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Abstract

This paper endogenizes the network for the seminal model presented in Ballester
et al. (2006) by way of a simple simultaneous move game. Agents choose with whom
to associate and how much e�ort to exert. E�ort levels display local strategic comple-
mentarities and global strategic substitutes. I show that all pairwise Nash equilibrium
networks are nested split graphs. As in Ballester et al. (2006), agents' equilibrium
e�ort levels are proportional to Bonacich centrality. However, their ranking now coin-
cides with a simpler measure, which is also easier to identify: degree centrality. I then
study key player policies, which aim at minimizing aggregate e�ort levels via the elim-
ination of an agent. In the spirit of network formation, after an agent was eliminated
from a pairwise Nash equilibrium network, the remaining agents may revise their e�ort
decisions and adapt their linking behavior. It is shown that, if the parameter governing
global strategic substitutes is su�ciently small, then eliminating a most central agent
also decreases aggregate e�ort levels most. This mirrors results obtained by Ballester
et al. (2006). However, when global strategic substitutes are large, then, di�erent
from Ballester et al. (2006), eliminating a most central agent may not be optimal.
Eliminating a most central agent, who in equilibrium also exerts highest criminal ef-
fort, decreases competition/congestion e�ects and increases incentives of the remaining
agents to create new links. The latter e�ect on the aggregate level of crime may out-
weigh the former. These results are relevant for a wide range of applications, such as
juvenile delinquency and crime, R&D expenditure of �rms, bank bailouts and trade.
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1 Introduction

Delinquency and crime are regularly considered to be among the most pressing social prob-
lems.1 A better understanding of its determinants and the design of e�ective policy has
the potential to yield signi�cant social and economic bene�ts. In the U.S. current yearly
expenditure on crime control amounts to approximately 270 billion USD, of which more than
80 billion USD are spent on incarceration alone, with a staggering 2.2 million imprisoned
individuals nationwide.2 While crime rates are declining, the number of prisoners continues
to rise. Brute force policies, such as �zero tolerance,� are reaching their limits and simply
locking away more individuals for longer ceases to be a viable strategy to control crime. One
may then ask, what are suitable alternatives? Current e�orts include the use of random-
ized severity of punishment, a concentration of enforcement resources, and granting convicts
probation and parole (see, for example, Kleinman, 2009).

Recently, the economics literature has produced interesting insights, which can be applied
to the design of more e�ective and e�cient policy to �ght crime. This approach rests on two
key ideas. First, building on Becker (1968), criminals are assumed to take expected costs
and bene�ts into account when committing a crime or delinquency. Second, peer e�ects
and the structure of bilateral relationships play a crucial role for determining individual
criminal and delinquent behavior.3 So-called key player policies have been derived, which
identify the agent to be optimally targeted in a network of criminals, so as to decrease
aggregate criminal activity maximally. Empirical studies show that these policies, which
take the whole network into account in a non-trivial way, outperform traditional approaches.4

However, theoretical results obtained to date postulate that crime networks are �xed. That
is, after a criminal is apprehended, the remaining agents are assumed to not revise their
linking decisions. In contrast, in this paper a model is presented, for which the network
is assumed to be endogenous and, after an agent is eliminated, the remaining agents may
revise not only their decisions regarding criminal activity, but also with whom to associate.
It is shown that introducing endogenous network formation matters. In particular, the
key player policy that is optimal when the network is �xed, may not be optimal when the
network is endogenous and agents may now also adjust their linking decisions. The intuition
is that, if the key player policy for a �xed network is applied to a network that is, in fact,
endogenous, then the eliminated agent exerts the highest level of criminal activity in the
network. However, removing such an agent also decreases global congestion/competition the
most and the remaining agents may subsequently �nd it pro�table to create new links. This
e�ect may outweigh the e�ect of removing an agent exerting the highest criminal e�ort.

At this point it is worth to brie�y discuss the implementability of these type of policies.
One requirement is knowledge of the network and it may appear that this is di�cult to obtain

1See, for example, https://www.nytimes.com/interactive/2017/02/27/us/politics/most-important-
problem-gallup-polling-question.html.

2See https://obamawhitehouse.archives.gov/sites/default/�les/page/�les/20160423_cea_incarceration_
criminal_justice.pdf
3See, for example, Sutherland (1947), Sarnecki (2001), Warr (2002), Haynie (2001) and Patacchini and

Zenou (2012).
4For an interesting empirical study see Lindquist and Zenou (2014). The authors study changes in criminal

activity over time, as criminals leave di�erent crime networks, either due to imprisonment or death. The
key player policy outperforms a random policy by 6.4%, removing the most active player by 2.4%, removing
the player with the highest betweenness centrality by 6.4% and the policy of removing the player with the
highest eigenvector centrality by 16%.
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in the context of crime. However, such data exists or can often be obtained. For example,
Sarnecki (2001) constructs a criminal network in Sweden by using police records, which
register each time two (or more) individuals are suspected of a crime. Similar data is available
in many countries.5 Once a criminal network is obtained, there are di�erent approaches how
one may implement a key player policy in practice. Obviously, the state can and should
not imprison criminals unless they are proven guilty of a crime. The state may, however,
o�er incentives for targeted criminals to leave the network. This can be achieved through
heightened monitoring, providing job opportunities, employment and educational training,
or even organizing geographic relocation. Policies of this sort have been implemented in the
U.S. and Canada (Tremblay et al., 1996).

The seminal contribution in economics, on which not only the literature on crime net-
works, but also much of the recent literature on R&D networks builds, with further appli-
cations in inter-bank lending and trade, is Ballester et. al (2006). The authors study games
with linear-quadratic utilities, where agents choose e�ort levels simultaneously. These games
can be interpreted as games on a �xed network, with local strategic complements in e�ort
levels for direct neighbors in the network, a globally uniform payo� substitutability com-
ponent and an own-concavity e�ect. Before presenting the main results of Ballester et. al
(2006) and relating them to the present paper, I brie�y describe two underlying assump-
tions, which yield a model with local strategic complementarities and global substitutes for
the application considered here. A formal derivation of the payo� function is provided in the
model description. First, a criminal or delinquent's probability of being caught is lower, the
higher the criminal activities of her direct neighbors in the crime network and, second, there
is global competition for crime opportunities. Note that the most common argument for
the former is that delinquents learn how to become more e�cient criminals due to a direct
know-how transfer.

Ballester et al. (2006) o�ers two main insights. The �rst, striking result is that, in the
unique Nash equilibrium, e�ort levels are proportional to Bonacich centrality. An agent's
Bonacich centrality is determined by the sum of all weighted paths of di�erent lengths em-
anating from the agent in the network, where longer paths are weighted by less.6 Note,
however, that the ranking of agents in terms of their Bonacich centrality is typically depen-
dent on the decay parameter chosen. Furthermore, for a given network it is often not easy to
spot which agent is the one with the highest Bonacich centrality. The second main result is
concerned with key player policies when the network is �xed. That is, after an elimination,
the remaining agents may adjust their e�ort levels, but cannot revise their linking decisions.
The authors show that a planner, whose aim is to maximally decrease aggregate e�ort lev-
els, should remove an agent with the highest inter-centrality. An agent's inter-centrality is
closely related to Bonacich centrality; it is her Bonacich centrality and the agent's contribu-
tion to the Bonacich centrality of all other agents. Note that agents do not anticipate being
targeted. That is, the targeting strategy of the planner does not enter agents' payo� func-
tions. However, if a planner were to, say, switch from a zero tolerance to a key player policy,
then arguably agents would learn about it over time, which in turn may change incentives.

5Tayebi et al. (2011) use a data set provided by the Royal Canadian Mounted Police (RCMP), which
comprises �ve years of arrest-data and is available for research purposes. Coplink (Hauck et al., 2002) is
a large scale research project in crime data mining in the United States. It uses information from various
sources, such as habits of criminals and close associations in crime to capture network connections. Mas-
trobuoni and Patacchini (2012) use a data set from the Federal Bureau of Narcotics on U.S. ma�a members,
which allows the authors to construct a criminal network.

6A formal de�nition of Bonacich centrality is provided in Appendix B.
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Although interesting, I follow the approach of Ballester et al. (2006) and view the latter
considerations as outside of the scope of the present paper.

Next a brief description of the model considered here is provided, together with the main
results. I �rst propose a simple simultaneous move game, in which agents choose a non-
negative, continuous e�ort level and announce to whom they want to be linked. A bilateral
link is created when the announcement is mutual. Gross payo�s are based on the payo�
function in Ballester et al. (2006), while links are assumed to be unweighted, undirected
and to incur a linear cost.7,8 The equilibrium concept used is pairwise Nash equilibrium.
Pairwise Nash equilibrium re�nes Nash equilibrium and allows for deviations in which agents
simultaneously create a link (and best respond to each other's e�ort level). This rules out
con�gurations in which pairs of agents are not connected, but both agents �nd it pro�table
to create a link among themselves. I show that all pairwise Nash equilibrium networks are
nested split graphs and that a pairwise Nash equilibrium always exists. Nested split graphs
are a particular case of core-periphery networks and have recently drawn increased attention
in the economics literature on networks.9 The de�ning feature of nested split graphs is
nestedness. Neighborhoods are nested in the following sense: agents with a higher number
of links are connected to all agents to which an agent with fewer links is connected. Note
that the structure of empirically observed crime networks appears to depend on the type
of criminal activity. Canter (2004), for example, �nds that networks of hooligans are less
structured than property crime and drug networks. However, the presence of a core group is
described as the most recognized structural feature.10 Nested split graphs are also interesting
from a theoretical point of view in our context, as for these networks the ranking of Bonacich
centralities (and therefore Nash equilibrium e�ort levels) coincides with inter-centrality and
agents' number of links. That is, relative to Ballester et al. (2006), the ranking of e�ort
levels and the set of key players is summarized by a much simpler network measure than
Bonacich centrality or inter-centrality: the agents' number of links.

I then turn to key player policies when the network is endogenous. Starting from a
pairwise Nash equilibrium network, a planner may eliminate one agent, after which a pairwise
best response dynamics with the following properties ensues. As in pairwise Nash equilibrium
(and pairwise stability), link formation is separated from link deletion. In the link formation
stage, any link is added that is pro�table for a pair of agents in isolation, given the current
network and corresponding vector of Nash equilibrium e�ort levels. In the link deletion stage,
agents best respond to the current network by deleting any subset of links. In between link
formation and link deletion stages, agents adjust their e�ort levels to the Nash equilibrium
e�ort level of the current network, i.e. after links were added/links deleted. A key player
policy is said to exist when the best response dynamic converges. A key player policy then
prescribes eliminating an agent such that the sum of e�ort levels is minimal for the network
to which the pairwise best response dynamics converge. I show that, when the parameter
governing global substitution e�ects is su�ciently low, then there does not exist a pair of
agents that �nds it pro�table to create a link and the process always converges. Furthermore,
the key player policy coincides with the one proposed by Ballester et al. (2006) and, in the

7I relate the payo� function to the one used in Ballester et al. (2006) formally in Appendix A.
8If links are unweighted, then they are assumed to be all of same strength or intensity. If links are

undirected, then they are all bidirectional.
9Goyal and Joshi (2003) is a very early paper that features nested split graphs (the authors call them

interlinked stars). For a good discussion of nested split graphs, see König et al., 2014.
10See also Dorn and South (1990), Dorn, Murji and South (1992), Ruggiero and South (1997) and Johnston

(2000).
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pairwise Nash equilibrium networks obtained, this implies that an agent with the highest
e�ort level (and the highest number of links) is eliminated. However, this is not always the
case when the parameter governing global substitution e�ects is large. More speci�cally, an
example is provided, where eliminating an agent with the highest inter-centrality, as proposed
by Ballester et al. (2006), is not optimal. That is, when designing key player policies, taking
into account how the network will react to an elimination can be important.

Below I brie�y relate my paper to the networks literature in economics. Ballester et al.
(2006) was the starting point for a rich body of theoretical and empirical research (see, for
example, Calvó-Armengol et al., 2009, Ballester et al., 2010 and Helsley and Zenou, 2014).
However, endogenizing the network proved di�cult. Recent e�orts have focused on models
of network formation and action choices in a dynamic setting with myopic agents (see, for
example, König et al., 2014, König et al., 2014 and Cohen-Cole et al., 2015). In these papers
agents cannot revise their whole linking strategy (and only create at most one link at zero
cost), while the deletion of links is not strategic and occurs due to decay over time. It is then
shown that the stochastically stable networks of the dynamic process are nested split graphs.
One of the advantages of these models is that they can be brought to the data. In contrast,
my paper is the �rst to show that these network con�gurations can be sustained as Nash
equilibria for the type of payo� functions considered in Ballester et al. (2006).11 Another
attractive feature is that I consider two-sided network formation, where both agents involved
in a link incur a cost, while the aforementioned papers all assume unilateral creation of links.
Hiller (2017) studies a similar setting as the one considered in the present paper, with a class
of payo� functions for which the linear-quadratic speci�cation is a special case, but without
the global substitution term.12 Introducing these congestion or competition e�ects not only
complicates the analysis, but is also important for many of the applications, as disregarding
them often requires adopting overly strong assumptions. For example, in the case of R&D
agreements it implies that �rms operate in entirely separate markets, while for interbank
lending one needs to assume that agents are not at all able to substitute across loans. To
the best of my knowledge, this is also the �rst paper to study key player policies when the
network is endogenous.

