ̂L, then the non-robust CD and robust KP tests

can again be obtained from the tests for H0 : γ = 0 in the specification

ε̂1L = Ŷ2Lη +X2γ + ζ1L,

estimated by OLS. The robust CD test is J
(
δ̂cu

)
after estimation of (34) by CU-GMM.

The extensions to general rank tests, H0 : r (B) = q, are then as discussed in the previous

section.

Next, consider the case where kx ≤ ky. In that case, the CD and KP rank tests

apply to the column rank of the ky × kx matrix B′, for example H0 : r (B′) = kx − 1.

The OLS estimator is then B̂′ = Y ′X (X ′X)−1 and the estimator of V ar
(

vec
(
B̂′
))

under conditional homoskedasticity and B = 0 is given by (X ′X)−1 ⊗ Σ̂y. The KP

LIML normalisation, Θ̂B′ = GB̂′F ′, is then obtained with G′G = Σ̂−1
y and F ′F =

Σ̂x = X ′X/n. Choosing wlog G = G′ = Σ̂
−1/2
y and F = F ′ = Σ̂

1/2
x results in Θ̂B′ =

(Y ′Y )−1/2 Y ′X (X ′X)−1/2.

Next, consider the specification

X = Y C + U,
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with C a ky × kx matrix, the same dimension of B′. The OLS estimator is given by

Ĉ = (Y ′Y )−1 Y ′X. Assuming conditional homoskedasticity and C = 0, the estimator for

the variance of vec
(
Ĉ
)
is given by Σ̂x⊗ (Y ′Y )−1. For testing hypotheses on the rank of

C, the KP LIML normalisation is then Θ̂C = GĈF ′, with here G = Σ̂
1/2
y and F = Σ̂

−1/2
x .

Hence Θ̂C = (Y ′Y )−1/2 Y ′X (X ′X)−1/2 = Θ̂B′ . Therefore, for this case where ky ≤ kx,

the CD and KP rank tests for, for example, H0 : r (B′) = kx− 1 are identical to the rank

tests for H0 : r (C) = kx − 1. Partition X =
[
x1 X2

]
, then the tests can be obtained

analogous to above by estimating the model

x1 = X2δ + ε1

by LIML or CU-GMM, now using Y as the instruments. When ky = kx the two ap-

proaches are identical.

This setup applies to the asset pricing model as further described below in Section

9. Kleibergen and Paap (2006) considered tests on the rank of the matrix Λ′ in the

specification

rt = Λ′xt + vt,

for t = 1, ..., T , with rt a kr-vector of portfolio returns and xt =
(

1 f ′t
)′
, with ft a

kf -vector of systematic risk factors, and so kx = kf + 1. In their setting kr > kx. Then

it follows form the results above that the CD and KP rank tests for H0 : r (Λ′) = kx − 1

are the same as the rank test for H0 : r (C) = kx − 1 in the specification

xt = C ′rt + ut.

As X =
[
ιT F

]
, where ιT is a T -vector of ones, and F is the T × kf matrix of factors,

these rank tests can be obtained as the score tests described above by estimating the

specification

ιt = Fδ + ε

by LIML or CU-GMM, using here the T × kr matrix of returns R as the matrix of

instruments.
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8 Limiting Distribution of the Sargan Test in Un-
deridentified Models

The limiting distributions of the Sargan tests for overidentifying restrictions, S
(
β̂2sls

)
and S

(
β̂L

)
, when r (ziw

′
i), or r (Π∗), is less then kx have been derived by Kitamura (2005)

for S
(
β̂2sls

)
, and the result of Gospodinov, Kan and Robotti (2017) (GKR) derived in

the context of linear factor models applies to S
(
β̂L

)
. As S

(
β̂L

)
is an invariant rank

test, its limiting distribution is determined by r (Π∗) only, independent of whether the

moments restrictions E (ziui) = 0 hold or not. In contrast, the limiting distribution

of S
(
β̂2sls

)
under rank deficiency depends on whether the moment restrictions hold or

not. These limiting distribution results hold under Assumptions 1, 2, 4 and 5 and the

maintained assumption of conditional homoskedasticity. We focus here on the Sargan

version of the tests, but the results equally apply to the Basmann versions.

Theorem 2 of GKR states the limiting distribution result for an asset-pricing model

with linear moment restrictions. From the proof (GKR, p. 1626) it follows directly that

the result holds for the minimum eigenvalue representation of S
(
β̂L

)
as given in (11).

