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SEMIPARAMETRIC ESTIMATION OF STRUCTURAL
FUNCTIONS IN NONSEPARABLE TRIANGULAR MODELS

VICTOR CHERNOZHUKOV†, IVÁN FERNÁNDEZ-VAL§, WHITNEY NEWEY‡,

SAMI STOULI¶, AND FRANCIS VELLA|

Abstract. This paper introduces two classes of semiparametric triangular sys-

tems with nonadditively separable unobserved heterogeneity. They are based on

distribution and quantile regression modeling of the reduced-form conditional dis-

tributions of the endogenous variables. We show that these models are flexible and

identify the average, distribution and quantile structural functions using a control

function approach that does not require a large support condition. We propose a

computationally attractive three-stage procedure to estimate the structural func-

tions where the first two stages consist of quantile or distribution regressions. We

provide asymptotic theory and uniform inference methods for each stage. In partic-

ular, we derive functional central limit theorems and bootstrap functional central

limit theorems for the distribution regression estimators of the structural functions.

We illustrate the implementation and applicability of our methods with numerical

simulations and an empirical application to demand analysis.

Keywords: Structural functions, nonseparable models, control function, quantile

and distribution regression, semiparametric estimation, uniform inference.

1. Introduction

Models with nonadditively separable disturbances provide an important vehicle for

incorporating heterogenous effects. However, accounting for endogenous treatments

in such a setting can be challenging. One methodology which has been successfully

employed in a wide range of models with endogeneity is the use of control functions

(see, for surveys, Imbens and Wooldridge 2009, Wooldridge 2015 and Blundell, Newey
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and Vella 2017). The underlying logic of this approach is to account for the endogene-

ity by including an appropriate control function in the conditioning variables. This

paper proposes some relatively simple control function procedures to estimate objects

of interest in a triangular model with nonseparable disturbances. Our approach to

circumventing the inherent difficulties in nonparametric estimation associated with

the curse of dimensionality is to build our models upon a semiparametric specification.

Our goal is to provide models and methods that are essentially parametric but still

allow for nonseparable disturbances. These models can be interpreted as “baseline”

models on which series approximations can be built by adding additional terms.

We consider two kinds of baseline models, quantile regression and distribution re-

gression. These models allow the use of convenient and widely available methods to

estimate objects of interest including average and quantile structural/treatment ef-

fects. A main feature of the baseline models is that interaction terms included would

not usually be present as leading terms in estimation. These included terms are

products of a transformation of the control function with the endogenous treatment.

Their presence is meant to allow for heterogeneity in the coefficient of the endogenous

variable. Such heterogenous coefficient linear models are of interest in many settings

and provide a natural starting point for more general models that allow for nonlinear

effects of the endogenous treatments.

We use these baseline models to construct estimators of the average, distribution and

quantile structural functions based on parametric quantile and distribution regres-

sions. We also show how these baseline models can be expanded to include higher

order terms. The estimation procedure consists of three stages. First, we estimate the

control function via quantile regression (QR) or distribution regression (DR) of the

endogenous treatment on the exogenous covariates and exclusion restrictions. Sec-

ond, we estimate the reduced form distribution of the outcome conditional on the

treatment, covariates and estimated control function using DR or QR. Third, we

construct estimators of the structural functions applying suitable functionals to the

reduced form estimator from the second stage. We derive asymptotic theory for the

estimators based on DR in all the stages using a trimming device that avoids tail

estimation in the construction of the control function. We perform Monte Carlo ex-

periments and give an empirical application based on the estimation of Engel curves.

Our results for the average structural function in the linear random coefficients model

are similar to Garen (1984). Florens, Heckman, Meghir, Vytlacil (2008) give iden-

tification and estimation results for a restricted model with random coefficients for
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powers of the endogenous treatment. Blundell and Powell (2003, 2004) introduce the

average structural function, and Imbens and Newey (2009) give general models and

results for a variety of objects of interest and control functions, including quantile

structural functions. This work also complements the literature on local identifica-

tion and estimation of triangular nonseparable models, as in Chesher (2003), Ma and

Koenker (2006), and Jun (2009), and on global construction of structural functions

(Stouli, 2012). Chernozhukov, Fernandez-Val and Kowalski (2015) developed a re-

lated two-stage quantile regression estimator for triangular nonseparable models but

do not consider estimation of structural functions.

This paper makes four main contributions to the existing literature. First, we estab-

lish identification of structural functions in both classes of baseline models, providing

conditions that do not impose large support requirements on the exclusion restriction.

Second, we derive a functional central limit theorem and a bootstrap functional cen-

tral limit theorem for the two-stage DR estimators in the second stage. These results

are uniform over compact regions of values of the outcome. To the best of our knowl-

edge, this result is new. Chernozhukov, Fernandez-Val and Kowalski (2015) derived

similar results for two-stage quantile regression estimators but their results are point-

wise over quantile indexes. Our analysis builds on Chernozhukov, Fernandez-Val, and

Galichon (2010) and Chernozhukov, Fernandez-Val, and Melly (2013), which estab-

lished the properties of the DR estimators that we use in the first stage. The theory of

the two-stage estimator, however, does not follow from these results using standard

techniques due to the dimensionality and entropy properties of the first stage DR

estimators. We follow the proof strategy proposed by Chernozhukov, Fernandez-Val

and Kowalski (2015) to deal with these issues. Third, we derive functional central

limit theorems and bootstrap functional central limit theorems for plug-in estimators

of functionals of the distribution of the outcome conditional on the treatment, co-

variates and control function via functional delta method. These functionals include

all the structural functions of interest. We build on the results of Chernozhukov,

Fernandez-Val, and Melly (2013), which established the properties of related coun-

terfactual distribution and quantile functionals. We also use a linear functional for

the average structural function which had not been previously considered. Fourth,

we show that this linear operator that relates the average of a random variable with

its distribution is Hadamard differentiable.

The rest of the paper is organized as follows. Section 2 describes the baseline mod-

els and objects of interest. Section 3 presents the estimation and inference methods.
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Section 4 gives asymptotic theory. Section 5 reports the results of the empirical appli-

cation to Engel curves and simulations calibrated to the application. Implementation

algorithms and proofs of the main result are given in the Appendix. The online

Appendix Chernozhukov et al. (2017) contains supplemental material.

2. Modelling Framework

We begin with a brief review of the triangular nonseparable model and some inher-

ent objects of interest. Let Y denote an outcome variable of interest that can be

continuous, discrete or mixed continuous-discrete, X a continuous endogenous treat-

ment, Z a vector of exogenous variables, ε a structural disturbance vector of unknown

dimension, and V a scalar reduced form disturbance. The model is

Y = g(X, ε),

X = h(Z, Ṽ ), (ε, Ṽ ) indep of Z,

where v 7→ h(z, v) is a one-to-one function for each z. This model implies that ε

and X are independent conditional on Ṽ and that Ṽ is a one-to-one function of

V = FX(X | Z), the cumulative distribution function (CDF) of X conditional on Z

evaluated at the observed variables. Thus, V is a control function.

Objects of interest in this model include the average structural function (ASF), µ(x),

and quantile structural function (QSF), Q(τ, x), where

µ(x) =

ˆ
g(x, ε)Fε(dε), Q(τ, x) = τ th quantile of g(x, ε).

Here µ(x̃) − µ(x̄) is like an average treatment effect and Q(τ, x̃) − Q(τ, x̄) is like a

quantile treatment effect from the treatment effects literature. If the support of V

conditional on X = x is the same as the marginal support of V then these objects

are nonparametrically identified by

µ(x) =

ˆ
E[Y | X = x, V ]FV (dV ),

and

Q(τ, x) = G←(τ, x), G(y, x) =

ˆ
FY (y | X = x, V )FV (dV ),

where G(y, x) is the Distribution Structural Function (DSF), and G←(τ, x) denotes

the left-inverse of y 7→ G(y, x), i.e. G←(τ, x) := inf{y ∈ R : G(y, x) ≥ τ}.
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It is straightforward to extend this approach to allow for covariates in the model by

further conditioning on or integrating over them. Suppose that Z1 ⊂ Z is included in

the structural equation, which is now g(X,Z1, ε). Under the assumption that ε and

V are jointly independent of Z, then ε will be independent of X and Z1 conditional

on V . Conditional on covariates and unconditional average structural functions are

identified by

µ(x, z1) =

ˆ
E[Y | X = x, Z1 = z1, V ]FV (dV ),

and

µ(x) =

ˆ
E[Y | X = x, Z1, V ]FZ1(dZ1)FV (dV ).

Similarly, conditional on covariates and unconditional quantile and distribution struc-

tural functions are identified by

Q(τ, x, z1) = G←(τ, x, z1), G(y, x, z1) =

ˆ
FY (y | X = x, Z1 = z1, V )FV (dV ),

and

Q(τ, x) = G←(τ, x), G(y, x) =

ˆ
FY (y | X = x, Z1, V )FZ1(dZ1)FV (dV ),

respectively.

With covariates the curse of dimensionality makes it difficult to estimate the control

function V = FX(X | Z), the conditional mean E[Y | X,Z1, V ], and the conditional

CDF FY (Y | X,Z1, V ). This difficulty motivates our specification of baseline para-

metric models in what follows. These baseline models provide good starting points

for nonparametric estimation and may be of interest in their own right.