The paper is organized as follows. Section 2 provides the model description, while Section
3 shows that all pairwise Nash equilibria are nested split graphs and that a pairwise Nash
equilibrium always exists. Section 4 introduces pairwise best response dynamics, provides a
general result for the case when the parameter governing global substitution e�ects is small
and, �nally, an example for when global substitution e�ects can be considered as large.
Section 6 concludes. All proofs are relegated to Appendix B. The relationship between
Ballester et al. (2006) and the payo� function considered here is explained in detail in
Appendix A, while Bonacich centrality is de�ned in Appendix B.

11Joshi and Mahmud (2016) present a two-stage game, in which agents create links in the �rst stage and
play Nash equilibrium e�ort levels in the second stage, and show that for limiting cases of parameter values
pairwise stable networks are nested split graphs. However, no existence result is provided and pairwise stable
networks are not necessarily Nash equilibria.

12For further work on network formation games with simultaneous action and linking choices, see Bätz
(2014), Galeotti and Goyal (2010) and Kinateder and Merlino (2017).
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2 Model Description

Let N = {1, 2, ..., n} be the set of players with n ≥ 3. Each agent i chooses an e�ort level
xi ∈ X and announces a set of agents to whom the agent wishes to be linked, which is
represented by a row vector gi = (gi,1, ..., gi,i−1, gi,i+1, ..., gi,n−1), with gi,j ∈ {0, 1} for each
j ∈ N\{i}. An entry gi,j = 1 in gi is interpreted as agent i announcing a link to agent
j, while an entry gi,j = 0 in gi is taken to mean that agent i does not announce a link to
agent j. Assume X = [0,+∞) and gi ∈ Gi = {0, 1}n−1. The set of agent i's strategies is
denoted by Si = X × Gi and the set of strategies of all players by S = S1 × S2 × ... × Sn.
A strategy pro�le s = (x,g) ∈ S then speci�es the individual e�ort level for each player,
x = (x1, x2, ..., xn), and the set of intended links, g = (g1,g2, ...,gn). A link between agents
i and j, denoted by ḡi,j = 1, is created if and only if both agents i and j announce the
link. That is, ḡi,j = 1 if and only if gi,j = gj,i = 1 (and ḡi,j = 0 otherwise) and therefore
ḡi,j = ḡj,i. I de�ne the undirected graph ḡ as ḡ = {{i, j} ∈ N : ḡi,j = 1}. That is,
ḡ is a collection of links, which are listed as subsets of N of size 2. We write ḡ ⊂ ˆ̄g to
indicate that {{i, j} ∈ N : {i, j} ∈ ḡ} ⊂ {{i, j} ∈ N : {i, j} ∈ ˆ̄g} and write ḡ = ˆ̄g for
{{i, j} ∈ N : {i, j} ∈ ḡ} = {{i, j} ∈ N : {i, j} ∈ ˆ̄g}. We write ḡ ⊆ ˆ̄g for {{i, j} ∈ N :
{i, j} ∈ ḡ} ⊆ {{i, j} ∈ N : {i, j} ∈ ˆ̄g}. The presence of a link ḡi,j = 1 allows players to
directly bene�t from the e�ort level exerted by the respective other agent involved in the link.
Denote the set of i's neighbors in ḡ with Ni(ḡ) = {j ∈ N : ḡi,j = 1} and the corresponding
cardinality with ηi(ḡ) = |Ni(ḡ)|.13 The aggregate e�ort level of agent i's neighbors in ḡ,
i.e. the e�ort level accessed, is written as yi(ḡ) =

∑
j∈Ni(ḡ) xj. The aggregate e�ort level of

all agents other than i is written as zi(ḡ) =
∑

j∈N\{i} xj. We sometimes write yi for yi(ḡ)

and zi for zi(ḡ) when it is clear from the context. Given a network ḡ, ḡ + ḡi,j and ḡ − ḡi,j
have the following interpretation. When ḡi,j = 0 in ḡ, then ḡ + ḡi,j adds the link ḡi,j = 1,
while if ḡi,j = 1 in ḡ, then ḡ + ḡi,j = ḡ. Similarly, if ḡi,j = 1 in ḡ, then ḡ − ḡi,j deletes the
link ḡi,j, while if ḡi,j = 0 in ḡ, then ḡ − ḡi,j = ḡ. The network is called empty and denoted
by ḡe if ḡi,j = 0 ∀i, j ∈ N and complete and denoted by ḡc if ḡi,j = 1 ∀i, j ∈ N . For our
analysis it will be useful to de�ne paths, components and sub-components. A path between
agents i and j in network ḡ is a sequence of links ḡ1,2, ḡ2,3, ..., ḡK−1,K such that ḡk,k+1 = 1 for
each k ∈ {1, 2, ..., K − 1}, with i = 1 and j = K and such that each agent in the sequence
1, 2, ..., K is distinct. Components are maximal subsets of agents N s ⊂ N , such that for
every i, j ∈ N s, there exists a path between i and j. A component is called complete, if all
links between all agents in a component are present. Note that the binary relationship of
�being connected by a network path� is an equivalence relationship and therefore components
partition the set of agents. With some abuse of notation we write k ∈ ḡs to denote that
agent k lies in component N s in network ḡ. We sometimes use subscripts to distinguish
di�erent components. A network is said to be connected if there is only one component.14

Payo�s of player i under strategy pro�le s = (x,g) are given by

Πi(s) = πi(x,ḡ)− ηi(ḡ)κ,

where κ denotes linking cost with κ > 0. Gross payo�s, i.e. payo�s excluding linking
cost, πi(x,ḡ), are given by the frequently employed linear-quadratic payo� function with
local complementarities and global substitutes (Ballester et al., 2006). That is,

13Agents are not linked to themselves and not included in their own neighborhood.
14Jackson (2010) and Vega-Redondo (2007)
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πi(x,ḡ) = αxi − 1
2
βx2

i + λxi
∑

j∈Ni(ḡ) xj − γxi
∑

j∈N\{i} xj ∀i ∈ N .

Note that Ballester et al. (2006) allow for weighted graphs, while the focus here is on
unweighted graphs. I relate the speci�cation in Ballester et al. (2006) in more detail to
the one presented in this paper in Appendix A. Gross payo�s πi(x,ḡ) can be written as a
function of own e�ort, xi, the sum of e�ort levels of direct neighbors, yi(ḡ) =

∑
j∈Ni(ḡ) xj

and the sum of e�ort levels of all agents di�erent from i, zi(ḡ) =
∑

j∈N\{i} xj. For ease of

notation we sometimes write πi(xi, yi, zi) and drop the subscripts when they are clear from
the context.

Note that e�ort induces a local positive externality, since ∂π(x, y, z)/∂y > 0, and, if
λ > γ, then e�ort levels are strict local strategic complements, i.e. ∂2π(x, y, z)/∂x∂y > 0
∀x, y, z. We assume λ > γ ≥ 0 throughout, unless speci�ed otherwise. Furthermore, for
γ > 0, e�ort levels of agents that are not direct neighbors in ḡ induce negative externalities,
due to ∂π(x, y, z)/∂z < 0. Moreover, the payo� function displays global strategic substitutes,
since ∂2π(x, y, z)/∂x∂z < 0 holds ∀x, y, z. To guarantee the existence and uniqueness of an
(interior) Nash equilibrium on any �xed network ḡ, I can build on a result by Ballester et
al. (2006) and assume that λ

β
< 1

n−1
holds. Next the best response function and the value

function are derived, which will be useful for our equilibrium characterization.

Best response function. The unique best response of player i to the vector of e�ort levels
x−i in network ḡ is given by

x̄i(x−i, ḡ) = x̄i(yi, zi) = 1
β

(
α + λ

∑
j∈Ni(ḡ) xj − γ

∑
j∈N\{i} xj

)
.

Value function. The maximized gross payo� under activity x−i in network ḡ is given by

πi(x̄i,x−i, ḡ) = v(yi, zi) = 1
2β

(
α + λ

∑
j∈Ni(ḡ) xj − γ

∑
j∈N\{i} xj

)2

.

Before de�ning pairwise Nash equilibrium, I brie�y derive the above payo� function in
the context of crime, based on Jackson and Zenou (2014). Assume that expected gains of
crime to agent i are given by

πi(x,g) = bi(x)− pi(x,g)f ,

with {
bi(x) = α′xi − 1

2
(β − γ)x2

i − γxi
∑

j∈N xj

pi(x,g) = p0xi(A− λ′
∑

j∈Ni(ḡ) xj).

Expected cost of criminal activity, pi(x,g)f , increases in own criminal activity, xi, since
being involved in more criminal activities increases the chance of being caught. Local strate-
gic complementarities stem from a decrease in the apprehension probability in direct neigh-
bors' involvement in crime, due to direct know-how transfer. Note that I assume A to be
su�ciently large, so that the apprehension probability is always positive for all criminals.15

Finally, global strategic substitutes are due to congestion e�ects for crime opportunities,
captured by γxi

∑
j∈N xj in the expression for bi(x).16

15See König, Liu and Zenou (2014) for how to calculate an appropriate lower bound on A.
16One way to argue for as to why congestion e�ects should a�ect agents with higher criminal activity
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Direct substitution yields

πi(x,g) = (α′ − p0fA)xi − 1
2
βx2

i + p0fλ
′xi
∑

j∈Ni(ḡ) xj − γxi
∑

j∈N\{i} xj.

For α = α′ − p0fA > 0 and λ = p0fλ
′ these payo�s are equivalent to the speci�cation

used in Ballester et al. (2006).
Next pairwise Nash equilibrium (PNE) is de�ned in the presence of simultaneous moves

and e�ort choice. I assume that when agents i and j deviate to create a link, then devi-
ation e�ort levels are mutual best responses (while the remaining agent's e�ort levels are
assumed to remain unchanged). The corresponding deviation e�ort levels are denoted by
x′i = x̄(yi(ḡ) + x′j, zi(ḡ) + x′j − xj). To simplify notation I sometimes write x′i(ḡ + ḡ+

i,j) to
denote agent i's e�ort level when i and j create a link in network ḡ.

A strategy pro�le s∗ = (x∗,g∗) is a pairwise Nash equilibrium i�

• for any i ∈ N and every si ∈ Si, Πi(s
∗) ≥ Πi(si, s

∗
−i);

• for all ḡi,j = 0, if Πi(x
′
i, x
′
j,x
∗
−i,−j, ḡ

∗ + ḡi,j) > Πi(s
∗),

then Πj(x
′
i, x
′
j,x
∗
−i,−j, ḡ

∗ + ḡi,j) < Πj(s
∗).

A pairwise Nash equilibrium is both a Nash equilibrium and pairwise stable and therefore
re�nes Nash equilibrium. Pairwise Nash equilibrium allows for deviations where a pair
of agents creates a link (and deviating agents best respond to each other's e�ort level).
Furthermore, pairwise Nash equilibrium allows for deviations in which an agent deletes any
subset of existing links (and adjusts her e�ort level). However, deviations where a pair of
agents creates a link and/or adjusts e�ort levels and simultaneously deletes any subset of
existing links are not considered. An agent i's deviation strategy regarding the announcement
of links is denoted with g′i and the network after proposed deviation with ḡ′.

3 Analysis - Network Formation

Note �rst that for (x, ḡ) to be a pairwise Nash equilibrium, we need that agents play Nash
equilibrium e�ort levels on the network ḡ. To show existence of a unique NE e�ort levels, I
can resort to Theorem 1 in Ballester et al. (2006). I then show that Nash equilibrium e�ort
levels must be equal for all players in a complete component. Furthermore, singleton agents
display same e�ort levels.

Proposition 1: For any �xed network, ḡ, there exists a unique NE in e�ort levels. Fur-
thermore, (i) NE e�ort levels are equal for all agents in a complete component, (ii) NE
e�ort levels are equal for all singleton agents.