Let r (Π∗) = kx + 1− d, for an integer d. Then the result is that for d ≥ 1,

S
(
β̂L

)
d→ wd, (35)

wherewd is the smallest eigenvalue ofWd ∼Wd (kz − kx − 1 + d, Id), andWd (kz − kx − 1 + d, Id)

denotes the Wishart distribution with kz−kx−1+d degrees of freedom and scaling matrix

Id.

When the moment conditions are valid, E (ziui) = 0, the result for S
(
β̂2sls

)
as given

in Theorem 3.1 in Kitamura (2005, p 67) is,

S
(
β̂2sls

)
d→ C ×Bd

where C ∼ χ2
kz−kx , Bd ∼ Beta

(
kz−kx+1

2
, d−1

2

)
and C and Bd are independent. As before,

r (Π∗) = kx + 1− d with here d ≥ 2. When d = 1, Bd = 1.

When the moment conditions are invalid, the result for S
(
β̂2sls

)
as given in Theorem

3.2 in Kitamura (2005, p 71) is,

S
(
β̂2sls

)
d→ C × IBd,
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where C ∼ χ2
kz−kx , IBd ∼ Inverted Beta

(
d
2
, kz−kx+1

2

)
and C and IBd are independent,

with here d ≥ 1.

Figure 1 displays the limiting distributions of S
(
β̂L

)
and S

(
β̂2sls

)
for kz − kx = 7,

for S
(
β̂2sls

)
when the moment restrictions are valid, for values of d = 1, 2, 3. Figure 2

presents the limiting distribution of S
(
β̂2sls

)
when the moment conditions E (ziui) = 0

are invalid, for the same values of d.

The densities for the LIML estimator are the same as in GKR, Figure 1, as the degrees

of freedom are the same. Clearly, with rank deficiency, the rejection probability for both

S
(
β̂L

)
and S

(
β̂2sls

)
is less than nominal size, with the discrepancy larger for S

(
β̂L

)
than for S

(
β̂2sls

)
. Also, as S

(
β̂L

)
is an invariant rank test, it has power equal to size

if the moment conditions E (ziui) = 0 do not hold, but r (Π∗) = kx.

In contrast, Figure 2 shows that when the moment conditions do not hold, the limiting

distribution of S
(
β̂2sls

)
under rank deficiency is very different. Although the test is no

longer consistent, it still has power to reject the null. For this design, the power of the

test at the 5% level in the limit is 0.881, 0.742 and 0.606 for d = 1, 2 and 3 respectively.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25
d=1
d=2,LIML
d=3,LIML
d=2,2SLS
d=3,2SLS

Figure 1. Limiting distributions of S
(
β̂L

)
and S

(
β̂2sls

)
, for r (Π∗) = kx + 1− d,

kz − kx = 7. Moment conditions E (ziui) = 0 are valid for S
(
β̂2sls

)
.
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Figure 2. Limiting distributions of S
(
β̂2sls

)
for r (Π∗) = kx + 1− d, kz − kx = 7.

Moment conditions E (ziui) = 0 are invalid.

Table 2 presents the power of S
(
β̂2sls

)
to reject the null in the limit at the 5%

level, for various combinations of the degrees of freedom kz−kx = [1, .., 5, 10, 15, 20], and

rank deficiency d = [1, .., 5]. As Kitamura (2005, p. 74) shows, the limiting distribution

of S
(
β̂2sls

)
when the moment conditions do not hold is equal to the distribution of

Ckz−kxCkz−kx+1/Cd, where the independent random variables are distributed as Ckz−kx ∼
χ2
kz−kx , Ckz−kx+1 ∼ χ2

kz−kx+1 and Cd ∼ χ2
d. We obtained the rejection probabilities from

1, 000, 000 draws of the three random variables. As is clear from the results, the power

of the test is increasing in kz − kx and decreasing in d. When kz − kx = 20, the power

is close to one, at 0.996, when d = 1, and is still 0.917 when d = 5. For the Monte

Carlo analysis of GKR, as further detailed in Section 9, the degree of overidentification

is around 20.

It is clear from the above results that the invariant S
(
β̂L

)
does not have power

to reject H0 : E (ziui) = 0 in underidentified models when the moment conditions are

invalid. This is clearly problematic when using S
(
β̂L

)
as a test for overidentifying

restrictions. However, this is of course less of a problem for the use of S
(
δ̂L

)
as a test

for underidentification, and is also a reason why an underidentification test should be
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reported. The underidentification tests described in Section 4 are for testing H0 : r (Π) =

kx − 1 against H1 : r (Π) > kx − 1. If r (Π) < kx − 1, the limiting distribution results

given in (35) apply to S
(
δ̂L

)
and so the rejection frequency of S

(
δ̂L

)
will be less than

nominal size. This implies that a higher degree of underidentification does not lead to

erroneous conclusions for the test of underidentification.