2.1. Quantile Regression Baseline. We start with a simplified specification with

one endogenous treatment X, one exclusion restriction Z, and a continuous outcome

Y . We show below how additional excluded variables and covariates can be included.

The baseline first stage is the quantile regression model

X = QX(V | Z) = π1(V ) + π2(V )Z, V | Z ∼ U(0, 1).

Note that v 7→ π1(v) and v 7→ π2(v) are infinite dimensional parameters (functions).

We can recover the control function V from V = FX(X | Z) = Q−1X (X | Z) or

equivalently from

V = FX(X | Z) =

ˆ 1

0

1{π1(v) + π2(v)Z ≤ X}dv.
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This generalized inverse representation of the CDF is convenient for estimation be-

cause it does not require the conditional quantile function to be strictly increasing

to be well-defined. Model parameters can be estimated using Koenker and Bassett

quantile regression (Koenker and Bassett, 1978).

The baseline second stage has a reduced form:

Y = QY (U | X, V ), U | X, V ∼ U(0, 1),

QY (U | X, V ) = β1(U) + β2(U)X + β3(U)Φ−1(V ) + β4(U)XΦ−1(V ),

where Φ−1 is the standard normal inverse CDF. This transformation is included to

expand the support of V and to encompass the normal system of equations as a

special case. An example of a structural model with this reduced form is the random

coefficient model

Y = g(X, ε) = ε1 + ε2X,

with the restrictions

εj = Qεj(U | X, V ) = θj(U) + γj(U)Φ−1(V ), U | X, V ∼ U(0, 1), j ∈ {1, 2}.

These restrictions include the control function assumption εj ⊥⊥ X | V and a joint

functional form restriction, where the unobservable U is the same for ε1 and ε2.

Substituting in the second stage equation,

Y = θ1(U) + θ2(U)X + γ1(U)Φ−1(V ) + γ2(U)Φ−1(V )X, U | X, V ∼ U(0, 1),

which has the form of (2.1). All model parameters can be estimated by QR of Y on

(1, X,Φ−1(V ),Φ−1(V )X).

The specification (2.1) is a baseline, or starting point, for a more general series approx-

imation to the quantiles of Y conditional on X and V based on including additional

functions of X and Φ−1(V ). The baseline is unusual as it includes the interaction term

Φ−1(V )X; it is more usual to take the starting point to be (1,Φ−1(V ), X), which is

linear in the regressors X and Φ−1(V ). The inclusion of the interaction term is moti-

vated by allowing the coefficient of X to vary with individuals, so that Φ−1(V ) then

interacts X in the conditional distribution of ε2 given the control functions.

The ASF of the baseline specification is:

µ(x) =

ˆ 1

0

E[Y | X = x, V = v]dv = β1 + β2x,
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where the second equality follows by
´ 1
0

Φ−1(v)dv = 0 and

E[Y | X, V ] =

ˆ 1

0

QY (u | X, V )du = β1 + β2X + β3Φ
−1(V ) + β4XΦ−1(V )

with βj :=
´ 1
0
βj(u)du, j ∈ {1, . . . , 4}. The QSF does not appear to have a closed

form expression. It is the solution to

Q(τ, x) = G←(τ, x),

G(y, x) =

ˆ 1

0

ˆ 1

0

1{β1(u) + β2(u)x+ β3(u)Φ−1(v) + β4(u)Φ−1(v)x ≤ y}dudv.

A special case of the QR baseline is a heteroskedastic normal system of equations.

We use this specification in the numerical simulations of Section 5.

2.2. Distribution Regression Baseline. We start again with a simplified specifi-

cation with one endogenous treatment X and one excluded Z, but now the outcome

Y can be continuous, discrete or mixed.

Let Γ denote a strictly increasing continuous CDF such as the standard normal or

logistic CDF. The first stage equation is the distribution regression model

η = π1(X) + π2(X)Z, η | Z ∼ Γ,

which corresponds to the specification of the control variable V as

(2.1) V = FX(X | Z) = Γ(π1(X) + π2(X)Z).

While the first stage QR model specifies the conditional quantile function of X given

Z to be linear in Z, the DR model (2.1) specifies the conditional distribution of X

given Z to be generalized linear in Z, i.e. linear after applying the link function Γ.

The second stage baseline has a reduced form:

(2.2) FY (Y | X, V ) = Γ(β1(Y ) + β2(Y )X + β3(Y )Φ−1(V ) + β4(Y )Φ−1(V )X).

When Y is continuous, an example of a structural model that has reduced form (2.2)

is the latent random coefficient model

(2.3) ξ = ε1 + ε2Φ
−1(V ), ξ | X, V ∼ Γ,

with the restrictions

εj = θj(Y ) + γj(Y )X, j ∈ {1, 2},
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such that the mapping y 7→ θj(y) + γj(y)x is strictly increasing, and the following

conditional independence property is satisfied:

(2.4) Fεj(εj | V ) = Fεj(εj | X, V ), j ∈ {1, 2}.

Substituting the expression for ε1 and ε2 in (2.3) yields

ξ = θ1(Y ) + γ1(Y )X + θ2(Y )Φ−1(V ) + γ2(Y )Φ−1(V )X,

which has a reduced form for the distribution of Y conditional on (X, V ) as in (2.2).

All the parameters of this model (2.2) can be estimated by DR. As in the quantile

baseline, the specification (2.2) can be used as starting point for a more general series

approximation to the distribution of Y conditional on X and V based on including

additional functions of X and Φ−1(V ).

For the DR baseline, the QSF is the solution to

Q(τ, x) = G←(τ, x), G(y, x) =

ˆ 1

0

Γ(β1(y)+β2(y)x+β3(y)Φ−1(v)+β4(y)Φ−1(v)x)dv.

Compared to the QR baseline model, the ASF cannot be obtained as a linear pro-

jection but it can be conveniently expressed as a linear functional of G(y, x). Let Y
denote the support of Y , Y+ = Y ∩ [0,∞) and Y− = Y ∩ (−∞, 0). The ASF can be

characterized as

(2.5) µ(x) =

ˆ 1

0

E[Y | X = x, V = v]dv =

ˆ
Y+

[1−G(y, x)]ν(dy)−
ˆ
Y−
G(y, x)ν(dy),

where ν is either the counting measure when Y is countable or the Lebesgue measure

otherwise, and we exploit the linear relationship between the expected value and the

distribution of a random variable. This characterization simplifies both the computa-

tion and theoretical treatment of the DR-based estimator for the ASF. It also applies

to the QR specification upon using the corresponding expression for G(y, x).

Section 5 provides an example of a special case of the DR model.

2.3. Identification. The most general specifications that we consider include several

exclusion restrictions, covariates and transformations of the regressors in both stages.

For dz1 := dim(Z1) and r1(Z1) := r11(Z11)⊗ · · · ⊗ r1L(Z1dz1
), let

R := r(Z) and W := w(X,Z1, V ) := p(X)⊗ r1(Z1)⊗ q(V )

denote the sets of regressors in the first and second stages, where r, r1, p and

q are vectors of transformations such as powers, b-splines and interactions, and
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⊗ denotes the Kronecker product. The simplest case is when r(Z) = (1, Z)′,

r1(Z1) = (1, Z1)
′, p(X) = (1, X)′ and q(V ) = (1,Φ−1(V ))′, so that w(X,Z1, V ) =

(1,Φ−1(V ), X,XΦ−1(V ), Z1, Z1Φ
−1(V ), XZ1, XZ1Φ

−1(V ))′. The following assump-

tion gathers the baseline specifications for the first and second stages.

Assumption 1. [Baseline Models] The outcome Y has a conditional density function

y 7→ fY (y | X,Z1, V ) with respect to some measure that is a.s. bounded away from

zero uniformly in Y; and (a) X conditional on Z follows the QR model

X = QX(V | Z) = R′π(V ), V | Z ∼ U(0, 1),

and Y conditional on (X,Z1, V ) follows the QR model

Y = QY (U | X,Z1, V ) = W ′β(U), V = FX(X | Z), U | X,Z1, V ∼ U(0, 1);

or (b) X conditional on Z follows the DR model

V = Λ(R′π(X)), V | Z ∼ U(0, 1),

and Y conditional on (X,Z1, V ) follows the DR model,

U = Γ(W ′β(Y )), V = FX(X | Z), U | X,Z1, V ∼ U(0, 1),

where Γ is either the standard normal or logistic CDF.

The structural functions of the baseline models involve quantile and distribution re-

gressions on the same set of regressors. A sufficient condition for identification of the

coefficients of these regressions is that the second moment matrix of those regressors

is nonsingular. The regressors have a Kronecker product form p(X)⊗ r1(Z1)⊗ q(V ).

The second moment matrix for these regressors will be nonsingular if the joint distri-

bution dominates a distribution where X, Z1 and V are independent and the second

moment matrices of X, Z1 and V are positive definite. Define the product probability

measure ς(z1) := ×dz1l=1ςl(z1l).

Assumption 2. The joint probability distribution of X, Z1 and V dominates

a product probability measure µ(x) × ς(z1) × ρ(v) such that Eµ[p(X)p(X)′],

Eςl [r1l(Z1l)r1l(Z1l)
′], l = 1, . . . , dz1, and Eρ[q(V )q(V )′] are positive definite.