Before presenting the existence result, two cost thresholds are de�ned, κ and κ. The lower
threshold, κ, is given by the gross marginal payo� when a pair of agents creates a link in the
empty network, ḡe. The higher threshold, κ, is de�ned as the average gross marginal payo�
of linking to n− 1 agents in the complete network, ḡc. Denote the unique Nash equilibrium

more, as re�ected in the term γxi
∑
j∈N xj , is that when aggregate crime levels are higher, the public may

become more vigilant, which in turn has a higher impact on agents with high individual levels of criminal
activity.
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e�ort level in the complete network, ḡc, by x(ḡc) and the unique Nash equilibrium e�ort
level in the empty network, ḡe, by x(ḡe). Furthermore, denote the corresponding vectors of
Nash equilibrium e�ort levels with x(ḡc) and x(ḡe).

De�nition 1: κ = v
(
x′i(ḡ

e + ḡ+
i,j), x

′
i(ḡ

e + ḡ+
i,j) + (n− 2)x(ḡe)

)
− v (0, (n− 1)x(ḡe))

= α2β(2(β+γ)−λ)λ
2(β+(n−1)γ)2(β+γ−λ)2

and

κ = 1
n−1

(v ((n− 1)x(ḡc), (n− 1)x(ḡc))− v(0, (n− 1)x(ḡc)))

= α2λ(2β−(n−1)λ)
2β(β+(n−1)(γ−λ))2

.

Note �rst that that one can show that for the parameter ranges considered κ < κ holds.
The lower of the two bounds, κ, is de�ned as the marginal payo�s of a pair of agents
creating a link in the empty network. Therefore, for linking cost κ ≥ κ the empty network
is a pairwise Nash equilibrium. The higher of the bounds, κ, is given by the average gross
marginal payo� of linking to n− 1 agents in the complete network. Since the value function
is convex in e�ort level accessed (for any �xed value of zi) and since e�ort levels are the same
for all agents, an agent in the complete network either �nds it pro�table do delete all links,
or none. Therefore, if κ < κ, then no agent �nds it pro�table to delete any links and the
complete network is a pairwise Nash equilibrium. Finally, κ < κ guarantees that a pairwise
Nash equilibrium exists, as summarized in the statement of Proposition 2.

Proposition 2: κ < κ holds. Furthermore, (i) if κ < κ then (x(ḡc), ḡc) is a PNE, (ii) if
κ > κ then (x(ḡe), ḡe) is a PNE and (iii) if κ ∈ [κ, κ] then (x(ḡc), ḡc) and (x(ḡe), ḡe) are
PNE.

Before presenting the �rst main result, I formally de�ne nested split graphs below, which
are a strict subset of core-periphery networks.17,18 Note that the star, the complete and the
empty network are nested split graphs.

De�nition 2: A network ḡ is a nested split graph if and only if

[ḡi,l = 1 and ηk(ḡ) ≥ ηl(ḡ)]⇒ ḡi,k = 1.

In the following I provide intuition for Theorem 1. Assume �rst that γ = 0. Note �rst
that, due to strategic complementarities, agents who access higher e�ort levels also exert
higher e�ort levels. Due to the strict convexity of the value function, agents who access higher
e�ort levels bene�t more from linking to any particular agent. Conversely, agents prefer to
link to agents with higher e�ort levels. Therefore, in any pairwise Nash equilibrium, agents
with higher e�ort levels accessed (and therefore higher own e�ort levels) must be linked to
all agents to which agents with lower e�ort levels accessed (and therefore lower own e�ort
levels) are linked to. It is this reinforcing mechanism that generates nestedness. Agents with

17A network ḡ is a core-periphery network if the set of agents N can be partitioned into two sets, C(ḡ)
(the core) and P (ḡ) (the periphery), such that ḡi,j = 1 ∀i, j ∈ C(ḡ) and ḡi,j = 0 ∀i, j ∈ P (ḡ).

18For a formal proof that all nested split graphs are core-periphery networks see Chvátal and Hammer
(1977).
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higher e�ort levels display a higher number of links for the same reason. As the network
is nested in any pairwise Nash equilibrium, a higher number of links also implies a higher
e�ort level accessed and, since the value function is increasing, higher gross payo�s.

The case when γ > 0 is more involved, but builds on a similar intuition. Note �rst
that an agent's value function is strictly convex in the sum of direct neighbors' e�ort level,
yi, for any �xed aggregate e�ort level of the remaining agents, zi. However, since λ > γ
and since agents then always increase e�ort levels when creating a new link, one can show
that the payo�s from accessing e�ort level by creating new links is strictly convex. That
is, while there is now a di�erence between accessing e�ort level via new links vs. direct
neighbors increasing e�ort levels, much of the underlying intuition also applies to this case.
Again reinforcing incentives to create and sustain links yield nested split graphs as the only
pairwise Nash equilibrium networks.

Theorem 1: In any PNE, (x, ḡ), the network ḡ is a nested split graph such that xi < xk ⇔
ηi(ḡ) < ηk(ḡ)⇔ πi < πk holds.

4 Key Player Policy

In the following I study key-player policies when the network is endogenous. Let us start
by introducing pairwise best response dynamics. First note that that the con�guration g
and x(g) at the outset is assumed to be a pairwise Nash equilibrium. A planner can then
eliminate one agent i from the network. Denote the network after agent i was eliminated
from g with g−i0 . Agents adjust their e�orts to the Nash equilibrium levels in g−i0 , denoted
with x(g−i0 ). In the �rst time period, all links are added to the network that are pro�table
in isolation in con�guration g−i0 , x(g−i0 ). That is, any link not already present, such that
a pair of agent can pro�tably deviate by creating a link, given x(g−i0 ) and g−i0 , is added to
the network g−i0 . This yields the network g−i1 . Again agents update their e�ort levels to
Nash equilibrium e�ort levels x(g−i1 ). Given x(g−i1 ) and g−i1 , I assume agents play a minimal
optimal deletion strategy. That is, agents play a deviation strategy such that payo�s are
maximal (including the strategy where no links are deleted) and, if there are multiple such
deviation strategies, the strategy chosen is such that, loosely speaking, the number of links
in an agent's deviation strategy is minimal. (A formal de�nition of minimal optimal deletion
strategies is presented in Appendix B). The procedure is repeated until the process converges,
i.e. until some time period t′ such that g−it′ = g−it′+1 = g−it′+2. Below I summarize the above
procedure.

Pairwise best response dynamics:

• At t = 0 start with g−i0 and the corresponding vector of Nash equilibrium e�ort levels
x(g−i0 ). De�ne g−it iteratively as follows.

• Step 1: Add all links links that are pro�table for any pair of agents j and k , given
g−it and x(g−it ). Denote the resulting network by g−it+1 and corresponding e�ort levels
by x(g−it+1).

• Step 2: Agents play minimal optimal link deletion strategies given g−it+1 and x(g−it+1).
Denote the resulting network by g−it+2 and corresponding e�ort levels by x(g−it+2).

• Repeat Steps 1 and 2 until convergence is reached.
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Next a key player policy is de�ned in the context of an endogenous network. More
precisely, the key player policy aims at identifying the set of agents for which, once eliminated,
aggregate e�ort levels of the remaining agents is lowest after above procedure has converged.
Note that alternatively one could assume that the planner aims at minimizing the discounted
sum of criminal activity over an in�nite time horizon. The result in Theorem 2 then also goes
through, as long as the discount value is su�ciently close to 1. Finally, a key player policy
is said to exist if the pairwise best response dynamics converge, and to not exist otherwise.

Key player policy: Pick an agent i such that min{
∑

j∈N\{i} xj(g
−i
t′ ) | i = 1, ..., n}.

Theorem 2 shows that, if the parameter governing global substitution e�ects is su�ciently
small, then not only a key player policy exists, but it also prescribes eliminating an agent
with the highest number of links. As the initial network is a nested split graph, this is also
the agent with the highest Bonacich centrality and the highest inter-centrality. Therefore,
the key player policy presented here coincides with the key player policy in Ballester et al.
(2006). Moreover, the key player is particularly easy to identify; it is an agent with the
highest number of links. The intuition for Theorem 2 is simple. One can show that if γ is
su�ciently small, then each agent's e�ort level is smaller in g−i0 than in g and incentives to
create new links in g−i0 are strictly lower than in g. Since g is a pairwise Nash equilibrium
and no pair of agent that is not connected �nds it pro�table to create a new link, no pair
of agent that is not connected in g−i0 �nds it pro�table to create a new link. As e�ort levels
are lower for each agent and (some) agents sustain fewer links, incentives to delete links are
higher in g−i0 than in g. Using this argument iteratively, one can then show that agents never
�nd it pro�table to create new links, but may �nd it pro�table to delete links. Therefore the
process converges, as it is bounded below by the empty network. Since an agent with the
highest number of links also has the highest e�ort level, incentives to delete links are highest
in g−i0 , and at every iteration the resulting network can be considered as minimal.19 From
Theorem 2 in Ballester et al. (2006) we know that if one network covers another network
(i.e. if all links are present in one network that are also present in the other network, and
some additional links), then the aggregate e�ort level is higher in the former than in the
latter. That is, eliminating an agent with the highest number of links is optimal. It is worth
noting that this result appears robust to, for example, drawing at random either pairs of
agents that are presented with the opportunity to create a new link, or individual agents
that may update their strategies, as we can apply the same reasoning as above.

Theorem 2: If γ is su�ciently small, then a key player policy always exists and it prescribes
eliminating an agent with the highest number of links. Furthermore,

∑
j∈N\{i} xj(g

−i
t′ ) <∑

j∈N xj(g) holds.

Finally, I provide an example, depicted in Figure 1 below, for which the key player policy
prescribed in Theorem 2, and therefore the key player policy in Ballester et al. (2006), does
not select the agent that minimizes aggregate e�ort levels. Assume that n = 7, α = 1,
β = 5, λ = 0.2 and γ = 0.8. One can show that the network on the left is a pairwise Nash
equilibrium and I now compare eliminating a more central agent c with a more peripheral
player p. Note that when a peripheral player p is eliminated, then the remaining agents do
not �nd it pro�table to create additional links and network g−p0 is a pairwise Nash equilibrium
network. That is, proposed pairwise best response dynamics converge to g−p0 . If instead a

19Note that agents are relabeled, so that networks in which di�erent agents were removed can be compared.
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more central agent c is eliminated, yielding g−c0 , then the remaining peripheral player �nd
it pro�table to create links among themselves. This yields the complete network, which in
turn is a pairwise Nash equilibrium. Since g−p0 ⊂ g−c1 holds, we know from Theorem 2 in
Ballester et al. (2006) that the sum of criminal activity is higher in g−c1 than in g−p0 . The
intuition is that the aggregate criminal activity is lower in g−c0 than in g−p0 (since g−c0 ⊂ g−p0 ),
thereby increasing incentives to link. Furthermore, since γ is low, it is not necessarily the
case that all agents have a lower e�ort level in g−c0 than in g−p0 . Combining the two, creating
new links in a network such as g−c0 may then be more pro�table than in a network such as
g−p0 .

C

P

Eliminate
Agent C

P

Eliminate
Agent P C

Complete 
network

𝒈

𝒈𝟎
-p

𝒈𝟎
-c 𝒈𝟏

-c

Figure 1

5 Conclusion

This paper makes two main contributions. First, it endogenizes the network for the seminal
work by Ballester et al. (2006). It is shown that all pairwise Nash equilibria are nested
split graphs. These networks have the interesting property that Bonacich, inter-centrality
and degree centrality all coincide. I then turn to key player policies when the network is
endogenous and show that, if the parameter governing strategic substitutes is su�ciently
low, then, as in Ballester et al. (2006), it is optimal to eliminate an agent that is most
central and therefore criminal activity is also highest. In the equilibrium networks obtained,
this translates into a particularly simple policy: remove the agent with the highest number
of links/the highest e�ort level. However, if the parameter governing strategic substitutes is
large, then, di�erent from Ballester et al. (2006), it may be optimal to eliminate a less central
agent, who does not display the highest criminal activity. That is, these results indicate
that when designing key player policies in practice, one should take into account possible
changes to the network after an agent was eliminated, in particular when the competition
or congestion e�ects are considered to be large.
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6 Appendix A

Relationship to BCZ (2006) Payo�s given by

ui(x1, ..., xn) = αxi + 1
2
σx2

i +
∑

j 6=i σijxixj,

with α > 0 and σ < 0. BCZ (2006) de�ne σ = min{σij | i 6= j} and σ = max{σij | i 6= j}
and rewrite payo�s as

ui(x) = αxi − 1
2
(β − γ)x2

i − γxi
∑

j∈N xj + λ
∑

j∈N gijxixj,

where γ = −min{σ, 0} ≥ 0, λ = σ + γ ≥ 0 and gij = (σij + γ)/λ.

Note that when σij ∈ {σ, σ} for all i 6= j then adjacency matrix G is a symmetric (0, 1)
matrix and g is undirected and unweighted.

Note further that when σ > 0, then λ > γ.