Table 2. Rejection probabilities, P
(
S
(
β̂2sls

)
> χ2

kz−kx,0.95

)
d

kz − kx 1 2 3 4 5
1 0.342 0.162 0.089 0.053 0.033
2 0.518 0.293 0.176 0.110 0.072
3 0.640 0.412 0.269 0.180 0.123
4 0.730 0.517 0.364 0.257 0.182
5 0.796 0.607 0.453 0.336 0.248
10 0.947 0.868 0.773 0.672 0.576
15 0.986 0.959 0.917 0.863 0.801
20 0.996 0.988 0.972 0.949 0.917

Moment conditions E (ziui) = 0 are invalid.
Simulated probabilities from 1, 000, 000 draws of χ2

kz−kxχ
2
kz−kx+1/χ

2
d

For the individual 2SLS based tests S
(
δ̂j

)
we also get a rejection frequency less than

nominal size for those models where the moment restrictions E (ziεji) = 0 hold, and a

dilution of power for those where the moment restrictions do not hold. However, it is

well known that the 2SLS based Sargan test is sensitive to weak identification, see e.g.

Staiger and Stock (1997), who found that S
(
β̂2sls

)
could severely overreject a true null of

E (ziui) = 0 in weakly identified models when there was a very strong correlation between

the ui and vi. This was not the case for S
(
β̂L

)
. Weak identification for β is when Π is

near to a rank reduction of 1. For the underidentification test, weak identification for δ

means that Π is near a rank reduction of 2. It is therefore informative to compute both

the invariant and non-invariant statistics for both over- and underidentification tests. The

same holds for robust test statistics, where the CU-GMM based tests have been shown

by Newey and Windmeijer (2009) to be well behaved under weak identification, see also

Hausman et al. (2012) and Chao et al. (2014). These authors further show that the LIML

estimator can have a severe bias in weakly identified models with heteroskedasticity. An

invariant jackknife version, HLIM, is shown to be better behaved in that case, which
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could then be an alternative estimator to use for the robust invariant score tests for over-

and underidentification.

9 Asset-Pricing Models

Gospodinov, Kan and Robotti (2017) (GKR) considered the behaviour of the CU-GMM

J-test in a reduced-rank asset-pricing model. Using their notation, the candidate sto-

chastic discount factor (SDF) at time t is x′tλ, for t = 1, ..., T , where xt =
(

1 f ′t
)′
,

with ft a kf vector of systematic risk factors, and λ =
(
λ0 λ′1

)′
a kx-vector of SDF

parameters, with kx = kf + 1. rt is the kr-vector of gross returns on kr > kx test assets.

Let ιkr be a kr-vector of ones, then the moment conditions to be tested are given by

E (rtx
′
tλ− ιkr) = 0. (36)

Let et (λ) = rtx
′
tλ− 1 then the CU-GMM J-test is given by

J
(
λ̂cu

)
= T min

λ
e (λ)′ V̂e (λ) e (λ) ,

where e (λ) = 1
T

∑T
t=1 et (λ) and V̂e (λ) is a consistent estimator of the long-run variance

matrix of the sample pricing errors Ve (λ).

Let H =
[
ιkr E (rtx

′
t)
]
, then (36) can be written as Hψ = 0, with ψ =

(
−1 λ′

)′
,

and GKR showed that therefore the J
(
λ̂cu

)
test for testing moment conditions (36) is

equivalent to testing H0 : r (H) = kx against H1 : r (H) = kx + 1. From this it follows

that if r (E (rtx
′
t)) < kx, the CU-GMM J-test has no power to detect violations of the

moment conditions (36). Let P1 be the kr × (kr − 1) orthonormal matrix whose columns

are orthogonal to ιkr , such that P
′
1P1 = Ikr−1 and P1P

′
1 = Ikr − ιkrι′kr/kr. Let r1t = P ′1rt,

then GKR show that the J
(
λ̂cu

)
-test is the same as the robust Cragg-Donald test for

testing H0 : r (E (r1tx
′
t)) = kx − 1 against H1 : r (E (r1tx

′
t)) = kx.