When p(X) = (1, X)′, r1l(Z1l) = (1, Z1l)
′, l = 1, . . . , dz1 , and q(V ) = (1,Φ−1(V ))′,

Assumption 2 simplifies to the requirement that the joint distribution of X, Z1 and

V be dominating one such that Varµ(X) > 0, Varςl(Z1l) > 0, l = 1, . . . , dz1 , and

Varρ(Φ
−1(V )) > 0. For general specifications where the regressors are higher order
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power series, it is sufficient for Assumption 2 that the joint distribution of X, Z1

and V be dominating one that has density bounded away from zero on a hypercube.

That will mean that the joint distribution dominates a uniform distribution on that

hypercube, and for a uniform distribution on a hypercube E[w(X,Z1, V )w(X,Z1, V )′]

is nonsingular.

Lemma 1. If Assumption 2 holds, then E[w(X,Z1, V )w(X,Z1, V )′] is nonsingular.

Assumptions 1-2 are sufficient conditions for the map y 7→ FY (y | x, z1, v) to be well-

defined for all (x, z1, v), and therefore for identification of the structural functions.

Theorem 1. If Assumptions 1 and 2 hold, then the DSF, QSF and ASF are identified.

Given the semiparametric specifications in Assumption 1, identification of structural

functions does not require any restriction on the support of Z, and the full sup-

port assumption of Imbens and Newey (2009) need not be satisfied. Theorem 1 thus

illustrates the identifying power of semiparametric restrictions and the trade-off be-

tween these restrictions and the full support condition for identification of structural

functions in nonseparable triangular models.

3. Estimation and Inference Methods

The QR and DR baselines of the previous section lead to three-stage analog estima-

tion and inference methods for the DSF, QSF and ASF. The first stage estimates the

control function V = FX(X | Z). The second stage estimates the conditional distri-

bution function FY (y | X,Z1, V ), replacing V by the estimator from the first stage.

The third stage obtains estimators of the structural functions, which are functionals

of the first and second stages building blocks. We provide a detailed description of

the implementation of each step for both QR and DR methods. We also describe a

weighted bootstrap procedure to perform uniform inference on all structural functions

considered. Detailed implementation algorithms are given in Appendix A.

We assume that we observe a sample of n independent and identically distributed

realizations {(Yi, Xi, Zi)}ni=1 of the random vector (Y,X,Z), and that dim(X) = 1.

Calligraphic letters such as Y and X denote the supports of Y and X; and YX
denotes the joint support of (Y,X). The description of all the stages includes indi-

vidual weights ei which are set to 1 for the estimators, or drawn from a distribution

that satisfies Assumption 3 in Section 4 for the weighted bootstrap version of the

estimators.
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3.1. First Stage: Estimation of Control Function. The first stage estimates the

n target values of the control function, Vi = FX(Xi | Zi), i = 1, . . . , n. We estimate

the conditional distribution of X in a trimmed support X that excludes extreme

values. The purpose of the trimming is to avoid the far tails. We consider a fixed

trimming rule, which greatly simplifies the derivation of the asymptotic properties.

In our numerical and empirical examples we find that the results are not sensitive

to the trimming rule and the choice of X as the observed support of X, i.e. no

trimming, works well. We use bars to denote trimmed supports with respect to X,

e.g., XZ = {(x, z) ∈ XZ : x ∈ X}. A subscript in a set denotes a finite grid covering

the set, where the subscript is the number of grid points. Unless otherwise specified,

the points of the grid are sample quantiles of the corresponding variable at equidistant

probabilities in [0, 1]. For example, X5 denotes a grid of 5 points covering X located

at the 0, 1/4, 1/2, 3/4 and 1 sample quantiles of X.

Denoting the usual check function by ρv(z) = (v − 1(z < 0))z, the first stage in the

QR baseline is

F̂ e
X(x | z) = ε+

ˆ 1−ε

ε

1{r′π̂e(v) ≤ x}dv, r = r(z), (x, z) ∈ XZ,(3.1)

π̂e(v) ∈ arg min
π∈Rdim(R)

n∑
i=1

eiρv(Xi −R′iπ),(3.2)

for some small constant ε > 0. The adjustment in the limits of the integral in (3.1)

avoids tail estimation of quantiles.1 The first stage in the DR baseline is,

F̂ e
X(x | z) = Γ(r′π̂e(x)), r = r(z), (x, z) ∈ XZ,(3.3)

π̂e(x) ∈ arg min
π∈Rdim(R)

n∑
i=1

ei [1 (Xi ≤ x) log Γ(R′iπ)(3.4)

+1 (Xi > x) log (1− Γ(R′iπ))] .

When ei = 1 for all i = 1, . . . , n, expressions (3.1)-(3.2) and (3.3)-(3.4) define F̂X ,

the QR and DR estimators of FX . For (Xi, Zi) ∈ XZ, the estimator and weighted

bootstrap version of the control function are then V̂i = F̂X(Xi | Zi) and V̂ e
i = F̂ e

X(Xi |
Zi), respectively, and we set V̂i = V̂ e

i = 0 otherwise.

1Chernozhukov, Fernandez-Val and Melly (2013) provide conditions under which this adjustment
does not introduce bias.
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Remark 1. For DR, the estimation of π(x) at each x = Xi can be computationally

expensive. Substantial gains in computational speed is achieved by first estimating

π(x) in a grid XM , and then obtaining π̂(x) at each x = Xi by interpolation.

3.2. Second Stage: Estimation of FY (· | X,Z1, V ). With the estimated control

function in hand, the second building block required for the estimation of structural

functions is an estimate of the reduced form CDF of Y given (X,Z1, V ). The baseline

models provide direct estimation procedures based on QR and DR.

Let T := 1(X ∈ X ) be a trimming indicator, which is formally defined in Assumption

4 of Section 4. The estimator of FY in the QR baseline is

F̂ e
Y (y | x, z1, v) = ε+

ˆ 1−ε

ε

1{w(x, z1, v)′β̂e(u) ≤ y}du, (y, x, z1, v) ∈ YXZ1V ,(3.5)

β̂e(u) ∈ arg min
β∈Rdim(W )

n∑
i=1

eiTiρu(Yi − Ŵ e′
i β), Ŵ e

i = w(Xi, Z1i, V̂
e
i ),(3.6)

As for the first stage, the adjustment in the limits of the integral in (3.5) avoids tail

estimation of quantiles. The estimator of FY in the DR baseline is

F̂ e
Y (y | x, z1, v) = Γ(w(x, z1, v)′β̂e(y)), (y, x, z1, v) ∈ YXZ1V ,(3.7)

β̂e(y) ∈ arg min
β∈Rdim(W )

n∑
i=1

eiTi

[
1 (Yi ≤ y) log Γ(Ŵ e′

i β)(3.8)

+1 (Yi > y) log
(

1− Γ(Ŵ e′
i β)

)]
.

When ei = 1 for all i = 1, . . . , n, expressions (3.5)-(3.6) and (3.7)-(3.8) define F̂Y , the

quantile and distribution regression estimators of FY , respectively.

3.3. Third Stage: Estimation of Structural Functions. Given the estimators

({V̂i}ni=1, F̂Y ) and their bootstrap draws ({V̂ e
i }ni=1, F̂

e
Y ), we can form estimators of the

structural functions as functionals of these building blocks.

The estimator and bootstrap draw of the DSF are

(3.9) Ĝ(y, x) =
1

nT

n∑
i=1

F̂Y (y | x, Z1i, V̂i)Ti,

where nT =
∑n

i=1 Ti, and

(3.10) Ĝe(y, x) =
1

neT

n∑
i=1

eiF̂
e
Y (y | x, Z1i, V̂

e
i )Ti,
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where neT =
∑n

i=1 eiTi. For the DR estimator, y 7→ Ĝ(y, x) may not be mono-

tonic. This can be addressed by applying the rearrangement method of Chernozhukov,

Fernandez-Val and Galichon (2010).

Given the DSF estimate and bootstrap draw, Ĝ(y, x) and Ĝe(y, x), the estimator and

bootstrap draw of the QSF are

(3.11) Q̂(τ, x) =

ˆ
Y+

1{Ĝ(y, x) ≤ τ}ν(dy)−
ˆ
Y−

1{Ĝ(y, x) ≥ τ}ν(dy),

and

(3.12) Q̂e(τ, x) =

ˆ
Y+

1{Ĝe(y, x) ≤ τ}ν(dy)−
ˆ
Y−

1{Ĝe(y, x) ≥ τ}ν(dy),

respectively. Finally, the estimator and bootstrap draw of the ASF are

(3.13) µ̂(x) =

ˆ
Y+

[1− Ĝ(y, x)]ν(dy)−
ˆ
Y−
Ĝ(y, x)ν(dy),

and

(3.14) µ̂e(x) =

ˆ
Y+

[1− Ĝe(y, x)]ν(dy)−
ˆ
Y−
Ĝe(y, x)ν(dy),

respectively. When the set Y is uncountable, we approximate the previous integrals

by sums over a fine mesh of equidistant points YS := {inf[y ∈ Y ] = y1 < · · · < yS =

sup[y ∈ Y ]} with mesh width δ such that δ
√
n → 0. For example, (3.12) and (3.14)

are approximated by

(3.15) Q̂e
S(τ, x) = δ

S∑
s=1

[
1(ys ≥ 0)− 1{Ĝe(ys, x) ≥ τ}

]
,

and

(3.16) µ̂eS(x) = δ

S∑
s=1

[
1(ys ≥ 0)− Ĝe(ys, x)

]
.