7 Appendix B

Proof of Proposition 1 . The payo� function considered is a special case of Ballester et
al. (2006) and we can therefore rely on the following result (Theorem 1 in Ballester et al.,
2006): A NE exists and is unique if and only if β < λ 1

µ1(ḡ)
, where µ1(ḡ) is the largest

eigenvalue of the adjacency matrix of ḡ. Note that the largest eigenvalue for a graph lies
between the following boundsmax{davg(ḡ),

√
dmax(ḡ)} ≤ µ1(ḡ) ≤ dmax(ḡ), where dmax(ḡ) is

the maximum degree and davg(ḡ) the average degree in network ḡ.20 The largest eigenvalue
for a graph is then maximal and equal to n− 1 in the complete network, ḡc. The existence
of a unique NE is therefore guaranteed by the assumption that λ

β
< 1

n−1
.

Part (i): Assume to the contrary that there exists a NE, x(ḡ), such that a pair of
players k and l are in a complete component with xk 6= xl and assume without loss of
generality that xk > xl. Note that in a complete component Nk(ḡ) \ {l} = Nl(ḡ) \ {k}
holds and therefore

∑
j∈Nl(ḡ) xj =

∑
j∈Nk(ḡ) xj + (xk − xl) >

∑
j∈Nk(ḡ) xj. Note further that∑

j∈N\{l} xj =
∑

j∈N\{k} xj + (xk − xl). Plugging the above into the best response functions
for agent k and l, respectively, we obtain

x̄l(x−l, ḡ) = 1
β
·
(
α + λ

∑
j∈Nl(ḡ) xj − γ

∑
j∈N\{l} xj

)
= 1

β
·
(
α + λ

(∑
j∈Nk(ḡ) xj + (xk − xl)

)
− γ

(∑
j∈N\{k} xj + (xk − xl)

))
> 1

β
·
(
α + λ

∑
j∈Nk(ḡ) xj − γ

∑
j∈N\{k} xj

)
= x̄k(x−k, ḡ),

where the inequality follows from xk − xl > 0 and λ > γ ≥ 0. We have therefore reached
a contradiction.

Part (ii): The result follows from an analogous argument to the one provided in Part
(i). Q.E.D.

20See, for example, L. Lovasz, Geometric Representations of Graphs (2009).
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Proof of Proposition 2. We �rst derive the two bounds on linking cost, κ and κ. κ
is given by the average marginal payo� per link of an agent in the complete network, ḡc.
Note that the e�ort level of an agent in the complete network, ḡc, is easily calculated and
given by x(ḡc) = xi(ḡ

c) = α/(β + (n − 1)(γ − λ)) ∀i ∈ N . We then obtain κ, i.e. the
average gross marginal payo� of linking to n − 1 agents in the complete network, ḡc, by
substituting x(ḡc) into the expression for κ, provided in De�nition 1. In turn, κ is given
by the marginal payo� of two agents creating a new link in the empty network, ḡe. The
e�ort level in the empty network, x(ḡe), is given by x(ḡe) = xi(ḡ

e) = α/(β + (n − 1)γ)
∀i ∈ N and the e�ort level of a pair of agents i and j deviating by creating a link is given
by x′i(ḡ

e + ḡi,j) = x′j(ḡ
e + ḡi,j) = α(β + γ)/ ((β + (n− 1)γ)(β − (λ− γ))). To obtain κ we

substitute x(ḡe) and x′i(ḡ
e + ḡi,j) in the expression for κ, provided in De�nition 1. Note

next that we can write x′i(ḡ
e + ḡi,j) = (β+γ)

(β+γ−λ)
· x(ḡe). Note also that from Ballester et

al. (2006) we know that, given our assumptions on parameters, Nash equilibrium e�ort
levels are interior for any ḡ. From x(ḡc) = xi(ḡ

c) = α/(β − (n − 1)(λ − γ)) > 0 we
then know that β − (n − 1)(λ − γ) > 0 holds and therefore β − (λ − γ) > 0 also holds.

To see this, recall that λ > γ. Therefore, (β+γ)
(β+γ−λ)

> 0 and x′i(ḡ
e + ḡi,j) > x(ḡe) holds.

Finally, note that from the expression of Nash equilibrium e�ort levels in the empty network,
x̄i(0, (n−1)x(ḡe)) = 1

β
· (α− γ(n− 1)x(ḡe)), we also know that α−γ(n−1)x(ḡe) > 0 holds.

We can then write κ as follows

κ = 1
2β
·
((

α + (λ− γ) (β+γ)
(β+γ−λ)

x(ḡe)− γ(n− 2)x(ḡe)
)2

− (α− γ(n− 1)x(ḡe))2

)
.

From λ− γ > 0 it follows that κ > 0. Note next that the expression for x(ḡc) = xi(ḡ
c) =

α/(β − (n− 1)(λ− γ)) is increasing in n in the range of [0, n]. Recall also that, since Nash
equilibrium e�ort levels are interior for any ḡ, so that β − (n− 1)(λ− γ) > 0 holds. Denote
with x(ḡcn=2) when setting n = 2 in the expression for x(ḡc), i.e. x(ḡcn=2) = α

(β−(λ−γ))
and

note that x(ḡc) > x(ḡcn=2). Let us now compare x′i(ḡ
e + ḡi,j), where in accordance with our

model we assume n ≥ 3, with the expression x(ḡcn=2). Recall that x′i(ḡ
e + ḡi,j) = α(β +

γ)/ ((β + (n− 1)γ)(β − (λ− γ))). Note that (β + γ)/(β + (n− 1)γ) < 1 (since n ≥ 3) and
therefore x(ḡcn=2) > x′i(ḡ

e + ḡi,j) holds. Since x(ḡc) > x(ḡcn=2) holds, x(ḡc) > x′i(ḡ
e + ḡi,j) >

x(ḡe) also holds. Finally, note that

κ = 1
2β
·
(
(α + (λ− γ)(n− 1)x(ḡc))2 − (α− γ(n− 1)x(ḡc))2) / (n− 1)

> 1
2β
·
(
(α + (λ− γ)(n− 1)x(ḡc))2 − (α− γ(n− 1)x(ḡe))2) / (n− 1)

> 1
2β
·
(
(α + (λ− γ)(n− 1)x′i(ḡ

e + ḡi,j))
2 − (α− γ(n− 1)x(ḡe))2) / (n− 1)

> 1
2β
·
(
(α + (λ− γ)(n− 1)x′i(ḡ

e + ḡi,j)− γ(n− 2)x(ḡe))2 − (α− γ(n− 1)x(ḡe))2) / (n− 1)

> 1
2β
·
(
(α + (λ− γ)x′i(ḡ

e + ḡi,j)− γ(n− 2)x(ḡe))2 − (α− γ(n− 1)x(ḡe))2) = κ.

The �rst inequality follows from x(ḡc) > x(ḡe), while the second inequality follows from
x(ḡc) > x′i(ḡ

e + ḡi,j). To see that the third inequality holds, note �rst that α − γ(n −
1)x(ḡe) > 0 holds (since Nash equilibrium e�ort levels are interior in ḡe), so that α + (λ −
γ)(n − 1)x′i(ḡ

e + ḡi,j) − γ(n − 2)x(ḡe) > 0 also holds. The inequality then follows from
γ(n − 2)x(ḡe) > 0. Finally, the last inequality follows immediately from the quadratic
functional form. Therefore, κ > κ > 0. Note next that, if κ ≤ κ, then an agent in the
complete network does not �nd it pro�table to delete all his links. As v(yi, zi), is convex
in yi, deleting any subset of links is also not pro�table. Therefore, for κ ≤ κ, the complete
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network is a PNE. If κ ≥ κ, then no pair of agents �nds it pro�table to create a link in the
empty network, and therefore the empty network is a PNE. Q.E.D.

Proof of Theorem 1. We �rst provide four auxiliary lemmas, which we then use to
show that every PNE is a nested split graph.

Auxiliary Lemma: For any network ḡ and corresponding vector of NE e�ort levels, x(ḡ),
if ḡi,j = 0 and ḡ′i,j = 1, then x′i(ḡ + ḡ+

i,j) > xi(ḡ) and x′j(ḡ + ḡ+
i,j) > xj(ḡ) holds.

Proof of Auxiliary Lemma. Recall that the best response functions for xi(ḡ) and xj(ḡ)
are given by xi(ḡ) = 1

β
· (α + λyi(ḡ)− γzi(ḡ)) and xj(ḡ) = 1

β
· (α + λyj(ḡ)− γzi(ḡ)), while

the best response functions for x′i(ḡ + ḡ+
i,j) and x

′
j(ḡ + ḡ+

i,j) can be written as x′i(ḡ + ḡ+
i,j) =

1
β
·
(
α + λ

(
yi(ḡ) + x′j(ḡ + ḡ+

i,j)
)
− γ

(
zi(ḡ) + (x′j(ḡ + ḡ+

i,j)− xj(ḡ))
))

and x′j(ḡ + ḡ+
i,j) = 1

β
·(

α + λ
(
yj(ḡ) + x′i(ḡ + ḡ+

i,j)
)
− γ

(
zj(ḡ) + (x′i(ḡ + ḡ+

i,j)− xi(ḡ))
))
. We can now rewrite the

latter expressions as x′i(ḡ+ ḡ+
i,j) = xi(ḡ)+ 1

β

(
(λ− γ)x′j(ḡ + ḡ+

i,j) + γxj(ḡ)
)
and x′j(ḡ+ ḡ+

i,j) =

xj(ḡ) + 1
β

(
(λ− γ)x′i(ḡ + ḡ+

i,j) + γxi(ḡ)
)
, respectively. Assume �rst that 0 ≤ x′i(ḡ + ḡ+

i,j) ≤
xi(ḡ) and 0 ≤ x′j(ḡ + ḡ+

i,j) ≤ xj(ḡ) hold. But then (λ − γ)x′j(ḡ + ḡ+
i,j) + γxj(ḡ) > 0 and

therefore x′i(ḡ+ ḡ+
i,j) > xi(ḡ) must hold. We have reached a contradiction. Assume next, and

without loss of generality, that 0 ≤ x′i(ḡ + ḡ+
i,j) ≤ xi(ḡ) and x′j(ḡ + ḡ+

i,j) > xj(ḡ) holds. But
then (λ− γ)x′j(ḡ + ḡ+

i,j) + γxj(ḡ) > 0 holds and therefore x′i(ḡ + ḡ+
i,j) > xi(ḡ) must hold. We

have again reached a contradiction. Therefore, x′i(ḡ + ḡ+
i,j) > xi(ḡ) and x′j(ḡ + ḡ+

i,j) > xj(ḡ)
hold. Q.E.D.

Lemma 1: In any PNE, (x, ḡ), if ḡi,l = 1, then ḡi,k = 1 for all agents k with xk ≥ xl.

Proof of Lemma 1. Assume that (x, ḡ) is a PNE and, contrary to the above, that
ḡi,l = 1 and ḡi,k = 0 for some agent k with xk ≥ xl. Note �rst that for ḡi,l = 1 to be part
of a PNE, it must be that v(yi, zi) − v(yi − xl, zi) ≥ κ holds, as otherwise agent i could
pro�tably deviate by deleting the link with agent l (and adjust her e�ort level). Next we
show that, if the latter condition holds, then agent i also �nds it pro�table to create the link
ḡ′i,k = 1. From Lemma 0 we know that x′k > xk holds. Since the value function is strictly
convex in the �rst argument for all zi, v(yi + xl, zi) − v(yi, zi) > v(yi, zi) − v(yi − xl, zi)
holds. Furthermore, since xk ≥ xl holds, the following also holds v(yi + xk, zi) − v(yi, zi) ≥
v(yi + xl, zi)− v(yi, zi). For ease of notation in the following we sometimes use y′i to denote
y′i = yi+x′k and z

′
i to denote z

′
i = zi+(x′k−xk). Note next that we can write v(yi+xk, zi) as

v(yi+xk, zi) = π(x(yi+xk, zi), yi+xk, zi). From λ > γ we know that π(x(yi+xk, zi), y
′
i, z
′
i) >

π(x(yi+xk, zi), yi+xk, zi) holds. Finally, note that π(x(y′i, z
′
i), y

′
i, z
′
i) ≥ π(x(yi+xk, zi), y

′
i, z
′
i)

holds (since x(yi + xk, zi) is not optimal given y′i and z′i). Since by de�nition v(y′i, z
′
i) =

π(x(y′i, z
′
i), y

′
i, z
′
i), we therefore know that v(yi + x′k, zi + (x′k − xk)) − v(yi, zi) > v(yi, zi) −

v(yi − xl, zi) ≥ κ holds. That is, if agent i does not �nd it pro�table to delete the link
with agent l, then agent i �nds it pro�table to create the link with agent k. For ḡi,k = 0
to hold in a PNE, we would therefore need that agent k does not �nd it pro�table to link
to agent i. In the following we show that this cannot be the case. Note that for ḡi,l = 1 to
hold, v(yl, zl)− v(yl− xi, zl) ≥ κ must hold, as otherwise agent l could pro�tably deviate by
deleting the link with agent i (and adjust her e�ort level). From the convexity of the value
function in the �rst argument, we know that v(yl +xi, zl)− v(yl, zl) > v(yl, zl)− v(yl−xi, zl)
holds. Note that we can write zk and zl as zk =