The latter formulation fits the testing procedure described in Section 7. The CD test

for H0 : r (E (r1tx
′
t)) = kx − 1 is the test for H0 : r (Λ′1) = kx − 1 in the regression model

r1t = Λ′1xt + vt,

based on the OLS estimator of the kx × (kr − 1) matrix Λ1. The CD and KP tests are

therefore the same as for the tests of H0 : r (C1) = kx − 1 in the specification

xt = C ′1r1t + ut.
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With X =
[
ιT F

]
, we can therefore obtain robust invariant tests for overidentification

by for example estimating the specification

ιT = Fδ + ε (37)

by LIML, using the T×(kr − 1)matrixR1 as instruments, and computing the Kleibergen-

Paap robust score test Sr
(
δ̂L

)
, the J

(
δ̂2L

)
or J

(
δ̂2L,r

)
tests. These invariant robust

tests are alternatives to the CU-GMM J
(
δ̂cu

)
-test that do not have the problems associ-

ated with the CU-GMM estimator, which is often more diffi cult to compute and may give

rise to multiple local minima, see the discussion in Peñaranda and Sentana (2015), who

argue strongly for the use of invariant methods in these models. For the same reason,

Burnside (2016) used the KP test instead of the robust CD test in his simulations.

Note that the assumptions and standardisation used in Theorem 2 in GKR to obtain

the limiting distribution of the overidentification test is equivalent to LIML applied to

(37), hence the equivalence of their result and the one reported for the Sargan test in

the previous section. A conservative upper bound for the CU-GMM J-test is derived in

Theorem 1 of GKR. If the model is underidentified, then limT→∞ Pr
(
J
(
λ̂cu

)
≤ a
)

=

limT→∞ Pr
(
J
(
δ̂cu

)
≤ a
)
≥ Pr (ckr−1 ≤ a), where ckr−1 ∼ χ2

kr−1.

GKR confirmed in a Monte Carlo study the poor performance of the overidentification

test in underidentified models. Here, the model is underidentified if r (E (rtx
′
t)) < kx and

GKR incorporated underidentification by including spurious factors that are uncorrelated

with the test assets. They did, however, not perform tests of underidentification on the

rank of E (rtx
′
t) itself. These tests are the same as the overidentification tests above for

model (37), but now with the T × kr matrix R as instruments instead of R1.

Table 3 presents some results of both the over- and underidentification tests for the

same model design as the Monte Carlo exercise in GKR, (Table 1, p 1621). We focus on

the misspecified model with 3 useful factors for the cases of 0,1 and 2 spurious factors,

for the sample sizes T = 200, 1000. The DGP in GKR is one of homoskedastic i.i.d.

data, and the robustness they consider in the estimation is that against conditional

heteroskedasticity. We repeat this design, including the non-robust Sargan test S
(
δ̂L

)
test as well for comparison and focus only on the Sargan versions of the tests. Unlike

GKR, we do not take deviations from the means of the residuals when computing the

variance-covariance matrix of the moments.
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As in GKR, the results in Table 3 confirm the poor power properties of the test for

overidentifying restrictions in underidentified models. The limiting distribution results

for the invariant overidentification test as derived by GKR also apply to the invariant

underidentification test, meaning that the test statistics converge in distribution to a

χkr−kx+1 under the null that r (E (rtx
′
t)) = kx − 1 and the maintained assumptions. If

r (E (rtx
′
t)) < kx − 1 then the rejection frequency of the test will be less than the size of

the test. This is confirmed in the results below. In this design, the underidentification

tests correctly convey that the model is underidentified. Table 3 also present the results

for the two-step GMM Hansen J-test, Sr
(
λ̂2sls

)
, confirming that this test does retain

power to reject the false null in underidentified models.

Table 4 presents the results for the robust individual Hansen J-tests Sr
(
δ̂j

)
, for the

models xj = X−jδj + εj, estimated by 2SLS. For this design, these tests give a clear

indication of which factors are the spurious ones.

Table 3. Rejection frequencies of over- (R1) and under- (R) identification tests at 5% level

T # spur factors "inst" S
(
δ̂L

)
Sr

(
δ̂L

)
J
(
δ̂2L

)
J
(
δ̂cu

)
Sr

(
λ̂2sls

)
200 0 R1 0.4848 0.4309 0.4234 0.3448 0.5604

R 0.9991 0.9840 0.9826 0.9778
1 R1 0.0117 0.0112 0.0092 0.0019 0.4793

R 0.0396 0.0275 0.0241 0.0138
2 R1 0.0002 0.0005 0.0004 0.0000 0.3909

R 0.0013 0.0015 0.0011 0.0002
1000 0 R1 1.0000 1.0000 1.0000 1.0000 1.0000

R 1.0000 1.0000 1.0000 1.0000
1 R1 0.0424 0.0382 0.0377 0.0371 0.9808

R 0.0487 0.0433 0.0429 0.0428
2 R1 0.0012 0.0008 0.0008 0.0007 0.9309

R 0.0016 0.0018 0.0017 0.0012
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Table 4. Rejection frequencies of Sr
(
δ̂j