3.4. Weighted Bootstrap Inference on Structural Functions. We consider in-

ference uniform over regions of values of (y, x, τ). We denote the region of interest as

IG for the DSF, IQ for the QSF, and Iµ for the ASF. Examples include:

(1) The DSF, y 7→ Ĝe(y, x), for fixed x and over y ∈ Ỹ ⊂ Y , by setting IG =

Ỹ × {x}.
(2) The QSF, x 7→ Q̂e(τ, x) for fixed x and over τ ∈ T̃ ⊂ (0, 1), by setting

IQ = T̃ × {x},
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(3) The ASF, µ̂e(x), over x ∈ X̃ ⊂ X , by setting Iµ = X̃ .

When the region of interest is not a finite set, we approximate it by a finite grid.

All the details of the procedure we implement are summarized in Algorithm 1 in

Appendix A.

The weighted bootstrap versions of the DSF, QSF and ASF estimators are obtained by

rerunning the estimation procedure introduced in Section 3.3 with sampling weights

drawn from a distribution that satisfies Assumption 3 in Section 4; see Algorithm 2

in Appendix A for details. They can then be used to perform uniform inference over

the region of interest.

For instance, a (1 − α)-confidence band for the DSF over the region IG can be con-

structed as

(3.17)
[
Ĝ(y, x)± k̂G(1− α)σ̂G(y, x), (y, x) ∈ IG

]
,

where σ̂G(y, x) is an estimator of σG(y, x), the asymptotic standard deviation of

Ĝ(y, x), such as the rescaled weighted bootstrap interquartile range

(3.18) σ̂G(y, x) = IQR
[
Ĝe(y, x)

]
/1.349,

and k̂G(1 − α) denote a consistent estimator of the (1 − α)-quantile of the maximal

t-statistic

‖tG(y, x)‖IG = sup
(y,x)∈IG

∣∣∣∣∣Ĝ(y, x)−G(y, x)

σG(y, x)

∣∣∣∣∣ ,
such as the (1− α)-quantile of the bootstrap draw of the maximal t-statistic

(3.19) ‖teG(y, x)‖IG = sup
(y,x)∈IG

∣∣∣∣∣Ĝe(y, x)− Ĝ(y, x)

σ̂G(y, x)

∣∣∣∣∣ .
Confidence bands for the ASF can be constructed by a similar procedure, using the

bootstrap draws of the ASF estimator. For the QSF, we can either use the same

procedure based on the bootstrap draws of the QSF, or invert the confidence bands

for the DSF following the generic method of Chernozhukov et al (2016). The first

possibility works only when Y is continuous, whereas the second method is more

generally applicable. We provide algorithms for the construction of the bands in

Appendix A.
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4. Asymptotic Theory

We derive asymptotic theory for the estimators of the ASF, DSF and QSF where both

the first and second stages are based on DR. The theory for the estimators based on

QR can be derived using similar arguments.

In what follows, we shall use the following notation. We let the random vector

A = (Y,X,Z,W, V ) live on some probability space (Ω0,F0, P ). Thus, the probability

measure P determines the law of A or any of its elements. We also let A1, ..., An,

i.i.d. copies of A, live on the complete probability space (Ω,F ,P), which contains

the infinite product of (Ω0,F0, P ). Moreover, this probability space can be suitably

enriched to carry also the random weights that appear in the weighted bootstrap.

The distinction between the two laws P and P is helpful to simplify the notation in

the proofs and in the analysis. Unless explicitly mentioned, all functions appearing

in the statements are assumed to be measurable.

We now state formally the assumptions. The first assumption is about sampling and

the bootstrap weights.

Assumption 3. [Sampling and Bootstrap Weights] (a) Sampling: the data

{Yi, Xi, Zi}ni=1 are a sample of size n of independent and identically distributed obser-

vations from the random vector (Y,X,Z). (b) Bootstrap weights: (e1, ..., en) are i.i.d.

draws from a random variable e ≥ 0, with EP [e] = 1, VarP [e] = 1, and EP |e|2+δ <∞
for some δ > 0; live on the probability space (Ω,F ,P); and are independent of the

data {Yi, Xi, Zi}ni=1 for all n.

The second assumption is about the first stage where we estimate the control function

(x, z) 7→ ϑ0(x, z) defined as

ϑ0(x, z) := FX(x | z),

with trimmed support V = {ϑ0(x, z) : (x, z) ∈ XZ}. We assume a logistic DR model

for the conditional distribution of X in the trimmed support X .

Assumption 4. [First Stage] (a) Trimming: we consider a trimming rule defined by

the tail indicator

T = 1(X ∈ X ),

where X = [x, x] for some −∞ < x < x < ∞, such that P (T = 1) > 0. (b) Model:

the distribution of X conditional on Z follows Assumption 1(b) with Γ = Λ in the

trimmed support, where Λ is the logit link function; the coefficients x 7→ π0(x) are three
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times continuously differentiable with uniformly bounded derivatives; R is compact;

and the minimum eigenvalue of EP [Λ(R′π0(x))[1− Λ(R′π0(x))]RR′] is bounded away

from zero uniformly over x ∈ X .

For x ∈ X , let

π̂e(x) ∈ arg min
π∈Rdim(R)

1

n

n∑
i=1

ei{1(Xi ≤ x) log Λ(R′iπ) + 1(Xi > x) log[1− Λ(R′iπ)]},

and set

ϑ0(x, r) = Λ(r′π0(x)); ϑ̂e(x, r) = Λ(r′π̂e(x)),

if (x, r) ∈ XR, and ϑ0(x, r) = ϑ̂e(x, r) = 0 otherwise.

Theorem 4 of Chernozhukov, Fernandez-Val and Kowalski (2015) established the as-

ymptotic properties of the DR estimator of the control function. We repeat the result

here as a lemma for completeness and to introduce notation that will be used in the

results below. Let T (x) := 1(x ∈ X ), ‖f‖T,∞ := supa∈A |T (x)f(a)| for any function

f : A 7→ R, and λ = Λ(1− Λ), the density of the logistic distribution.

Lemma 2. [First Stage] Suppose that Assumptions 3 and 4 hold. Then, (1)

√
n(ϑ̂e(x, r)− ϑ0(x, r)) =

1√
n

n∑
i=1

ei`(Ai, x, r) + oP(1) ∆e(x, r) in `∞(XR),

`(A, x, r) := λ(r′π0(x))[1{X ≤ x} − Λ(R′π0(x))]×

×r′EP {Λ(R′π0(x))[1− Λ(R′π0(x))]RR′}−1R,

EP [`(A, x, r)] = 0,EP [T`(A,X,R)2] <∞,

where (x, r) 7→ ∆e(x, r) is a Gaussian process with uniformly continuous sample paths

and covariance function given by EP [`(A, x, r)`(A, x̃, r̃)′]. (2) There exists ϑ̃e : XR 7→
[0, 1] that obeys the same first order representation uniformly over XR, is close to

ϑ̂e in the sense that ‖ϑ̃e − ϑ̂e‖T,∞ = oP(1/
√
n) and, with probability approaching one,

belongs to a bounded function class Υ such that

logN(ε,Υ, ‖ · ‖T,∞) . ε−1/2, 0 < ε < 1.

The next assumptions are about the second stage. We assume a logistic DR model for

the conditional distribution of Y given (X,Z1, V ), impose compactness and smooth-

ness conditions, and provide sufficient conditions for identification of the parameters.

Compactness is imposed over the trimmed supports and can be relaxed at the cost

of more complicated and cumbersome proofs. The smoothness conditions are fairly
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tight. The assumptions on Y cover continuous, discrete and mixed outcomes in the

second stage. We denote partial derivatives as ∂xf(x, y) := ∂f(x, y)/∂x.

Assumption 5. [Second Stage] (a) Model: the distribution of Y conditional on

(X,Z1, V ) follows Assumption 1(b) with Γ = Λ. (b) Compactness and smoothness:

the set XZW is compact; the set Y is either a compact interval in R or a finite subset

of R; X has a continuous conditional density function x 7→ fX(x | z) that is bounded

above by a constant uniformly in z ∈ Z; if Y is an interval, then Y has a conditional

density function y 7→ fY (y | x, z) that is uniformly continuous in y ∈ Y uniformly

in (x, z) ∈ XZ, and bounded above by a constant uniformly in (x, z) ∈ XZ; the

derivative vector ∂vw(x, z1, v) exists and its components are uniformly continuous in

v ∈ V uniformly in (x, z1) ∈ XZ1, and are bounded in absolute value by a constant,

uniformly in (x,w, v) ∈ XZ1V; and for all y ∈ Y, β0(y) ∈ B, where B is a compact

subset of Rdim(W ). (c) Identification and nondegeneracy: Assumption 2 holds condi-

tional on T = 1, and the matrix C(y, v) := CovP [fy(A) + gy(A), fv(A) + gv(A) ] is

finite and is of full rank uniformly in y, v ∈ Y, where

fy(A) := {Λ(W ′β0(y))− 1(Y ≤ y)}WT,

and, for Ẇ = ∂vw(X,Z1, v)|v=V ,

gy(A) := EP [{[Λ(W ′β0(y))− 1(Y ≤ y)]Ẇ + λ(W ′β0(y))Ẇ ′β0(y)W}T`(a,X,R)]
∣∣
a=A

.