∑
j∈N xj − xk and zl =

∑
j∈N xj − xl,

respectively. Note that, if xk ≥ xl holds, then zl ≥ zk also holds. We can now write the
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best response functions as x̄k(ḡ) = 1
β
·
(
α + λyk(ḡ)− γ(

∑
j∈N xj(ḡ)− x̄k(ḡ))

)
and x̄l(ḡ) =

1
β
·
(
α + λyl(ḡ)− γ(

∑
j∈N xj(ḡ)− x̄l(ḡ))

)
. Taking the di�erence we obtain x̄k(ḡ)− x̄l(ḡ) =

λ
β−γ · (yk(ḡ)− yl(ḡ)) ≥ 0. Rewrite λ

β
< 1

n−1
as β > (n− 1)λ. From λ > γ ≥ 0 it then follows

that λ
β−γ > 0 and therefore yk ≥ yl holds. Finally, from ∂2v(y, z)/∂y∂z = −λγ/β ≤ 0,

zl ≥ zk, the convexity of the value function in the �rst argument and yk ≥ yl, it then follows
that v(yk + xi, zk) − v(yk, zk) ≥ v(yl + xi, zl) − v(yl, zl) holds. By an argument analogous
to the one presented above, it then follows that v(yk + x′i, zk + (x′i − xi)) − v(yk, zk) >
v(yk + xi, zk) − v(yk, zk) > κ. That is, agent k �nds it pro�table to link to agent i and
proposed deviation is pro�table. Therefore, in any PNE, if ḡi,l = 1, then ḡi,k = 1 for all
agents k with xk ≥ xl. Q.E.D.

Before presenting Lemma 2, we de�ne Bonacich centrality, following the notation in
Ballester et al. (2006). Denote with ḡ

[k]
i,j ≥ 0 the number of paths of length k ≥ 1 in ḡ from

i to j.21 De�ne mi,j(ḡ,
λ
β
) =

∑+∞
k=0(λ

β
)kḡ

[k]
i,j , so that mi,j(ḡ, a) counts the number of paths

in ḡ that start at i and end at j, and paths of length k are weighted by ak. The Bonacich
centrality of agent i is bi(ḡ,

λ
β
) =

∑n
j=1mi,j(ḡ,

λ
β
), so that bi(ḡ,

λ
β
) counts the total number of

paths that start at i (and are weighted by (λ
β
)k). Furthermore, de�ne b(ḡ, λ

β
) =

∑
i∈N bi(ḡ,

λ
β
).

Lemma 2: In any PNE, (x, ḡ), xi = xk ⇔ Ni(ḡ) \ {k} = Nk(ḡ) \ {i}.

Proof of Lemma 2. First we show that Ni(ḡ) \ {k} = Nk(ḡ) \ {i} ⇒ xi = xk. Note
that from Theorem 1 in Ballester et al. (2006) we can write e�ort levels in a given network

ḡ, and for given parameter values, as xi(ḡ) = αbi(ḡ,
λ
β
)/
(
β + γb(ḡ, λ

β
)
)
.22 Note that, if

Ni(ḡ) \ {k} = Nk(ḡ) \ {i}, then bi(g) = bk(g) also holds and therefore xi = xk. Next we
show that xi = xk ⇒ Ni(ḡ) \ {k} = Nk(ḡ) \ {i}. Assume to the contrary that xi = xk and
Ni(ḡ) \ {k} 6= Nk(ḡ) \ {i}. There must then exist an agent l such that either k ∈ Nl(ḡ)
and i /∈ Nl(ḡ), or k /∈ Nl(ḡ) and i ∈ Nl(ḡ). Since xi = xk, this contradicts Lemma 1 and
therefore Ni(ḡ) \ {k} = Nk(ḡ) \ {i}. Q.E.D.

Lemma 3: In any PNE, (x, ḡ), xi < xk ⇔ Ni(ḡ) \ {k} ⊂ Nk(ḡ) \ {i}.

Proof of Lemma 3. First we show that Ni(ḡ) \ {k} ⊂ Nk(ḡ) \ {i} ⇒ xi < xk. Note
that if Ni(ḡ) \ {k} ⊂ Nk(ḡ) \ {i}, then bi(ḡ) < bk(ḡ) and therefore by the above argument
xi(ḡ) < xk(ḡ) holds. Next we show that xi < xk ⇒ Ni(ḡ) \ {k} ⊂ Nk(ḡ) \ {i}. Assume to
the contrary that xi < xk, but Ni(ḡ) \ {k} ⊂ Nk(ḡ) \ {i} does not hold. We distinguish two

21A path of length k from i to j is a sequence (i0, ..., ik) of players such that i0 = i, ik = j, ip 6= ip+1 and
ḡip,ip+1 = 1 for all 0 ≤ k ≤ k − 1, i.e. agents ip and ip+1 are directly connected in ḡ (Ballester et al., 2006).

22The vector of Bonacich centralities of parameter a in ḡ, b(ḡ, λβ ), can be obtained by the following

expression b(ḡ, λβ ) = [I − λ
β Ḡ]−1 · 1, where I is the n by n identity matrix, with slight abuse of notation

we take Ḡ to be the adjacency matrix of ḡ and 1 is the n dimensional vector of ones. From Theorem 1
in Ballester et al. (2006) we know that the vector of Nash equilibrium e�ort levels, x(ḡ), for network ḡ

is obtained by x(ḡ) =
(
α/
(
β + γb(ḡ, λβ )

))
· b(ḡ, λβ ). Furthermore, an agent i's Nash equilibrium e�ort

level can be written as xi(ḡ) =
(
bi(ḡ,

λ
β )/b(ḡ, λβ )

)
· x(ḡ), where x(ḡ) =

∑
j∈N xj(ḡ). We can now write

x(ḡ) · 1 =
(
α/
(
β + γb(ḡ, λβ )

))
· b(ḡ, λβ ) = x(ḡ) and substitute this into the expression for xi(ḡ) to obtain

xi(ḡ) = αbi(ḡ,
λ
β )/

(
β + γb(ḡ, λβ )

)
.
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subcases. Assume �rst that xi < xk and Nk(ḡ) \ {i} = Ni(ḡ) \ {k}. This contradicts Lemma
2. Next, assume xi < xk and Nk(ḡ)\{i} 6= Ni(ḡ)\{k} holds, while Ni(ḡ)\{k} ⊂ Nk(ḡ)\{i}
does not hold. There then exists an agent m such that m ∈ Ni(ḡ)\{k} and m /∈ Nk(ḡ)\{i}.
But then, since xi < xk, ḡi,m = 1 by Lemma 1 and we have reached a contradiction. Q.E.D.

Lemma 4: In any PNE, (x, ḡ), xi ≤ xk ⇔ Ni(ḡ) \ {k} ⊆ Nk(ḡ) \ {i}. Furthermore,
xi < xk ⇔ ηi(ḡ) < ηk(ḡ), xi ≤ xk ⇔ ηi(ḡ) ≤ ηk(ḡ) and xi < xk ⇔ πi < πk.

Proof of Lemma 4. This �rst three equivalence relationships follow directly from the
lemmas above. Concerning the fourth equivalence relationship, assume without loss of gen-
erality that xi < xk and πi ≥ πk. From xi < xk and zi =

∑
j∈N xj−xi and zk =

∑
j∈N xj−xk

it follows that zk < zi. For xi < xk to hold, we know from the best response func-
tions that yi < yk must hold. To see this, we can write the best response functions as

xi = 1
β
·
(
α + λyi − γ(

∑
j∈N xj − xi)

)
and xk = 1

β
·
(
α + λyk − γ(

∑
j∈N xj − xk)

)
. We can

rewrite the expressions as xi = Note that in a PNE πi = v(yi, zi) and v(yk, zk) = πk hold.
The value function is increasing in the �rst argument and decreasing in the second and there-
fore πi < πk holds. We have reached a contradiction. Assume next that πi < πk and xi ≥ xk
holds. From xi ≥ xk and zi =

∑
j∈N xj − xi and zk =

∑
j∈N xj − xk it follows that zi ≤ zk.

Note next that, for xi ≥ xk to hold, we know from the best response functions that yi ≥ yk
must also hold. To see this, we can again take the di�erence between the best responses xi
and xk (as in Lemma 1) to obtain xi − xk = λ

β−γ · (yi − yk)≥ 0. As shown above, λ
β−γ > 0

holds, and therefore yi ≥ yk also holds. Since in a PNE we have that πi = v(yi, zi) and
πk = v(yk, zk), it follows directly from yi ≥ yk, zi ≤ zk and the properties of v that πi ≥ πk.
Q.E.D.

In any PNE the network is a nested split graph.

In any PNE if ḡi,l = 1 and ηk(ḡ) ≥ ηl(ḡ), then xk ≥ xl by Lemma 4 and ḡi,k = 1 by
Lemma 1. That is, ḡ is a nested split graph. Q.E.D.

Lemma 5: If g is a nested split graph, then g−k is a nested split graph for all k ∈ N .

Proof of Lemma 5. Note that g is a nested split graph if and only if for any pair of
agents i and j either Nj(ḡ)\{i} ⊂ Ni(ḡ)\{j} ⇔ ηj(ḡ) < ηi(ḡ) or Nj(ḡ)\{i} = Ni(ḡ)\{j} ⇔
ηj(ḡ) = ηi(ḡ) holds. Assume next that an agent k is eliminated from ḡ, yielding the network
ḡ−k. For a pair of agents i and j, there are there cases to distinguish. Without loss of
generality, assume ηi(ḡ) ≥ ηj(ḡ). Consider �rst the case when ḡi,k = ḡj,k = 0. Then after
eliminating agent k, Nj(ḡ)\{i} = Nj(ḡ

−k)\{i}, Ni(ḡ)\{j} = Ni(ḡ
−k)\{j}, ηj(ḡ) = ηj(ḡ

−k)
and ηi(ḡ) = ηi(ḡ

−k) holds. Therefore, if ηi(ḡ) > ηj(ḡ), then Nj(ḡ
−k) \ {i} ⊂ Ni(ḡ

−k) \ {j}
and ηj(ḡ

−k) < ηi(ḡ
−k) holds, while if ηi(ḡ) = ηj(ḡ), then Nj(ḡ

−k) \ {i} = Ni(ḡ
−k) \ {j}

and ηj(ḡ
−k) = ηi(ḡ

−k) holds. Next, assume that ḡi,k = 1 and gj,k = 1. By an analogous
argument as the one used in the previous case, we have again that, if ηi(ḡ) > ηj(ḡ), then
Nj(ḡ

−k) \ {i} ⊂ Ni(ḡ
−k) \ {j} and ηj(ḡ−k) < ηi(ḡ

−k) holds, while if ηi(ḡ
−k) = ηj(ḡ

−k), then
Nj(ḡ

−k)\{i} = Ni(ḡ
−k)\{j} and ηj(ḡ−k) = ηi(ḡ

−k) holds. Finally, assume that one agent is
connected to k, while the other is not. Without loss of generality assume ḡi,k = 1 and ḡj,k = 0.
Note that, since ḡ is a nested split graph, ηi(ḡ) > ηj(ḡ) must also hold. We distinguish two
subcases. Assume �rst that ηi(ḡ) > ηj(ḡ) + 1. Then Nj(ḡ

−k) \ {i} ⊂ Ni(ḡ
−k) \ {j} and

ηj(ḡ
−k) < ηi(ḡ

−k) holds. Assume next that ηi(ḡ) = ηj(ḡ) + 1. Then Nj(ḡ
−k) \ {i} =
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Ni(ḡ
−k) \ {j} and ηj(ḡ

−k) = ηi(ḡ
−k). That is, when deleting an agent k from ḡ, either

Nj(ḡ
−k) \ {i} ⊂ Ni(ḡ

−k) \ {j} and ηj(ḡ−k) < ηi(ḡ
−k) or Nj(ḡ

−k) \ {i} = Ni(ḡ
−k) \ {j} and

ηj(ḡ
−k) = ηi(ḡ

−k) holds. Therefore, ḡ−k is therefore a nested split graph. Q.E.D.

In order to compare pairs of networks when di�erent agents k and l are eliminated, we
relabel the eliminated agents. More speci�cally, when comparing g−k and g−l, we relabel
agents follows: r{k,l}(l) = d in g−k and r{k,l}(k) = d in g−l. That is, when agent k is
eliminating from ḡ, then agent l is relabeled as agent d in g−k. Likewise, when agent l is
eliminated from ḡ, then agent k is relabeled as agent d in g−l. Relabeling agents in this way
ensures that the set of agents are the same in g−k and g−l. We adopt the following notation
N{k,l} = {N \ {k, l}} ∪ {d}.