)
at 5% level

T # spur factors Sr

(
δ̂ι

)
Sr

(
δ̂f1

)
Sr

(
δ̂f2

)
Sr

(
δ̂f3

)
Sr

(
δ̂f4

)
Sr

(
δ̂f5

)
200 0 1.0000 0.9870 0.9998 0.9999

1 0.9955 0.9257 0.9810 0.9862 0.0303
2 0.9802 0.8319 0.9446 0.9442 0.0263 0.0242

1000 0 1.0000 1.0000 1.0000 1.0000
1 0.9951 0.9947 0.9963 0.9961 0.0432
2 0.9879 0.9797 0.9835 0.9827 0.0353 0.0346

We can apply the results developed in the previous sections also to the setting of Man-

resa, Peñaranda and Sentana (2017) (MPS) who considered asset-pricing model moments

of the form

E (rtx
′
tθ) = 0.

Maintaining that E (rt) 6= 0 , let r (E (rtx
′
t)) = kf + 1 − d. When d ≥ 2, there will be

a multidimensional subspace of admissible SDFs even after fixing their scale, and MPS,

following Arellano, Sentana and Hansen (2012), proceed by estimating a basis of that

subspace by replicating d times the moment conditions:

E


rtx
′
tθ1

rtx
′
tθ2
...

rtx
′
tθd

 =


0
0
0
0

 ,
imposing enough normalisation on the parameters to ensure point identification.

For example, for d = 2, MPS consider in their application with a model with three

factors, the following extended moments

E

[
rt
(
1− f ′12,tδ1

)
rt
(
1− f ′13,tδ2

) ] = 0, (38)

where

f ′12,t =
(
f1t f2t

)
; f ′13,t =

(
f1t f3t

)
.

They proceed to estimate the parameters δ1 and δ2 by CU-GMM to obtain J
(
δ̂cu

)
as an

underidentification test. As the CU-GMM estimator is invariant to normalisation, the

same test result is obtained from specifying the moment conditions as

E

[
rt
(
1− f ′23,tδ1

)
rt (f1t − f ′23tδ2)

]
= 0,
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where f ′23,t =
(
f2t f3t

)
. Therefore this test is the same as the robust CD test for testing

H0 : r (C) = kx − 2 in

xt = C ′rt + ut,

following the exposition in Section 7 and the general robust CD, CU-GMM rank test as

described in Section 6.

10 Conclusions

This paper has developed the links between overidentification tests, underidentification

tests, score tests and the Cragg-Donald and Kleibergen-Paap rank tests. This general

framework made it possible to establish valid robust underidentification tests for models

where these have not been proposed before, like dynamic panel data models estimated by

GMM. It is well known that these models may suffer from weak instrument problems, and

the example we examined for illustration did indicate that the model was underidentified.

An issue with robust underidentification tests is that there is no longer a link with testing

for weak instruments as in Stock and Yogo (2005). Therefore, a rejection of the null does

not necessarily imply strong instruments. However, if the null of underidentification

is not rejected, this clearly suggests a problem with the identification of the model.

Also, if an invariant rank test is used for a test for overidentifying restrictions, this test

will not have power to reject a false null if the model is underidentified. Given the

different behaviours of these test statistics in under- and weakly identified models, it is

recommended to calculate invariant and non-invariant over- and underidentification tests

for each application.

As an avenue for future research, it is important to establish the behaviour of the tests

in weakly identified models, including those with many instruments. The CU-GMM tests

are relatively insensitive to weak identification, see Newey and Windmeijer (2009). For

cross-sectional models with heteroskedasticity, the proposal of Chao et al. (2014) using

Jackknife LIML (HLIM) or Fuller (HFUL) together with their proposed T̂ statistic for

overidentification appears a promising avenue, also for testing underidentification as this

is simply applying the T̂ test to the linear auxiliary model.

Another issue for future research is the behaviour of the iterated CU-GMM estimator

as proposed in Section 3.4. For example, if starting from the 2SLS estimator, how does
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the transition to the CUE estimator over the iterations develop and after how many

iterations does this estimator establishes CU-GMM like properties? One could of course

also start the iteration process from HLIM or HFUL and for example investigate the

behaviour of the estimator and J-test after one iteration. Another interesting issue is

how the iterated CU-GMM estimator behaves in weakly identified models.
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Appendix

Proof of Proposition 1. Consider the score test for H0 : γ = 0 in model (3),

y = Xβ + Z2γ + u

= Dθ + u,

with D =
[
X Z2

]
and θ =

(
β′ γ′

)′
. The full instrument matrix is Z =

[
Z1 Z2

]
.