For y ∈ Y , let

β̂(y) = arg min
β∈Rdim(W )

1

n

n∑
i=1

Tiρy(Yi, β
′Ŵi), Ŵi = w(Xi, Z1i, V̂i), V̂i = ϑ̂(Xi, Ri),

where

ρy(Y,B) := −{1(Y ≤ y) log Λ(B) + 1(Y > y) log[1− Λ(B)]},

and ϑ̂ is the estimator of the control function in the unweighted sample; and

β̂e(y) = arg min
β∈Rdim(W )

1

n

n∑
i=1

eiTiρy(Yi, β
′Ŵ e

i ), Ŵ e
i = w(Xi, Z1i, V̂

e
i ), V̂ e

i = ϑ̂e(Xi, Ri),

where ϑ̂e is the estimator of the control function in the weighted sample.

The following lemma establishes a functional central limit theorem and a functional

central limit theorem for the bootstrap for the estimator of the DR coefficients in the

second stage. Let dw := dim(W ), and `∞(Y) be the set of all uniformly bounded real
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functions on Y . We use  P to denote bootstrap consistency, i.e. weak convergence

conditional on the data in probability, which is formally defined in Appendix C.1.

Lemma 3. [FCLT and Bootstrap FCLT for β̂(y)] Under Assumptions 1–5, in `∞(Y)dw ,

√
n(β̂(y)− β0(y)) J(y)−1G(y), and

√
n(β̂e(y)− β̂(y)) P J(y)−1G(y),

where y 7→ G(y) is a dw-dimensional zero-mean Gaussian process with uniformly

continuous sample paths and covariance function

EP [G(y)G(v)′] = C(y, v), y, v ∈ Y .

We consider now the estimators of the main quantities of interest – the structural

functions. Let Wx := w(x, Z1, V ), Ŵx := w(x, Z1, V̂ ), and Ŵ e
x := w(x, Z1, V̂

e). The

DR estimator and bootstrap draw of the DSF in the trimmed support, GT (y, x) =

EP{Λ[β0(y)′Wx] | T = 1}, are Ĝ(y, x) =
∑n

i=1 Λ[β̂(y)′Ŵxi]Ti/nT , and Ĝe(y, x) =∑n
i=1 eiΛ[β̂e(y)′Ŵ e

xi]Ti/n
e
T . Let pT := P (T = 1). The next result gives large sample

theory for these estimators.

Theorem 2 (FCLT and Bootstrap FCLT for DSF). Under Assumptions 1–5, in

`(YX ),

√
npT (Ĝ(y, x)−GT (y, x)) Z(y, x) and

√
npT (Ĝe(y, x)− Ĝ(y, x)) P Z(y, x),

where (y, x) 7→ Z(y, x) is a zero-mean Gaussian process with covariance function

CovP [Λ[W ′
xβ0(y)] + hy,x(A),Λ[W ′

uβ0(v)] + hv,u(A) | T = 1],

with

hy,x(A) = EP{λ[W ′
xβ0(y)]WxT}′−1[fy(A) + gy(A)]+

EP{λ[W ′
xβ0(y)]Ẇ ′

xβ0(y)T`(a,X,R)}
∣∣
a=A

.

When Y is continuous and y 7→ GT (y, x) is strictly increasing, we can also characterize

the asymptotic distribution of Q̂(τ, x), the estimator of the QSF in the trimmed

support. Let gT (y, x) be the density of y 7→ GT (y, x), T := {τ ∈ (0, 1) : Q(τ, x) ∈
Y , gT (Q(τ, x), x) > ε, x ∈ X} for fixed ε > 0, and QT (τ, x) the QSF in the trimmed

support T X defined as

QT (τ, x) =

ˆ
Y+

1{GT (y, x) ≤ τ}dy −
ˆ
Y−

1{GT (y, x) ≥ τ}dy.
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The estimator and its bootstrap draw given in (3.11)-(3.12) follow the functional

central limit theorem:

Theorem 3 (FCLT and Bootstrap FCLT for QSF). Assume that y 7→ GT (y, x) is

strictly increasing in Y and (y, x) 7→ GT (y, x) is continuously differentiable in YX .

Under Assumptions 1–5, in `∞(T X ),

√
npT (Q̂(τ, x)−QT (τ, x)) − Z(Q(τ, x), x)

gT (Q(τ, x), x)
and

√
npT (Q̂e(τ, x)− Q̂(τ, x)) P −

Z(Q(τ, x), x)

gT (Q(τ, x), x)
,

where (y, x) 7→ Z(y, x) is the same Gaussian process as in Theorem 2.

Finally, we consider the ASF in the trimmed support

µT (x) =

ˆ
Y+

[1−GT (y, x)]ν(dy)−
ˆ
Y−
GT (y, x)ν(dy).

The estimator and its bootstrap draw given in (3.13)-(3.14) follow the functional

central limit theorem:

Theorem 4 (FCLT and Bootstrap FCLT for ASF). Under Assumptions 1–5, in

`∞(X ),

√
npT (µ̂(x)− µT (x)) −

ˆ
Y
Z(y, x)ν(dy) and

√
npT (µ̂e(x)− µ̂(x)) P −

ˆ
Y
Z(y, x)ν(dy),

where (y, x) 7→ Z(y, x) is the same Gaussian process as in Theorem 2.

5. Numerical Illustrations

5.1. Empirical Application: Engel Curves for Food and Leisure Expendi-

ture. In this section we apply our methods to the estimation of a semiparametric

nonseparable triangular model for Engel curves. We focus on the structural relation-

ship between household’s total expenditure and household’s demand for two goods:

food and leisure. We take the outcome Y to be the expenditure share on either food

or leisure, and X the logarithm of total expenditure. Following Blundell, Chen and

Kristensen (2007) we use as an exclusion restriction the logarithm of gross earnings of
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the head of household. We also include an additional binary covariate Z1 accounting

for the presence of children in the household.

There is an extensive literature on Engel curve estimation (e.g., see Lewbel (2006)

for a review), and the use of nonseparable triangular models for the identification

and estimation of Engel curves has been considered in the recent literature. Blundell,

Chen and Kristensen (2007) estimate semi-nonparametrically Engel curves for several

categories of expenditure, Imbens and Newey (2009) estimate the QSF nonparamet-

rically for food and leisure, and Chernozhukov, Fernandez-Val and Kowalski (2015)

estimate Engel curves for alcohol accounting for censoring. For comparison purposes

we use the same dataset as these papers, the 1995 U.K. Family Expenditure Survey.

We restrict the sample to 1,655 married or cohabiting couples with two or fewer chil-

dren, in which the head of the household is employed and between the ages of 20

and 55 years. For this sample we estimate the DSF, QSF and ASF for both goods.

Unlike Imbens and Newey (2009) we also account for the presence of children in the

household and we impose semiparametric restrictions through our baseline models.

In contrast to Chernozhukov, Fernandez-Val and Kowalski (2015), we do not impose

separability between the control function and other regressors, and we estimate the

structural functions.

All structural functions are estimated by both QR and DR methods, following exactly

the description of the implementation presented in Section 3 with the specifications

r(Z) = (1, Z)′, r1(Z1) = (1, Z1)
′, p(X) = (1, X)′, and q(V ) = (1,Φ−1(V ))′. We set

M = 599 and ε = 0.01 in Algorithm 1, approximate the integrals using S = 599

points, and run B = 199 bootstrap replications in Algorithm 2 for both methods.

The regions of interest are X̃ = [Q̂X(0.1), Q̂X(0.9)] and Ỹ = [Q̂Y (0.1), Q̂Y (0.9)],

where Q̂X(u) and Q̂Y (u) are the sample u-quantiles of X and Y . We approximate

X̃ by a grid X̃K with K = 3, 5, and Ỹ by a grid Ỹ15. We estimate the structural

functions and perform uniform inference over the following regions:

(1) For the QSF, Q̂(τ, x), we take T̃ = {0.25, 0.5, 0.75}, and then set: IQ = T̃ X̃5.

(2) For the DSF, Ĝ(y, x), we set: IG = Ỹ15X̃3.

(3) For the ASF, µ̂(x), we set: Iµ = X̃5.

We implement the DR estimator using the logit link function. Since the estimated

DSF may be non-monotonic in y, we apply rearrangement to y 7→ Ĝ(y, x) at each

value of x in IG. None of the methods uses trimming, that is we set T = 1 a.s.
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(a) Food.
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(b) Leisure.

Figure 5.1. QSF. Quantile (left) and distribution regression (right).

Figures 5.1-5.3 show the QSF, ASF and DSF for both goods2. For each structural

function, we report weighted bootstrap 90%-confidence bands that are uniform over

the corresponding region specified above. Our empirical results illustrate that QR and

DR specifications are able to capture different features of structural functions, and

are therefore complementary. For food, both estimation methods deliver very similar

2For graphical representation the QSF and ASF are interpolated by splines over X and the DSF
over Y.
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Figure 5.2. ASF for food (left) and leisure (right). Quantile (blue)
and distribution regression (red).

of the QSF, close to being linear, although linearity is not imposed in the estimation

procedure. For leisure, the QSF and ASF estimated by DR are able to capture some

nonlinearity which is absent from those obtained by QR. For QR, this reflects the

specified linear structure of the ASF which also constrains the shape of the QSF. In

addition, some degree of heteroskedasticity appears to be a feature of the structural

model for both goods, although much more markedly for leisure, so our methods are

well-suited for this problem. Increased dispersion across quantile levels in Figure 5.1

is reflected by the increasing spread across probability levels between the two extreme

DSF estimates in Figure 5.3. Finally, our semiparametric specifications are able to

capture the asymmetry across leisure expenditure shares, an important feature of the

data highlighted in Imbens and Newey (2009).