Lemma 6: If g is a nested split graph and ηk(ḡ) = ηl(ḡ), then g−k = g−l, while if ηk(ḡ) >
ηl(ḡ) then g−l ⊂ g−k holds.

Proof of Lemma 6. We �rst show that, if ηk(ḡ) = ηl(ḡ) then g−k = g−l holds. We
distinguish two sub-cases. Assume �rst that k = l. It is then easy to see that ḡi,j = ḡ−ki,j = ḡ−li,j
∀i, j ∈ N{k,l} and therefore g−k = g−l. Assume next that k 6= l. Relabel agents such that
r{k,l}(l) = d in g−k and r{k,l}(k) = d in g−l. Note that, since ḡ is a nested split graph
and since ηk(ḡ) = ηl(ḡ), we also know that Nk(ḡ)\{l} = Nl(ḡ) \ {k} holds. Therefore,
Nd(g

−k) = Nd(g
−l) holds. Note further that ḡi,j = ḡ−ki,j = ḡ−li,j ∀i, j /∈ {k, l} and therefore

g−k = g−l. Next we show that if ηk(ḡ) > ηl(ḡ) then g−k ⊂ g−l holds. Since ḡ is a nested
split graph and ηk(ḡ) > ηl(ḡ) hold, we know that Nl(ḡ) ⊂ Nk(ḡ) holds. From Nl(ḡ) ⊂ Nk(ḡ)
it follows that if ḡ−kd,j = 1 then ḡ−ld,j = 1, while there exists an agent j such that ḡ−kd,j = 0 and

ḡ−ld,j = 1. Furthermore, ḡi,j = ḡ−ki,j = ḡ−li,j ∀i, j /∈ {k, j} and therefore g−k ⊂ g−l hold. Q.E.D.

In the following we write gross payo�s as a class of parametrized functions in γ, while
assuming that the other parameter values remain �xed. That is, we write π(x, y, z, γ), so
that an agent i's payo� function is given by πi(xi, yi, zi, γ). De�ne θi = (yi, zi, γ) with θi ∈ Θ
and Θ = R3

≥0. This allows us to write πi(xi,θi) and, similarly, x̄i(θi) and vi(θi). Below we
use the Theorem of the Maximum to show that the corresponding best response functions,
x̄i(θi) and vi(θi) are continuous in θi. We then write the Nash equilibrium e�ort levels for
a given network ḡ as a function of γ, i.e. xḡ(γ). Using the Implicit Function Theorem
and Sard's Lemma we then show that the vector of Nash equilibrium e�ort levels, xḡ(γ),
generically changes continuously in γ. For convenience we provide formal de�nitions for both
theorems below.

For X ⊆ Rl, de�ne K(X) = {K ⊆ X : K 6= ∅ is compact}. For a set X, denote
Xn = X1 × ...×Xn.

De�nition 4: (Theorem of the Maximum). For Θ ⊆ Rk, X ⊆ R, Ψ : Θ→ K(X) a
correspondence and π : X×Θ→ R, de�ne the value function θ → v(θ) = maxx∈Ψ(θ)π(x,θ),
and the argmax correspondence θ → x̄(θ) = {x ∈ Ψ(θ) : ∀x′ ∈ Ψ(θ), π(x,θ) ≥ π(x′,θ)}.
If π is (jointly) continuous and Ψ(θ) is continuous then (i) v(·) is continuous and (ii) x̄(·) is
hemicontinuous. Furthermore, if x̄(·) is always singleton valued, then θ → x̄(θ) is continu-
ous.23

23See Corbae et al. (2009), p. 151.
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De�nition 5: (Implicit Function Theorem). Let fḡ : Rn+nk ⊇ Xn × Θn → Rn

be a continuously di�erentiable function on an open set Xn × Θn. Consider the system of
equations fḡ(x,θ) = 0 and assume it has a solution at x0 ∈ Xn for given parameter values
θ0 ∈ Θn. If the determinant of the Jacobian of endogenous variables is not zero at (x0,θ0),
that is, if | J(x0,θ0) |=| Dxfḡ(x0,θ0) |6= 0 then (i) there exist open sets U in Rn+nk and Uθ

in Rnk with (x0,θ0) ⊆ U and θ0 ⊆ Uθ such that for each θ in Uθ there exists a unique xθ

such that (xθ,θ) ∈ U and fḡ(xθ,θ) = 0. That is, the correspondence from Uθ to X
n de�ned

by x(θ) = xθ is a well-de�ned function when restricted to U . (ii) The solution function
x(·) : Uθ → Rn is continuously di�erentiable. (iii) If fḡ is Ck, so is x(·).24

Lemma 7: An agent's best response function x̄i(θi) and value function vi(θi) are con-
tinuous in θi. Furthermore, the vector of Nash equilibrium e�ort levels for a given network
ḡ, xḡ(γ), generically changes continuously in γ (and therefore, generically, limγ→0xḡ(γ) =
xḡ(0)).

Proof of Lemma 7. De�ne X̃ = [0,M ] and assume M su�ciently large so that for all
ḡ and all γ ∈ [0,m], all vectors of Nash equilibrium e�ort levels, xḡ(γ), are in the interior
of [0,M ]n. Note that for any ḡ and m, we can �nd a corresponding M . Furthermore,
assume Ψ(θ̃i) = [0,M ] ∀θ̃i ∈ Θ̃. Note that Ψ(θ̃i) = [0,M ] ∀θ̃i ∈ Θ̃ imposes a restriction
on agents' strategies, since xi ∈ [0,M ] must hold ∀i ∈ N . However, any PNE is also
a PNE in the presence of the restriction, since PNE e�ort levels x are feasible when
Ψ(θi) = [0,M ] ∀θi ∈ Θ, while the set of available deviations is restricted. Note further that
Ψ(θi) is continuous. Moreover, π is (jointly) continuous and x̄i(θi) is singleton valued by
assumption. From the Theorem of the Maximum (De�nition 4) it then follows directly that
vi(θi) and x̄i(θi) are continuous in θ̃i. Next, assume (x, ḡ) is a pairwise Nash equilibrium
for some ḡ and for some γ with γ ∈ Γ and Γ = R≥0. De�ne X̃

′ = (0,M) and the function
fḡ : X̃ ′n × Γ→ Rn as

fḡ(x,γ) =

 ∂π1(x1, y1, z1, γ)/∂x1
...

∂πn(xn, yn, zn, γ)/∂xn

.

Given our assumptions on π, fḡ(x, γ) is continuously di�erentiable and, since x is assumed
to be the vector of NE e�ort levels, fḡ(x,γ) = 0 holds for the particular γ considered.
We can now apply the Implicit Function Theorem. That is, if the Jacobian of fḡ(x,γ) is
invertible, then the vector of NE equilibrium e�ort levels on a �xed network ḡ, which we
denote with xḡ(γ), is continuous in γ. Note that assuming X̃ ′ = (0,M) is analytically
innocuous, since the vector of NE e�ort levels, x, is a solution in the interior of [0,M ]n and
therefore in the interior of (0,M)n. From Sard's Lemma we know that the set of critical
points of a su�ciently smooth function has Lebesque measure zero.25 Our payo� function
π is smooth and therefore the property that (x,γ) is a regular point of fḡ (and that the
Jacobian of fḡ is invertible) is generic. That is, xḡ(γ) generically changes continuously in γ
(and therefore, generically, limγ→0xḡ(γ) = xḡ(0)). Q.E.D.

24See de la Fuente (2009), p. 210.
25Sard's Lemma reads as follows (see de la Fuente (2009), p. 214.). Let g : Rn ⊇ X → Rm (X open) be a

Cr function with r > max{0, n−m} and let Cf be the set of critical points of g. Then g(Cf ) has Lebesque
measure zero.
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Lemma 8: Assume γ = 0 . Then xk(ḡ
−i) < xk(ḡ) for all agents k such that i, k ∈ ḡs,

while xk(ḡ
−i) = xk(ḡ) for all agents k such that i ∈ ḡs and k /∈ ḡs.

Proof of Lemma 8. Note �rst that, since γ = 0, x̄i(0, zi) = x̄i(0, 0) ∀zi and e�ort levels
are bounded below by x̄i(0, 0) = x̄(0, 0). Moreover, ∂x̄(y, z)/∂y > 0, while ∂x̄(y, z)/∂z = 0
∀y, z. Note �rst that, since γ = 0, we can treat di�erent components in ḡ−i in isolation.
We distinguish two cases. Assume �rst that i, k ∈ ḡs. Then for any agent l with ḡi,l = 1,
we have that

∑
j∈Nl(ḡ−i) xj(ḡ) <

∑
j∈Nl(ḡ) xj(ḡ). Iterating on best responses, any agent l

with ḡi,l = 1 strictly decreases her e�ort level and in turn any agent sustaining links with l
strictly decrease their e�ort levels, and so forth. The e�ort level of each agent is a (weakly)
decreasing sequence of real numbers (where each agent strictly decrease her e�ort level in
some iteration), which is bounded below by x̄(0, 0). E�ort levels therefore converge to new
NE e�ort levels with xk(ḡ

−i) < xk(ḡ) for all k such that i, k ∈ ḡs. Note next that for any
agent k such that i ∈ ḡs and k /∈ ḡs,

∑
j∈Nl(ḡ−i) xj(ḡ) =

∑
j∈Nl(ḡ) xj(ḡ) holds for all agents l

such that k, l ∈ ḡ−i s. That is, at every iteration, no agent k ∈ ḡ−i s adjusts her e�ort level
xk(ḡ) and therefore e�ort levels remain constant Q.E.D.

Lemma 9: Assume γ = 0 and ḡ ⊂ ˆ̄g. Then xk(ḡ) < xk(ˆ̄g) for all agents k such that
k ∈ ˆ̄gs and ˆ̄gi,j = 1 and ḡi,j = 0 for some i, j ∈ ˆ̄gs, while xk(ḡ) = xk(ˆ̄g) for all agents k such
that k ∈ ˆ̄gs and ˆ̄gi,j = ḡi,j for all i, j ∈ ˆ̄gs.

Proof of Lemma 9. Note �rst that, since γ = 0, x̄i(0, zi) = x̄i(0, 0) ∀zi and e�ort levels
are bounded below by x̄i(0, 0) = x̄(0, 0). Moreover, ∂x̄(y, z)/∂y > 0, while ∂x̄(y, z)/∂z = 0
∀y, z. Note further that, since ḡ ⊂ ˆ̄g, ḡ can be obtained by deleting all links such ḡi,j = 0
and ˆ̄gi,j = 1 from ˆ̄g. Consider players' best responses to the NE e�ort levels x(ˆ̄g) when
when the network is ḡ. Since γ = 0 and ḡ ⊂ ˆ̄g, we can analyze components in ˆ̄g in
isolation. Note �rst that for any agent k such that k ∈ ˆ̄gs and ˆ̄gi,j = ḡi,j for all i, j ∈ ˆ̄gs,
then

∑
j∈Nk(ḡ) xj(ˆ̄g) =

∑
j∈Nk(ˆ̄g) xj(ˆ̄g) holds. That is, at every iteration, no agent k ∈ ˆ̄gs

adjusts her e�ort level xk(ˆ̄g) and therefore e�ort levels remain constant. Next we consider
agents k such that k ∈ ˆ̄gs and ˆ̄gi,j = 1 and ḡi,j = 0 for some i, j ∈ ˆ̄gs. We distinguish two
cases. Assume �rst that k ∈ ˆ̄gs, k ∈ ḡs and ḡs = ˆ̄gs. Note that for any pair of agents i
and j such that ḡi,j = 0 and ˆ̄gi,j = 1, the initial best response is to strictly decrease e�ort
levels, since

∑
j∈Nk(ḡ) xj(ˆ̄g) <

∑
j∈Nk(ˆ̄g) xj(ˆ̄g). Iterating on best responses, any agent l with

ˆ̄gi,j = 1 strictly decreases the e�ort level an in turn any agent sustaining links with l strictly
decrease their e�ort levels, and so forth. E�ort levels are a weakly decreasing sequence
of real numbers for each agent, which is bounded below by x̄(0, 0). E�ort levels therefore
converge to new NE e�ort levels in ḡ with xk(ḡ) < xk(ˆ̄g) for all k such that k ∈ ˆ̄gs and
k ∈ ḡs with ḡs = ˆ̄gs and ˆ̄gi,j = 1 and ḡi,j = 0 for some i, j ∈ ˆ̄gs. Next consider the case
that k ∈ ˆ̄gs, k ∈ ḡs and ḡs ⊂ ˆ̄gs. Note that again any pair of agents i and j such that
ḡi,j = 0 and ˆ̄gi,j = 1 in ḡs, the initial best response is to strictly decrease e�ort levels, since∑

j∈Nk(ḡ) xj(ˆ̄g) <
∑

j∈Nk(ˆ̄g) xj(ˆ̄g). Note further that, since ḡs ⊂ ˆ̄gs, there exists at least one

agent i ∈ ḡs such that ˆ̄gi,j = 1 and ḡi,j = 0 (where we allow for j /∈ ḡs). By the same
argument as above, xk(ḡ) < xk(ˆ̄g) holds for all k such that k ∈ ˆ̄gs and k ∈ ḡs with ḡs ⊂ ˆ̄gs

and ˆ̄gi,j = 1 and ḡi,j = 0 for some i, j ∈ ˆ̄gs. Q.E.D.