The null hypothesis can therefore be written as H0 : Rθ = 0, with R =
[
Okx Ikz−kx

]
,

where Okx is a (kz − kx)×kx matrix of zeros. As the unrestricted model is just identified,
the score for all IV estimators in the unrestricted model is given by

s
(
θ̂
)

= Z ′
(
y −Dθ̂

)
= 0,

with

θ̂ = (Z ′D)
−1
Z ′y

V âr
(
θ̂
)

=
(
D′ZΩ̂−1

zûZ
′D
)−1

= (Z ′D)
−1

Ω̂z,û (D′Z)
−1
,

where here û = y −Dθ̂.
Let β̂1 be any one-step GMM estimator of β in the restricted model, and let û1 =

y −Xβ̂1. Then the robust score test statistic for testing the null H0 : γ = 0 is given by

Sr

(
β̂1

)
= û′1Z (D′Z)

−1
R′
(
R(Z ′D)−1Ω̂z,û1 (D′Z)

−1
R′
)−1

R (Z ′D)
−1
Z ′û1.

Ω̂z,û1 can be written as Z
′Hû1Z, for example for a cross-sectional heteroskedastic robust

estimator, Hû1 = diag (û2
1i). As

(Z ′D)
−1
Z ′ =

(
D̂′D̂

)−1

D̂′

where

D̂ = PZD =
[
PZX Z2

]
=
[
X̂ Z2

]
,
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it follows that

Sr

(
β̂1

)
= û′1D̂

(
D̂′D̂

)−1

R′
(
R
(
D̂′D̂

)−1

D̂′Hû1D̂
(
D̂′D̂

)−1

R′
)−1

R
(
D̂′D̂

)−1

D̂′û1.

As

R
(
D̂′D̂

)−1

D̂′ =
(
Z ′2MX̂Z2

)−1
Z ′2MX̂

it follows that

Sr

(
β̂1

)
= û′1MX̂Z2

(
Z ′2MX̂Hû1MX̂Z2

)−1
Z ′2MX̂ û1.

But

Z ′2MX̂ û1 = Z ′2y − Z ′2Xβ̂1 − Z ′2PX̂y + Z ′2PX̂Xβ̂1

= Z ′2MX̂y,

and so we obtain

Sr

(
β̂1

)
= y′MX̂Z2

(
Z ′2MX̂Hû1MX̂Z2

)−1
Z ′2MX̂y

= y′MX̂ZΩ̂−1
z̃2,û1

Z ′2MX̂y .

Next, let β̂2 be the two-step GMM estimator, and consider the following version of

the robust score test

Sr

(
β̂2, β̂1

)
= û′2Z (D′Z)

−1
R′
(
R(Z ′D)−1Ω̂z,û1 (D′Z)

−1
R′
)−1

R (Z ′D)
−1
Z ′û2

= û′2MX̂Z2

(
Z ′2MX̂Hû1MX̂Z2

)−1
Z ′2MX̂ û2.

As

Z ′2MX̂ û2 = Z ′2MX̂y,

it follows that

Sr

(
β̂2, β̂1

)
= Sr

(
β̂1

)
.

The score of the two-step estimator in the restricted model is X ′ZΩ̂−1
z,û1

Z ′û2 = 0 and

hence L′D′ZΩ̂−1
z,û1

Z ′û2 = 0, where L′ =
[
Ikx Okz−kx

]
. As

(Z ′D)
−1
Z ′û2 =

(
D′ZΩ̂−1

z,û1
Z ′D

)−1

D′ZΩ̂−1
z,û1

Z ′û2,

and letting B = D′ZΩ̂−1
z,û1

Z ′D, we get

Sr

(
β̂2, β̂1

)
= û′2ZΩ̂−1

z,û1
Z ′DB−1R′

(
RB−1R′

)−1
RB−1D′ZΩ̂−1

z,û1
Z ′û2.
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Because RL = 0, it follows that, see e.g. Wooldridge (2010, p. 424),

B−1R′
(
RB−1R′

)−1
RB−1

= B−1 − L (L′BL)
−1
L′,

and so

Sr

(
β̂2, β̂1

)
= û′2ZΩ̂−1

z,û1
Z ′D

(
D′ZΩ̂−1

z,û1
Z ′D

)−1

D′ZΩ̂−1
z,û1

Z ′û2

= û′2ZΩ̂−1
z,û1

Z ′û2

= J
(
β̂2, β̂1

)
where J

(
β̂2, β̂1

)
is the GMM Hansen J-test for overidentifying restrictions.