In the Supplementary Material we perform a thorough sensitivity analysis which

further shows that our empirical results are robust to the modeling, estimation and

integration choices. Overall, for this dataset, the main features of food and leisure

Engel curves are well captured by our semiparametric specifications.

5.2. Numerical Simulations. To assess the performance of our estimators we im-

plement Monte Carlo experiments based on three different designs, calibrated to

the leisure empirical application. The first two experiments are based on Gaussian

location-scale and DR triangular models, designed to reflect the respective strengths
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(b) Leisure.

Figure 5.3. DSF. Quantile (left) and distribution regression (right).

of the QR and DR estimators. The third experiment is a location triangular model,

for which both estimators are consistent for the corresponding structural functions.

Design QR. Our first design is the linear location-scale shift system of equations

X = π11 + π21Z + (π12 + π22Z)η,

Y = θ11 + θ21X + (θ12 + θ22X)ε.
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The ASF and QSF of this model are linear,

µ(x) = θ11 + θ21x, Q(τ, x) = θ11 + θ21x+ (θ12 + θ22x)Φ−1(τ).

Design DR. Our second design is the nonlinear location-scale shift system of equa-

tions

X = −
(
π11 + π12Z

π21 + π22Z

)
+

(
1

π21 + π22Z

)
η,

Y = −
(
θ11 + θ12x

θ21 + θ22x

)
+

(
1

θ21 + θ22x

)
ε.

The ASF and QSF of this model are nonlinear,

µ(x) = −
(
θ11 + θ12x

θ21 + θ22x

)
, Q(τ, x) = −

(
θ11 + θ12x

θ21 + θ22x

)
+

(
1

θ21 + θ22x

)
Φ−1(τ).

Design LOC. Our third design is the linear location shift system of equations

X = π11 + π21Z + σηη,

Y = θ11 + θ21X + σεε,

for which the QR and DR models are correctly specified. The ASF and QSF of this

model are

µ(x) = θ11 + θ21x, Q(τ, x) = θ11 + θ21x+ σεΦ
−1(τ).

For all three experiments, the sample size is set to n = 1655, the number of ob-

servations in the empirical application, and 500 simulations are performed. For the

regions of interest, we use the same T3 and X 5 as in the empirical application. We

let (η, ε) be jointly normal scalar random variables with zero means, unit variances

and correlation ρ, and assess the performance of our estimators under two different

levels of endogeneity by setting ρ = −0.2, for low endogeneity, and ρ = −0.9, for

extreme endogeneity. Accordingly, the DR estimator is implemented with the probit

link function. For brevity, in the main text we only report simulation results for the

ASF which reflect the main features of our simulations for the QSF as well. A detailed

discussion of the calibration of these models and simulation results for the QSF are

given in the Supplemental Material.

Table 1 reports a first set of results regarding the accuracy of ASF estimates by DR

and QR. For comparison purposes, Table 1 also includes ASF estimates by ordinary

least-squares (OLS), providing a benchmark with no correction for endogeneity. We

report average estimation errors across simulations of QR and DR estimators, and
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Design QR LOC DR
ρ = −0.2

L1 L2 L∞ L1 L2 L∞ L1 L2 L∞
DR 6.9 8.1 15.2 5.2 6.7 8.3 5.9 7.4 10.2
QR 2.7 3.4 3.5 4.7 6.0 6.9 8.2 9.7 15.4

Ratio×100 251.1 237.2 426.8 110.3 111.9 121.2 72.4 76.6 66.2
OLS 10.6 10.9 22.4 14.9 15.4 26.0 15.4 16.0 33.0

ρ = −0.9
L1 L1 L∞ L1 L2 L∞ L1 L2 L∞

DR 4.7 6.0 7.7 6.4 7.9 10.5 7.8 9.5 13.6
QR 3.8 4.5 9.4 4.9 6.0 7.3 9.2 10.5 24.4

Ratio×100 123.6 132.7 82.0 131.1 131.9 144.7 84.4 90.4 56.0
OLS 47.2 47.3 100.2 66.2 66.3 117.9 73.2 73.3 152.8

Table 1. Average Lp estimation errors of ASF ×1000 for the DR and
QR estimators and their ratio ×100, for p = 1, 2 and ∞. Average Lp

estimation errors of ASF ×1000 for OLS are included as a benchmark.

their ratio in percentage terms. Estimation errors are measured in Lp norms ‖·‖p,
p = 1, 2, and ∞, where for a function f : X 7→ R, ‖f‖p =

{´
R |f(s)|p ds

}1/p
, and are

then averaged over the 500 simulations.

For this design, DR and QR-based estimators both perform very well and significantly

improve over the OLS benchmark, including for ρ = −0.2. As expected, the accuracy

of the estimates obtained by each method dominates for the corresponding design.

For the QR design, the ratio of average estimation errors ranges from 82 to 426.8.

Interestingly, the relative accuracy of DR-based estimates for ρ = −0.9 is close to the

accuracy of QR estimates, with the ratio of average estimation errors ranging from

82 to 132.7, across norms; this feature is specific to the ASF and does not apply to

the QSF. For the DR design, the ratio of average estimation errors ranges from 56 to

90.4. The larger reduction in average errors in L∞ norm reflects the higher accuracy in

estimation of extreme parts of the support where the ASF displays some curvature.

Finally, for the LOC design, the performance of both methods is very similar for

ρ = −0.2, and the QR-based estimator dominates more markedly for ρ = −0.9.

Overall, the simulations show that both DR- and QR-based estimation methods per-

form well for their respective designs, and yield substantial correction for endogeneity.
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QR-based estimation dominates for both the QR and LOC designs, but the DR es-

timator is able to correct for endogeneity in data generating processes displaying

nonlinearities in the structural functions. These simulation results illustrate further

the complementarity of the two estimation methods introduced in this paper.

Appendix A. Implementation Algorithms

This section gathers the algorithms for the three-stage estimation procedure, weighted

bootstrap, and the constructions of uniform bands for the structural functions.

Algorithm 1 Three-Stage Estimation Procedure.
For i = 1, . . . , n, set ei = 1.
First Stage. [Control function estimation]

(1) (QR) For ε in (0, 0.5) (e.g., ε = .01) and a fine mesh of M values
{ε = v1 < · · · < vM = 1− ε}, estimate {π̂e(vm)}Mm=1 by solving (3.2). Then

set V̂ e
i = F̂ e

X(Xi | Zi), i = 1, . . . , n, as in (3.1).

(2) (DR) Estimate {π̂(Xi)}ni=1 by solving (3.4). Then set V̂ e
i = F̂ e

X(Xi | Zi),
i = 1, . . . , n, as in (3.3).

Second Stage. [Reduced-form CDF estimation]

(1) (QR) (a) For ε in (0, 0.5) (e.g., ε = .01) and a fine mesh of M values

{ε = u1, . . . , uM = 1− ε}, estimate {β̂e(um)}Mm=1 by solving (3.6). (b) Obtain

F̂ e
Y (y | x, Z1i, V̂

e
i ) as in (3.5)

(2) (DR) (a) For each ym ∈ YM , estimate {β̂(ym)}Mm=1 by solving (3.8). (b)

Obtain F̂ e
Y (y | x, Z1i, V̂

e
i ) as in (3.7).

Third Stage. [Structural functions estimation] Compute Ĝe(y, x), Q̂e
S(τ, x) and

µ̂eS(x) using (3.10), (3.15) and (3.16).

Remark 2. The size of the grids M can differ across stages and methods. For our

empirical application, we have found that the estimates are not very sensitive to M .

Remark 3. All the estimation steps can also be implemented keeping Z1, or some

component of Z1, fixed as a conditioning variable. The estimated structural functions

are then evaluated at values of the conditioning variable(s) of interest. Denoting

the DSF estimator and bootstrap draw by Ĝ(y, x, z1) =
∑n

i=1 F̂Y (y | x, z1, V̂i)Ti/nT
and Ĝe(y, x, z1) =

∑n
i=1 eiF̂

e
Y (y | x, z1, V̂ e

i )Ti/n
e
T , the corresponding QSF and ASF

estimators and bootstrap draws obtain upon substituting Ĝ(y, x, z1) and Ĝe(y, x, z1)

for Ĝ(y, x) and Ĝe(y, x) in (3.9)-(3.10).
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Remark 4. For the QR specification, the estimator of the ASF in the second and

third stages can be replaced by µ̂(x) = w(x, Z̄1, 0)′β̂, where Z̄1 =
∑n

i=1 Z1i/n and

β̂ the least squares estimator of the linear regression of Y on Ŵ e
i . Our numerical

implementation in the Supplementary Material shows that estimates thus obtained

are very similar to those formed according to (3.16).

Algorithm 2 Weighted Bootstrap.

For b = 1, . . . , B, repeat the following steps:
Step 0. Draw eb := {eib}ni=1 i.i.d. from a random variable that satisfies Assumption

3 (e.g., the standard exponential distribution).