Lemma 10: Assume γ is su�ciently small, (x, ḡ) is a pairwise Nash equilibrium and
ηi(ḡ) ≥ 1. Then, generically, there does not exist a pair of agents j and k in ḡ−i, such that
ḡj,k = 0 in ḡ and j and k �nd it pro�table to create a link in ḡ−i.

20



Proof of Lemma 10. Note that, since ḡ is a pairwise Nash equilibrium network,
ḡ is a nested split graph. Therefore, there is at most one connected component (and
possibly some singletons). Assume �rst that γ = 0 and that ḡj,k = 0. We show that
the marginal payo�s of j and k creating the link ḡ−ij,k = 1 in ḡ−i are weakly lower than

when j and k create the link ḡj,k = 1 in ḡ. From Lemma 9 we know that xj(ḡ
−i) ≤

xj(ḡ) ∀j ∈ N\{i} and therefore yj(ḡ
−i) ≤ yj(ḡ) also holds ∀j ∈ N \ {i}. Note fur-

ther that x′j(ḡ
−i + ḡj,k) ≤ x′j(ḡ + ḡj,k) and x′k(ḡ

−i + ḡj,k) ≤ x′k(ḡ + ḡj,k) holds. To see
this, note that x′j(ḡ

−i + ḡj,k) = 1
β
· (α + λyj(ḡ

−i) + λx′k(ḡ
−i + ḡj,k)) and x′k(ḡ

−i + ḡj,k) =
1
β
·
(
α + λyk(ḡ

−i) + λx′j(ḡ
−i + ḡj,k)

)
, while x′j(ḡ + ḡj,k) = 1

β
· (α + λyj(ḡ) + λx′k(ḡ + ḡj,k))

and x′k(ḡ + ḡj,k) = 1
β
·
(
α + λyk(ḡ) + λx′j(ḡ + ḡj,k)

)
. Solving for x′j(ḡ

−i + ḡj,k), x
′
k(ḡ
−i + ḡj,k),

x′j(ḡ+ḡj,k) and x
′
k(ḡ+ḡj,k) it is immediate that x′j(ḡ

−i+ḡj,k) ≤ x′j(ḡ+ḡj,k) and x
′
k(ḡ
−i+ḡj,k) ≤

x′k(ḡ + ḡj,k) follows from yj(ḡ
−i) ≤ yj(ḡ) ∀j ∈ N \ {i}. Note next that when γ = 0, then

we can write v(yi, zi) = 1
2(β+γ)

·
(
α + λ

∑
j∈Ni(ḡ) xj

)2

. Since yj(ḡ
−i) ≤ yj(ḡ) ∀j ∈ N \ {i},

x′j(ḡ
−i + ḡj,k) ≤ x′j(ḡ + ḡj,k) and x

′
k(ḡ
−i + ḡj,k) ≤ x′k(ḡ + ḡj,k) holds, marginal payo�s from

creating the link a link are weakly lower in ḡ than in ḡ−i. Since we assumed that ḡ is a
PNE network, creating the link ḡj,k = 1 is not pro�table in ḡ and therefore creating the
link ḡ−ij,k = 1 is also not pro�table in ḡ−i. Assume next that γ is su�ciently small. Note
that from Theorem 1 we know that ḡ is a nested split graph, while from Lemma 5 we know
that ḡ−i is a nested split graph. Note further that in a nested split graph, there is at most
one component of more than one agent, while any agents not in the component are singleton
agents. Recall that Lemma 7 we know that x̄i(θi) and vi(θi) are continuous in θi, with
θi = (yi, zi, γ), while xḡ(γ) changes continuously in γ. We distinguish three cases. Assume
�rst that j, k, i ∈ ḡs, i.e. j and k are in the same component as i in ḡ. From Lemma 7 and
Lemma 8 we know that if γ is su�ciently small, then xk(ḡ

−i) < xk(ḡ) for all agents k such
that i, k ∈ ḡs. By an analogous argument to the one used above, it then follows directly
that for all agents j and k with j, k, i ∈ ḡs, creating the link ḡ−ij,k = 1 is not pro�table in ḡ−i.
Assume next that j and k are such that j, k /∈ ḡs, while i ∈ ḡs. Since ηi(ḡ) ≥ 1, ḡ 6= ḡe holds
and, since there is at most one connected component, if j, k /∈ ḡs, then j and k are singletons
in ḡ. For ḡ to be a PNE network, it must therefore be the case that the links ḡj,i = 1 and
ḡk,i = 1 are not pro�table in ḡ. Marginal payo�s are the same for j and k and we therefore
focus on j. There are two relevant cases to distinguish. First, assume agent i does not �nd
it pro�table to create the link with j in ḡ. Note that ηi(ḡ) ≥ 1. Since ηj(ḡ) = ηk(ḡ) = 0, we
know from Theorem 1 that xi(ḡ) > xj(ḡ). From the best response function we know that
α+λyi(ḡ)−γzi(ḡ) > α+λyj(ḡ)−γzj(ḡ) = α+λyk(ḡ)−γzk(ḡ) must hold. Note further that
from the above argument we know that x′j(ḡ + ḡ+

i,j) > x′k(ḡ + ḡ+
j,k) = x′j(ḡ + ḡ+

j,k), where the
equality follows from symmetry. That is, the deviation e�ort level of agent i in a deviation
where i and j create a link in ḡ is strictly larger than the deviation e�ort of agent k in a
deviation where i and k create a link in ḡ. The marginal payo�s of agent i, when linking to
agent j in ḡ, is given by ∆vi(ḡ + ḡ+

i,j), where

∆vi(ḡ + ḡ+
i,j) =v(yi(ḡ) + x′j(ḡ + ḡ+

i,j), zi(ḡ) + x′j(ḡ + ḡ+
j,k)− xj(ḡ))− v(yi(ḡ), zi(ḡ)).

Substituting x′k(ḡ + ḡ+
j,k) = x′j(ḡ + ḡ+

j,k) we can write this as

∆vi(ḡ + ḡ+
i,k) = v(yi(ḡ) + x′k(ḡ + ḡ+

i,k), zi(ḡ) + x′k(ḡ + ḡ+
i,k)− xk(ḡ))− v(yi(ḡ), zi(ḡ))

= 1
2β
·
(
α + λyi(ḡ)− γzi(ḡ) + (λ− γ)x′k(ḡ + ḡ+

j,k)) + γxk(ḡ)
)2− 1

2β
·(α + λyi(ḡ)− γzi(ḡ))2.

The marginal payo� for agent j, when linking to agent k in ḡ, is given by
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∆vj(ḡ + ḡ+
j,k) = v(yj(ḡ) + x′k(ḡ + ḡ+

j,k), zi(ḡ) + x′k(ḡ + ḡ+
j,k)− xk(ḡ))− v(yi(ḡ), zi(ḡ))

= 1
2β
·
(
α + λyj(ḡ)− γzj(ḡ) + (λ− γ)x′k(ḡ + ḡ+

j,k)) + γxk(ḡ)
)2− 1

2β
·(α + λyj(ḡ)− γzj(ḡ))2.

Since α + λ
∑

l∈Ni(ḡ) xl − γ
∑

l∈N\{i} xl > α + λ
∑

l∈Nj(ḡ) xl − γ
∑

l∈N\{j} xl, x
′
k(ḡ + ḡ+

j,k) =

x′j(ḡ+ḡ+
j,k) and since ḡ is a PNE network, we know that κ ≥ ∆vi(ḡ+ḡ+

i,k) and ∆vi(ḡ+ḡ+
i,k) >

∆vj(ḡ+ ḡ+
j,k) holds. Note next that from Lemma 7 we know that generically, for γ su�ciently

low, ∆vj(ḡ
−i + ḡ+

j,k) is arbitrarily close to ∆vj(ḡ + ḡ+
j,k) and therefore κ > ∆vj(ḡ

−i + ḡ+
j,k)

holds for for γ su�ciently low. That is if agent i does not �nd it pro�table to create a link to
j in ḡ, then j also does not �nd it pro�table to create a link with k in ḡ−i for γ su�ciently
low. Assume next that agent j does not �nd it pro�table to create the link with i in ḡ. Since
x′i(ḡ + ḡ+

i,j) > x′k(ḡ + ḡ+
j,k) holds, we can then use an analogous argument as the one above

to show that, for γ su�ciently low, agent j then also does not �nd it pro�table to create a
link with k in ḡ−i. Q.E.D.

In the following we formally introduce minimal deletion best responses. Denote the set
of agents to which a link is deleted with Di(g

′
i, ḡ) = {j ∈ N : j ∈ Ni(ḡ) and j /∈ Ni(ḡ

′)}
in a deviation g′i in network ḡ. De�ne with Πi(g

′
i, ḡ) = πi(x̄i(ḡ

′),x−i(ḡ),ḡ′) − ηi(ḡ′)κ agent
i's payo�s after deviation g′i, where agent i exerts the best response e�ort level x̄i(ḡ

′) to the
resulting network ḡ′. Write g′i ⊆ gi if for all j ∈ N \{i} with g′i,j = 1 in g′i, gi,j = 1 also holds
in gi. For a network ḡ and agent i, de�ne a minimal deletion best response, g′mi , as follows.
If gi ∈ argmaxg′i: g′i⊆gi

Πi(g
′
i, ḡ), then g′mi = gi. If gi /∈ argmaxg′i: g′i⊆gi

Πi(g
′
i, ḡ), then g′mi :

g′mi ∈ argmaxg′i: g′i⊆gi
Πi(g

′
i, ḡ) and g′mi ⊆ g′i ∀g′i ∈ argmaxg′i: g′i⊆gi

Πi(g
′
i, ḡ). That is, if gi is

(part of) a best response, then g′mi = gi, while if gi is not (part of) a best response, then
g′mi selects the deletion best response that can be considered minimal. Note that then x̄i(ḡ

′)
is also minimal.

Lemma 11: Assume agents play their Nash equilibrium e�ort levels, x(ḡ), in network
ḡ. Then a minimal optimal deletion strategy, g′mi , always exists and is unique for every
agent i ∈ N . Furthermore, g′mi is such that xk(ḡ

′) > xl(ḡ
′) ∀k, l such that k ∈ Ni(ḡ

′), while
l ∈ Di(g

′
i, ḡ).