Proof of Proposition 2. It is illustrative to first set G = Ikz and F = Ikx+1, hence

Θ = Π∗ and Θ̂ = Π̂∗. Order the columns of Π∗ such that Π∗ =
[

Π πy
]
, and likewise

for Π̂∗. It then follows from the discussion in Kleibergen and Paap (2006, pp. 101-102)

for the IV model, that for q = kx and πy = Πβ

Aq = Π;Bq =
[
Ikx β

]
AqBq =

[
Π Πβ

]
Aq,⊥ =

(
− (Π′1)−1 Π′2

Ikz−kx

)(
Id + Π2Π−1

1 (Π′1)
−1

Π′2

)−1/2

Bq,⊥ =
(

1 −β′
)
/
√

1 + β′β = ψ′/
√
ψ′ψ.

For the test statistic, we can ignore the standardisation terms
(
Ikz−kx + Π2Π−1

1 (Π′1)−1 Π′2
)−1/2

and (ψ′ψ)
−1/2. It then follows that the test statistic is based on

Λ̂q =
[
−Π̃2Π̃−1

1 Ikz−kx

]
Π̂∗ψ̃ (A.1)

where the estimators Π̃ and Π̃β̃ are determined from

ÂqB̂q =
[

Π̃ Π̃β̃
]
.

We therefore see that Λ̂q has the same formula as the estimators for γ in (9) and (16),

given the estimates for Π and β. For this case where G = Ikz and F = Ikx+1, Π̃ and β̃

are given by(
Π̃, β̃

)
= arg min

β,Π

((
π̂y
π̂

)
−
(

Πβ
π

))′((
π̂y
π̂

)
−
(

Πβ
π

))
.
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Exactly the same formula for Λ̂q as in (A.1) is obtained for general choices of F and G,

only the estimators Π̃ and β̃ vary with F and G. Denote these estimators Π̃GF and β̃GF .

Then the decomposition for Θ̂ is

Θ̂ = GΠ̂∗F ′ = ÂqB̂q + Âq,⊥Λ̂qB̂q,⊥

and hence

Π̂∗ = (G′G)
−1
G′
(
ÂqB̂q + Âq,⊥Λ̂qB̂q,⊥

)
F (F ′F )

−1
,

from which it follows that

(G′G)
−1
G′
(
ÂqB̂q

)
F (F ′F )

−1
=
[

Π̃GF Π̃GF β̃GF

]
,

with(
Π̃GF , β̃GF

)
= arg min

β,Π

((
π̂y
π̂

)
−
(

Πβ
π

))′
(F ′F ⊗G′G)

((
π̂y
π̂

)
−
(

Πβ
π

))
.

Proof of Lemma 1. Following Bowden and Turkington (1984, pp. 112-113), consider

the following minimisation problem

min
β,Π∗

1

2

((
π̂y
π̂

)
−
(
πy
π

))′
(A⊗B)

((
π̂y
π̂

)
−
(
πy
π

))
s.t. Πβ − πy = Π∗ψ = 0

where Π∗ =
[
πy Π

]
and ψ =

(
−1 β′

)′
. A and B are (kx + 1)×(kx + 1) and kz×kz

symmetric nonsingular matrices respectively.

The Lagrangean is given by

L (π∗, β, µ) =
1

2
(π̂∗ − π∗)′ (A⊗B) (π̂∗ − π∗) + µ′Π∗ψ.

Let a tilde˜denote the constrained estimators, then the first-order conditions are given
by

∂L (π∗, β, µ)

∂π∗
= − (A⊗B) (π̂∗ − π̃∗) +

(
ψ̃ ⊗ µ̃

)
= 0 (A.2)

∂L (π∗, β, µ)

∂β
= Π̃′µ̃ = 0 (A.3)

∂L (π∗, β, µ)

∂µ
= Π̃∗ψ̃ = 0. (A.4)

49



From (A.2) it follows that

−B
(

Π̂∗ − Π̃∗
)
A+ µ̃ψ̃

′
= 0. (A.5)

Hence, postmultiplying by A−1ψ̃

−B
(

Π̂∗ − Π̃∗
)
ψ̃ + µ̃ψ̃

′
A−1ψ̃ = 0

and so

µ̃ =
B
(

Π̂∗ − Π̃∗
)
ψ̃

ψ̃
′
A−1ψ̃

=
BΠ̂∗ψ̃

ψ̃
′
A−1ψ̃

.

From (A.3) it then follows that

Π̃′µ̃ =
Π̃′BΠ̂∗ψ̃

ψ̃
′
A−1ψ̃

= 0,

and so Π̃B
(
π̂y − Π̂β̃

)
= 0, or

β̃ =
(

Π̃′BΠ̂
)−1

Π̃′Bπ̂y. (A.6)

Therefore, if B = Z ′Z, then

β̃ =
(

Π̃Z ′ZΠ̂
)−1

Π̃Z ′Zπ̂y

=
(
X̃ ′X̂

)−1

X̃ ′y =
(
X̃ ′X

)−1

X̃ ′y.