Step 1. Reestimate the control function V̂ e
ib = F̂ e

X,b(Xi | Zi) in the weighted sample,
according to (3.1)-(3.2) or (3.3)-(3.4).

Step 2. Reestimate the reduced form CDF F̂ e
Y,b in the weighted sample according to

(3.5)-(3.6) or (3.7)-(3.8).
Step 3. For neTb =

∑n
i=1 eibTi, compute

Ĝe
b(y, x) =

∑n
i=1 eibF̂

e
Y,b(y | x, Z1i, V̂

e
ib)Ti/n

e
Tb,

Q̂e
b(τ, x) = δ

∑S
s=1

[
1(ys ≥ 0)− 1{Ĝe

b(ys, x) ≥ τ}
]
, and

µ̂eb(x) = δ
∑S

s=1

[
1(ys ≥ 0)− Ĝe

b(ys, x)
]
,

Algorithm 3 Uniform Inference for DSF and ASF.

Step 1. Given B bootstrap draws
{

(Ĝe
b(y, x), µ̂eb(x)

}B
b=1

, compute the standard

errors of Ĝ(y, x) and µ̂(x) as

σ̂G(y, x) = IQR

[{
Ĝe
b(y, x)

}B
b=1

]
/1.349, σ̂µ(x) = IQR

[
{µ̂eb(x)}Bb=1

]
/1.349.

Step 2. For b = 1, . . . , B, compute the bootstrap draws of the maximal t-statistics
for the DSF and ASF as∥∥teG,b(y, x)

∥∥
IG

= sup
(y,x)∈IG

∣∣∣∣∣Ĝe
b(y, x)− Ĝ(y, x)

σ̂G(y, x)

∣∣∣∣∣ , ∥∥teµ,b(x)
∥∥
Iµ

= sup
x∈Iµ

∣∣∣∣ µ̂eb(x)− µ̂(x)

σ̂µ(x)

∣∣∣∣ .
Step 3. Form (1− α)-confidence bands for the DSF and ASF as{
Ĝ(y, x)± k̂G(1− α)σ̂G(y, x) : (y, x) ∈ IG

}
,
{
µ̂(x)± k̂µ(1− α)σ̂µ(x) : x ∈ Iµ

}
,

where k̂G(1− α) is the sample (1− α)-quantile of
{∥∥teG,b(y, x)

∥∥
IG

: 1 ≤ b ≤ B
}

, and

k̂µ(1− α) is the sample (1− α)-quantile of
{∥∥teµ,b(x)

∥∥
Iµ

: 1 ≤ b ≤ B
}

.
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Algorithm 4 Uniform Inference for QSF.

Step 1. Given B bootstrap draws
{

(Ĝe
b(y, x), Q̂e

b(τ, x))
}B
b=1

, compute the standard

errors of Ĝ(y, x) and Q̂(τ, x) as

σ̂G(y, x) = IQR

[{
Ĝe
b(y, x)

}B
b=1

]
/1.349, σ̂Q(τ, x) = IQR

[{
Q̂e
b(τ, x)

}B
b=1

]
/1.349.

Step 2. For b = 1, . . . , B, compute the bootstrap draws of the maximal t-statistics
for the DSF and ASF as∥∥teG,b(τ, x)

∥∥
IG

= sup
(y,x)∈IG

∣∣∣∣∣Ĝe
b(y, x)− Ĝ(y, x)

σ̂G(y, x)

∣∣∣∣∣ , ∥∥teQ,b(τ, x)
∥∥
IQ

= sup
(τ,x)∈IQ

∣∣∣∣∣Q̂e
b(τ, x)− Q̂(τ, x)

σ̂Q(τ, x)

∣∣∣∣∣ .
Step 3. If Y is continuous, form a (1− α)-confidence band for the QSF as{

Q̂(τ, x)± k̂Q(1− α)σ̂Q(τ, x) : (τ, x) ∈ IQ
}
,

where k̂Q(1− α) is the sample (1− α)-quantile of
{∥∥teQ,b(τ, x)

∥∥
IQ

: 1 ≤ b ≤ B
}

.

Otherwise, form a (1− α)-confidence band for the QSF as{[
Ĝ←U (τ, x), Ĝ←L (τ, x)

]
: (τ, x) ∈ I←G

}
,

where I←G = {(τ, x) : ĜL(y, x) = τ, (y, x) ∈ IG} ∩ {(τ, x) : ĜU(y, x) = τ, (y, x) ∈ IG},

ĜL(y, x) = Ĝ(y, x)− k̂G(1− α)σ̂G(y, x), ĜU(y, x) = Ĝ(y, x) + k̂G(1− α)σ̂G(y, x),

and k̂G(1− α) is the sample (1− α)-quantile of
{∥∥teG,b(y, x)

∥∥
IG

: 1 ≤ b ≤ B
}

.

Appendix B. Identification

B.1. Proof of Lemma 1. By Assumption 2 Eµ[p(X)p(X)′], Eςl [r1l(Z1l)r1l(Z1l)
′],

l = 1, . . . , dz1 , and Eρ[q(V )q(V )′] are positive definite. Also, with W = w(X,Z1, V ),

there is a positive constant C such that

E[w(X,Z1, V )w(X,Z1, V )′] ≥ C

ˆ
w(x, z1, v)w(x, z1, v)′[µ(dx)× ς(dz1)× ρ(dv)]

= C

ˆ
{p(x)p(x)′} ⊗ {r11(z11)r11(z11)′} ⊗ · · ·

⊗ {r1dz1 (z1dz1 )r1dz1 (z1dz1 )′} ⊗ {q(v)q(v)′}[µ(dx)× ς(dz1)× ρ(dv)]

= CEµ[p(X)p(X)′]⊗ Eς1 [r11(Z11)r11(Z11)
′]⊗ · · ·

⊗ Eςdz1 [r1dz1 (Z1dz1
)r1dz1 (Z1dz1

)′]⊗ Eρ[q(V )q(V )′].
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where the inequality means no less than in the usual partial ordering for positive

semi-definite matrices. The conclusion then follows by both the matrices following

the last equality being positive definite. �

B.2. Proof of Theorem 1. Under Assumption 2, Lemma 1 implies that the QR

coefficients β(U) and DR coefficients β(Y ) are unique. For the QR specification,

suppose there exists β̃(U) such that β(U)′w(X,Z1, V ) = β̃(U)′w(X,Z1, V ). Then

{β(U) − β̃(U)}′w(X,Z1, V ) = 0, and after applying iterated expectations, indepen-

dence of U and (X,Z1, V ) implies

0 = E[(β(U)− β̃(U))′ {w(X,Z1, V )w(X,Z1, V )′} (β(U)− β̃(U))]

= E[(β(U)− β̃(U))′E[w(X,Z1, V )w(X,Z1, V )′ | U ](β(U)− β̃(U))]

≥ CE[||β(U)− β̃(U)||2]

for some positive constant C, by positive definiteness of E[w(X,Z1, V )w(X,Z1, V )′].

Therefore, the map u 7→ QY (u | x, v) is well-defined for all (x, z1, v) ∈ XZ1V under

Assumption 1(a). Strict monotonicity of u 7→ QY (u | x, z1, v) for all (x, z1, v) ∈ XZ1V
then implies that the inverse map y 7→ FY (y | x, z1, v) = Q−1Y (y | x, z1, v) is well-

defined for all (x, z1, v) ∈ XZ1V . For the DR specification, positive definiteness

of E[w(X,Z1, V )w(X,Z1, V )′] is also sufficient for uniqueness of DR coefficients by

standard identification results for Logit and Probit models, e.g., see Example 1.2 in

Newey and McFadden (1994). Therefore, the map y 7→ FY (y | x, z1, v) is well-defined

for all (x, z1, v) ∈ XZ1V under Assumption 1(b). For both specifications the result

now follows from the definitions of structural functions in Section 2. �

Appendix C. Asymptotic Theory

C.1. Notation. In what follows ϑ denotes a generic value for the control function.

It is convenient also to introduce some additional notation, which will be extensively

used in the proofs. Let Vi(ϑ) := ϑ(Xi, Zi), Wi(ϑ) := w(Xi, Z1i, Vi(ϑ)), and Ẇi(ϑ) :=

∂vw(Xi, Z1i, v)|v=Vi(ϑ). When the previous functions are evaluated at the true values

we use Vi = Vi(ϑ0), Wi = Wi(ϑ0), and Ẇi = Ẇi(ϑ0). Also, let ρy(u, v) := −1(u ≤
y) log Λ(v)− 1(u > y) log Λ(−v). Recall that A := (Y,X,Z,W, V ), T (x) = 1(x ∈ X ),

and T = T (X). For a function f : A 7→ R, we use ‖f‖T,∞ = supa∈A |T (x)f(a)|;
for a K-vector of functions f : A 7→ RK , we use ‖f‖T,∞ = supa∈A ‖T (x)f(a)‖2. We

make functions in Υ as well as estimators ϑ̂ to take values in [0, 1], the support of the

control function V . This allows us to simplify notation in what follows.
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We adopt the standard notation in the empirical process literature (see, e.g., van der

Vaart, 1998),

En[f ] = En[f(A)] = n−1
n∑
i=1

f(Ai),

and

Gn[f ] = Gn[f(A)] = n−1/2
n∑
i=1

(f(Ai)− EP [f(A)]).