Proof of Lemma 11. Recall that zi(ḡ) =
∑

j∈N\{i} xj, so that in any deviation, zi(ḡ) =

zi(ḡ
′) holds and for deletion deviation strategies we can therefore treat v(yi, zi) as a strictly

convex function in yi. From g′mi ⊆ gi we know that Ni(ḡ
′) ⊆ Ni(ḡ) holds. We next show

in two steps that any deletion best response g′i ∈ argmaxg′i: g′i⊆gi
Πi(g

′
i, ḡ) is such that for all

j and k with j ∈ Ni(ḡ
′) and k ∈ Di(g

′
i, ḡ), xj(ḡ) > xk(ḡ) holds. Assume �rst that g′i is a

deletion best response, such that there exists a pair of agents j and k, such that xj(ḡ) > xk(ḡ)
with j ∈ Di(g

′
i, ḡ) and k ∈ Ni(ḡ

′). But then deletion strategy g′′i = g′i+gi,j−gi,k yields strictly
higher deviation payo�s, since yi(ḡ

′′) > yi(ḡ
′), while zi(ḡ

′′) = zi(ḡ
′) and v is strictly convex

in its �rst argument. Next we show that if j ∈ Di(g
′
i, ḡ), then k ∈ Di(g

′
i, ḡ) ∀k ∈ Ni(ḡ) :

xk(ḡ) = xj(ḡ). Assume that g′i is an deletion best response and, to the contrary to the above
statement, that j ∈ Di(g

′
i, ḡ), but k ∈ Di(g

′
i, ḡ) and xk(ḡ) = xj(ḡ). For j ∈ Di(g

′
i, ḡ), it must

be the case that κ ≥ v(yi(ḡ
′)+xj(ḡ), zi(ḡ))−v(yi(ḡ

′), zi(ḡ) holds. However, since v is strictly
convex in the �rst argument, v(yi(ḡ

′) + xj(ḡ), zi(ḡ)) − v(yi(ḡ
′), zi(ḡ) > v(yi(ḡ

′), zi(ḡ)) −
v(yi(ḡ

′) − xk(ḡ), zi(ḡ) also holds and therefore κ > v(yi(ḡ
′), zi(ḡ)) − v(yi(ḡ

′) − xk(ḡ), zi(ḡ)
holds. That is, deviation payo�s are strictly larger in the deviation g′′i = g′i − g−i,k than in g′i
and g′i is therefore not a deletion best response. That is, for any pair of agents j and k with
j, k ∈ Ni(ḡ) and xk(ḡ) = xj(ḡ), then either j, k ∈ Di(g

′
i, ḡ) or j, k /∈ Di(g

′
i, ḡ) in any deletion

best response g′i. Therefore, in any deletion best response g′i ∈ argmaxg′i: g′i⊆gi
Πi(g

′
i, ḡ), if
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k ∈ Di(g
′
i, ḡ) and j ∈ Ni(ḡ

′), then xj(ḡ) > xk(ḡ). The above allows us to characterize
minimal deletion best responses as follows. Partition the set of agents in Ni(ḡ) by their
e�ort levels in ḡ. Assume that there are m distinct e�ort levels in Ni(ḡ). Denote with N1

i (ḡ)
the set of agents with the lowest e�ort levels in Ni(ḡ), N2

i (ḡ) is the set of agents with the
second lowest e�ort levels in Ni(ḡ), and so forth, until Nm

i (ḡ), the set of agent with the
highest e�ort levels in Ni(ḡ). From the above we know that any deletion best response, g′i, is
such that either Di(g

′
i, ḡ) = ∅, or Di(g

′
i, ḡ) = ∪kj=1N

j
i (ḡ) for some integer k with 1 ≤ k ≤ m.

If there are multiple optimal deletion deviation strategies, then g′mi must be such that k is
maximal, which we denote with km. Since there is a �nite number of agents in Ni(ḡ), the
number of partitions of Ni(ḡ) is also �nite and therefore such a km exists. Note that for
all deletion best responses with km = k, the sets Di(g

′
i, ḡ) and Ni(ḡ

′) are the same. The
optimal, minimal deletion deviation strategy is then such that g′mi,j = 0 ∀j /∈ Ni(ḡ

′). Q.E.D.

Lemma 12: Assume γ is su�ciently low, ḡ ⊂ ˆ̄g and agents play their Nash equilibrium
e�ort levels, x(ḡ) and x(ˆ̄g), then an agent i's minimal deletion best response in ḡ, g′mi , and
agent i's minimal optimal deletion deviation in ˆ̄g, ĝ′mi , are such that Ni(ḡ

′) ⊆ Ni(ˆ̄g′).

Proof of Lemma 12. Assume that ḡ ⊂ ˆ̄g holds and that γ is su�ciently small. Note
�rst that the above statement holds trivially if either ηi(ˆ̄g) = 0 or ηi(ḡ) = 0. We therefore
assume that ηi(ˆ̄g) ≥ 1 and ηi(ḡ) ≥ 1. Note further that the statement also holds trivially if
ηi(ḡ

′) = 0 and we therefore need to consider only cases when ηi(ḡ
′) 6= 0. Denote with ḡ′m

the network that is obtained from agent i's minimal deletion best response, g′mi , in ḡ, while
ˆ̄g′m is obtained from agent i's minimal deletion best response, ĝ′mi , in ˆ̄g. Pick a ranking of
agents in the set of agent i's neighbors after proposed deviation in ḡ, Ni(ḡ

′m), such that
x1(ḡ′m) ≥ x2(ḡ′m) ≥ ... ≥ xηi(ḡ′m)(ḡ

′m), where we use the subscript to refer to the position in
the ranking rather than an agent's label in the set N . Denote this ranking with r(Ni(ḡ

′m)).
Similarly, pick a ranking of agents in the set of agent i's neighbors prior to proposed deviation
in ˆ̄g, Ni(ˆ̄g), such that x1(ˆ̄g) ≥ x2(ˆ̄g) ≥ ... ≥ xηi(ˆ̄g)(ˆ̄g). Denote this ranking with r(Ni(ˆ̄g)).

Note that since ḡ ⊂ ˆ̄g holds and ḡ′m is a deletion best response, Ni(ḡ
′m)) ⊆ Ni(ˆ̄g) also

holds. Pick an agent j ∈ Ni(ḡ
′m) such that xk(ˆ̄g) ≥ xj(ˆ̄g) ∀k ∈ Ni(ḡ

′m), i.e. pick an agent j
in Ni(ḡ

′m), such that j's e�ort level in the network ˆ̄g is weakly smaller than the e�ort level
of any other agent in Ni(ḡ

′m) in the network ˆ̄g. Out of all agents in the ranking r(Ni(ˆ̄g))
with e�ort level equal to xj(ˆ̄g), pick the agent with the largest subscript. Denote this agent
with xt(ˆ̄g) and de�ne a truncated ranking of r(Ni(ˆ̄g)), denoted with rt(Ni(ˆ̄g)), such that
x1(ˆ̄g) ≥ x2(ˆ̄g) ≥ ... ≥ xt−1(ˆ̄g) ≥ xt(ˆ̄g). Note that, since xj(ˆ̄g) was chosen such that all
agents in Ni(ḡ

′m) display weakly higher e�ort levels in ˆ̄g and since xt(ˆ̄g) is the agent with
the highest subscript in r(Ni(ˆ̄g)) such that xt(ˆ̄g) = xj(ˆ̄g), all agents in Ni(ḡ

′m) are included
in the ranking rt(Ni(ˆ̄g)). Note that, since g′mi is agent i's minimal deletion best response
in ḡ, agent i does not �nd it pro�table to delete any further links in ḡ′m. From Lemma
11 we know that we only need to consider deviations g′i such that ∀k, l : k ∈ Ni(ḡ

′) and
l ∈ Di(g

′
i, ḡ), xk(ḡ

′) > xl(ḡ
′) holds. That is, for g′mi to be a minimal deletion best response

in ḡ, we know that the following conditions, summarized in (A), need to hold

(A)
v(
∑ηi(ḡ

′m)
j=1 xj(ḡ

′m), zi(ḡ
′m))− v(

∑ηi(ḡ
′m)

j=1 xj(ḡ
′m)−

∑k
j=0 xηi(ḡ′m)−j(ḡ

′m), zi(ḡ
′m))

k + 1
> κ

for all k ∈ N : 0≤ k ≤ ηi(ḡ
′)− 1. To see this, note that if

v(
∑ηi(ḡ

′m)
j=1 xj(ḡ

′m), zi(ḡ
′m))− v(

∑ηi(ḡ
′m)

j=1 xj(ḡ
′m)−

∑k
j=0 xηi(ḡ′m)−j(ḡ

′m), zi(ḡ
′m))

k + 1
< κ
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holds, then agent i can increase deviation payo�s by deleting links to some subset of
agents in Ni(ḡ

′m) and g′mi is therefore not optimal. If

v(
∑ηi(ḡ

′m)
j=1 xj(ḡ

′m), zi(ḡ
′m))− v(

∑ηi(ḡ
′m)

j=1 xj(ḡ
′m)−

∑k
j=0 xηi(ḡ′m)−j(ḡ

′m), zi(ḡ
′m))

k + 1
= κ,

then there exists a deviation, g̃′i, that yields the same deviation payo�s as g′mi , but
g̃′i ⊂ g′mi holds and g′mi is not minimal.

Next we �rst show that this implies that a deviation by agent i in ˆ̄g, ˆ̄g
′
i, such that agent

i keeps his links with the �rst ηi(ḡ
′m) agents in the ranking r(Ni(ˆ̄g)) in ˆ̄g

′
, but deletes all

other links, yields strictly higher payo�s than a deviation where any further links are deleted.
The appropriate conditions, summarized in (B), such that agent i does not �nd it pro�table
to delete any further links, are given by

(B)
v(
∑ηi(ḡ

′m)
j=1 xj(ˆ̄g), zi(ˆ̄g))− v(

∑ηi(ḡ
′m)

j=1 xj(ˆ̄g)−
∑k

j=0 xηi(ḡ′m)−j(ˆ̄g), zi(ˆ̄g))

k + 1
> κ

for all k ∈ N : 0≤ k ≤ ηi(ḡ
′)− 1. To see that (A) implies (B), note �rst that, since ḡ ⊂ ˆ̄g

and γ is su�ciently small and ηj(ḡ
′m) ≥ 1 ∀j ∈ Ni(ḡ

′m), we know from Lemma 9 that all
agents in Ni(ḡ

′m) display strictly lower e�ort levels in ḡ than in ˆ̄g. That is, for the �rst
ηi(ḡ

′m) agents in the ranking rt(Ni(ˆ̄g)), we know that agents with the same rank (i.e. the
same subscript) as in r(Ni(ḡ

′m)), display strictly larger e�ort levels. Note next that for
γ = 0, v is strictly convex in the �rst argument and v(y, z) can be treated as a function of
the �rst argument in this case. Therefore, a deviation strategy, which deletes all agents up
until the ηi(ḡ

′m)-th agent in the ranking rt(Ni(ˆ̄g)), yields strictly larger deviation payo�s,
than deleting any further agents. Since the conditions must hold strictly, we know from
Lemma 7 that they also hold for γ su�ciently small. Note that if t = ηi(ḡ

′m), then
Ni(ḡ

′m) ⊆ Ni(ˆ̄g′m). Assume next that t > ηi(ḡ
′m) holds. Consider the condition for k = 0

in (A), which reads

v(
∑ηi(ḡ

′m)
j=1 xj(ḡ

′m), zi(ḡ
′m))− v(

∑ηi(ḡ
′m)

j=1 xj(ḡ
′m)− xηi(ḡ′m)(ḡ

′m), zi(ḡ
′m)) > κ.

Note that
∑ηi(ḡ

′m)
j=1 xj(ˆ̄g) ≥

∑ηi(ḡ
′m)

j=1 xj(ḡ
′m) and xl(ḡ

′m) ≥ xηi(ḡ′m)(ḡ
′m) for all agents

with a subscript l larger than ηi(ḡ
′m) in rt(Ni(ˆ̄g)). Since v(y, z) is convex in the �rst

argument and payo�s are arbitrarily close to the case when γ = 0 for γ su�ciently small,
we know that the marginal bene�t of adding links in the sequence from the ηi(˜̄g′)-th agent
in rt(Ni(ˆ̄g)) to agent t is strictly positive for each agent. Therefore, keeping all of the �rst t
links in the ranking rt(Ni(ˆ̄g)) yields strictly larger payo�s than deleting any subset of links
in rt(Ni(ˆ̄g)). By Lemma 11 we then know that any optimal deletion best response must be
such that Ni(ḡ

′m) ⊆ Ni(ˆ̄g
′m

) holds.Q.E.D.

Theorem 2: Assume g 6= ge is a PNE network. If γ is su�ciently small, then a key-player
policy always exists and it prescribes eliminating an agent with the highest number of links.

Proof of Theorem 2. From Lemma 10 we know that, if no pair of agents j and k �nd
it pro�table to create a link g, then no pair of agents j and k �nd it pro�table to create a
link in g−i = g−i0 . Therefore, g−i0 = g−i1 . From Lemma 12 we know that a minimal optimal
deviation strategy exists and is unique. If for all agents j in g−i1 the minimal optimal deviation
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strategy is such that no link is deleted, then g−i0 = g−i1 = g−i2 and the process converged.
If there exists an agents j in g−i1 such that at least one link is deleted, then the network
g−i2 is such that g−i2 ⊂ g−i1 . Note that then g−i2 ⊂ g−i0 also holds and again from Lemma 10
we know that no pair of agents j and k �nds it pro�table to create a link in g−i2 , so that
g−i3 = g−i2 . If for all agents j in g−i3 the minimal deletion best response is such that no link
is deleted, then g−i4 = g−i3 = g−i2 and the process converged. If there exists an agent j in in
g−i3 with an minimal optimal deviation strategy such that at least one link is deleted, then
g−i4 ⊂ g−i3 ⊂ g−i0 . We can now use the above argument iteratively. That is, at each g−il with
l even no link is created, while at each g−il with l odd links may or may not be deleted. If
g−il with l odd is such that no link is deleted then the process converged. Since the number
of links is bounded below by zero links, the process converges. Finally, from Lemma 6 we
know that, if ηk(ḡ) > ηl(ḡ) then g−l ⊂ g−k. From Lemma 12 it then follows immediately
that eliminating an agent with the highest number of links guarantees that at each iteration
the network is minimal and therefore converges to a minimal network. From Ballester et al.
(2006) we know that e�ort levels are then minimal. Q.E.D.
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