Further, from (A.5)

Π̃∗ = Π̂∗ −B−1µ̃ψ̃
′
A−1

it follows that, with C =
[

0 Ikx
]′
,

Π̃ = Π̂− Π̂∗ψ̃ψ̃
′
A−1C

ψ̃
′
A−1ψ̃

= Π̂−

(
Π̂β̃ − π̂y

)
ψ̃ψ̃
′
A−1C

ψ̃
′
A−1ψ̃

Therefore

Π̃′BΠ̃ = Π̃′BΠ̂−
Π̃′B

(
Π̂β̃ − π̂y

)
ψ̃
′
A−1C

ψ̃
′
A−1ψ̃

,
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and so it follows from (A.6) that Π̃′B
(

Π̂β̃ − π̂y
)

= 0, and hence Π̃′BΠ̃ = Π̃′BΠ̂. There-

fore, when B = Z ′Z we get that Π̃′Z ′ZΠ̃ = Π̃′Z ′ZΠ̂ and hence

β̃ =
(
X̃ ′X̃

)−1

X̃ ′y.

Proof of Lemma 2. Next consider the following minimisation problem

min
β,Π∗

1

2

((
π̂y
π̂

)
−
(
πy
π

))′
(Ikx+1 ⊗B)A (Ikx+1 ⊗B)

((
π̂y
π̂

)
−
(
πy
π

))
s.t. Πβ − πy = Π∗ψ = 0

where as above Π∗ =
[
πy Π

]
and ψ =

(
−1 β′

)′
. A and B are (kx + 1) kz ×

(kx + 1) kz and kz × kz symmetric nonsingular matrices respectively.
The Lagrangean is given by

L (π∗, β, µ) =
1

2
(π̂∗ − π∗)′ (Ikx+1 ⊗B)A (Ikx+1 ⊗B) (π̂∗ − π∗) + µ′Π∗ψ,

and the first-order conditions are given by (A.3), (A.4) and

∂L (π∗, β, µ)

∂π∗
= − (Ikx+1 ⊗B)A (Ikx+1 ⊗B) (π̂∗ − π̃∗) +

(
ψ̃ ⊗ µ̃

)
= 0. (A.7)

From (A.7) it follows that

(Ikx+1 ⊗B) (π̂∗ − π̃∗) = A−1
(
Ikx+1 ⊗B−1

) (
ψ̃ ⊗ µ̃

)
= A−1

(
ψ̃ ⊗ Ikz

)
B−1µ̃

Pre-multiplying both sides by
(
ψ̃
′
⊗ Ikz

)
results in(

ψ̃
′
⊗B

)
(π̂∗ − π̃∗) =

(
ψ̃
′
⊗ Ikz

)
A−1

(
ψ̃ ⊗ Ikz

)
B−1µ̃.

As (
ψ̃ ⊗B

)
(π̂∗ − π̃∗) = B

(
Π̂∗ − Π̃∗

)
ψ̃ = BΠ̂∗ψ̃,

it follow that

µ̃ = B
((
ψ̃
′
⊗ Ikz

)
A−1

(
ψ̃ ⊗ Ikz

))−1

BΠ̂∗ψ̃,

and hence the solution for β̃ satisfies

β̃ =

(
Π̃′B

((
ψ̃
′
⊗ Ikz

)
A−1

(
ψ̃ ⊗ Ikz

))−1

BΠ̂

)−1

Π̃′B
((
ψ̃
′
⊗ Ikz

)
A−1

(
ψ̃ ⊗ Ikz

))−1

Bπ̂y.
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Let B = Z ′Z and we choose for example A = (
∑n

i=1 (wiw
′
i)⊗ (ziz

′
i))
−1 for a het-

eroskedasticity robust variance estimator of π̂∗ under the null that π∗ = 0. We get that(
ψ̃
′
⊗ Ikz

)
A−1

(
ψ̃ ⊗ Ikz

)
=
∑n

i=1 ũ
2
i ziz

′
i, where ũi = wiψ̃ = yi−x′iβ̃, and the solution for

the CUE estimator satisfies

β̃ =

Π̃′Z ′Z

(
n∑
i=1

ũ2
i ziz

′
i

)−1

Z ′X

−1

Π̃′Z ′Z

(
n∑
i=1

ũ2
i ziz

′
i

)−1

Z ′y.
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