When the function f̂ is estimated, the notation should interpreted as:

Gn[f̂ ] = Gn[f ] |f=f̂ and EP [f̂ ] = EP [f ] |f=f̂ .

We also use the concepts of covering entropy and bracketing entropy in the proofs.

The covering entropy logN(ε,F , ‖ · ‖) is the logarithm of the minimal number of

‖ · ‖-balls of radius ε needed to cover the set of functions F . The bracketing entropy

logN[](ε,F , ‖ · ‖) is the logarithm of the minimal number of ε-brackets in ‖ · ‖ needed

to cover the set of functions F . An ε-bracket [`, u] in ‖ · ‖ is the set of functions f

with ` ≤ f ≤ u and ‖u− `‖ < ε.

For a sequence of random functions y 7→ fn(y) and a deterministic sequence an, we use

fn(y) = ōP(an) and fn(y) = ŌP(an) to denote uniform in y ∈ Y orders in probability,

i.e. supy∈Y fn(y) = oP(an) and supy∈Y fn(y) = OP(an), respectively. The uniform in

y ∈ Y deterministic orders ō(an) and Ō(an) are defined analogously suppressing the

P subscripts.

We follow the notation and definitions in van der Vaart and Wellner (1996) of boot-

strap consistency. Let Dn denote the data vector and En be the vector of bootstrap

weights. Consider the random element Ze
n = Zn(Dn, En) in a normed space Z. We

say that the bootstrap law of Ze
n consistently estimates the law of some tight random

element Z and write Ze
n  P Z in Z if

(C.1) suph∈BL1(Z) |E
e
Ph (Ze

n)− EPh(Z)| →P∗ 0,

where BL1(Z) denotes the space of functions with Lipschitz norm at most 1, Ee
P

denotes the conditional expectation with respect to En given the data Dn, and →P∗

denotes convergence in (outer) probability.

C.2. Proof of Lemma 3. We only consider the case where Y is a compact interval

of R. The case where Y is finite is simpler and follows similarly.
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C.2.1. Auxiliary Lemmas. We start with 2 results on stochastic equicontinuity and

a local expansion for the second stage estimators that will be used in the proof of

Lemma 3.

Lemma 4. [Stochastic equicontinuity] Let e ≥ 0 be a positive random variable with

EP [e] = 1, VarP [e] = 1, and EP |e|2+δ < ∞ for some δ > 0, that is independent of

(Y,X,Z,W, V ), including as a special case e = 1, and set, for A = (e, Y,X, Z,W, V ),

fy(A, ϑ, β) := e · [Λ(W (ϑ)′β)− 1(Y ≤ y)] ·W (ϑ) · T.

Under Assumptions 3–5 the following relations are true.

(a) Consider the set of functions

F = {fy(A, ϑ, β)′α : (ϑ, β, y) ∈ Υ0 × B × Y , α ∈ Rdim(W ), ‖α‖2 ≤ 1},

where Y is a compact subset of R, B is a compact set under the ‖ · ‖2 metric

containing β0(y) for all y ∈ Y, Υ0 is the intersection of Υ, defined in Lemma

2, with a neighborhood of ϑ0 under the ‖·‖T,∞ metric. This class is P -Donsker

with a square integrable envelope of the form e times a constant.

(b) Moreover, if (ϑ, β(y))→ (ϑ0, β0(y)) in the ‖ · ‖T,∞ ∨‖ · ‖2 metric uniformly in

y ∈ Y, then

sup
y∈Y
‖fy(A, ϑ, β(y))− fy(A, ϑ0, β0(y))‖P,2 → 0.

(c) Hence for any (ϑ̃, β̃(y))→P (ϑ0, β0(y)) in the ‖ · ‖T,∞ ∨‖ · ‖2 metric uniformly

in y ∈ Y such that ϑ̃ ∈ Υ0,

sup
y∈Y
‖Gnfy(A, ϑ̃, β̃(y))−Gnfy(A, ϑ0, β0(y))‖2 →P 0.

(d) For any (ϑ̂, β̃(y)) →P (ϑ0, β0(y)) in the ‖ · ‖T,∞ ∨ ‖ · ‖2 metric uniformly in

y ∈ Y, so that

‖ϑ̂− ϑ̃‖T,∞ = oP(1/
√
n), where ϑ̃ ∈ Υ0,

we have that

sup
y∈Y
‖Gnfy(A, ϑ̂, β̃(y))−Gnfy(A, ϑ0, β0(y))‖2 →P 0.

Proof of Lemma 4. The proof is divided in subproofs of each of the claims.

Proof of Claim (a). The proof proceeds in several steps.
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Step 1. Here we bound the bracketing entropy for

I1 = {[Λ(W (ϑ)′β)− 1(Y ≤ y)]T : β ∈ B, ϑ ∈ Υ0, y ∈ Y}.

For this purpose consider a mesh {ϑk} over Υ0 of ‖ · ‖T,∞ width δ, a mesh {βl} over

B of ‖ · ‖2 width δ, and a mesh {yj} over Y of ‖ · ‖2 width δ. A generic bracket over

I1 takes the form

[i01, i
1
1] = [{Λ(W (ϑk)

′βl−κδ)−1(Y ≤ yj−δ)}T, {Λ(W (ϑk)
′βl+κδ)−1(Y ≤ yj+δ)}T ],

where κ = LW maxβ∈B ‖β‖2 + LW , and LW := ‖∂vw‖T,∞ ∨ ‖w‖T,∞.

Note that this is a valid bracket for all elements of I1 because for any ϑ located within

δ from ϑk and any β located within δ from βl,

|W (ϑ)′β −W (ϑk)
′βl|T ≤ |(W (ϑ)−W (ϑk))

′β|T + |W (ϑk)
′(β − βl)|T

≤ LW δmax
β∈B
‖β‖2 + LW δ ≤ κδ,(C.2)

and the ‖ · ‖P,2-size of this bracket is given by

‖i01 − i11‖P,2 ≤
√

EP [P{Y ∈ [y ± δ] | X,Z}T ]

+
√

EP [{Λ(W (ϑk)′βl + κδ)− Λ(W (ϑk)′βl − κδ)}2T ]

≤
√
‖fY (· | ·)‖T,∞2δ + κδ/2,

because ‖λ(·)‖T,∞ ≤ 1/4, where λ = Λ(1− Λ) is the derivative of Λ.

Hence, counting the number of brackets induced by the mesh created above, we arrive

at the following relationship between the bracketing entropy of I1 and the covering

entropies of Υ0, B, and Y ,

logN[](ε, I1, ‖ ·‖P,2) . logN(ε2,Υ0, ‖ ·‖T,∞)+logN(ε2,B, ‖ ·‖2)+logN(ε2,Y , ‖ ·‖2)

. 1/(ε2 log4 ε) + log(1/ε) + log(1/ε),

and so I1 is P -Donsker with a constant envelope.

Step 2. Similarly to Step 1, it follows that

I2 = {W (ϑ)′αT : ϑ ∈ Υ0, α ∈ Rdim(W ), ‖α‖2 ≤ 1}

also obeys a similar bracketing entropy bound

logN[](ε, I2, ‖ · ‖P,2) . 1/(ε2 log4 ε) + log(1/ε)
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with a generic bracket taking the form [i02, i
1
2] = [{W (ϑk)

′βl−κδ}T, {W (ϑk)
′βl+κδ}T ].

Hence, this class is also P -Donsker with a constant envelope.

Step 3. In this step we verify the claim (a). Note that F = e · I1 · I2. This class

has a square-integrable envelope under P. The class F is P -Donsker by the following

argument. Note that the product I1 · I2 of uniformly bounded classes is P -Donsker,

e.g., by Theorem 2.10.6 of van der Vaart and Wellner (1996). Under the stated

assumption the final product of the random variable e with the P -Donsker class

remains to be P -Donsker by the Multiplier Donsker Theorem, namely Theorem 2.9.2

in van der Vaart and Wellner (1996).

Proof of Claim (b). The claim follows by the Dominated Convergence Theorem, since

any f ∈ F is dominated by a square-integrable envelope under P , and, uniformly in

y ∈ Y , Λ[W (ϑ)′β(y)]T → Λ[W ′β0(y)]T and |W (ϑ)′β(y)T −W ′β0(y)T | → 0 in view

of the relation such as (C.2).

Proof of Claim (c). This claim follows from the asymptotic equicontinuity of the

empirical process (Gn[fy], fy ∈ F) under the L2(P ) metric, and hence also with

respect to the ‖ · ‖T,∞ ∨ ‖ · ‖2 metric uniformly in y ∈ Y in view of Claim (b).

Proof of Claim (d). It is convenient to set f̂y := fy(A, ϑ̂, β̃(y)) and f̃y := fy(A, ϑ̃, β̃(y)).

Note that

max
1≤j≤dimW

|Gn[f̂y − f̃y]|j ≤ max
1≤j≤dimW

|
√
nEn[f̂y − f̃y]|j + max

1≤j≤dimW
|
√
nEP (f̂y − f̃y)|j

.
√
nEn[ζ̂ ] +

√
nEP [ζ̂ ] . Gn[ζ̂ ] + 2

√
nEP [ζ̂ ],

where |fy|j denotes the jth element of an application of absolute value to each element

of the vector fy, and ζ̂ is defined by the following relationship, which holds with

probability approaching one uniformly in y ∈ Y ,

max
1≤j≤dimW

|f̂y − f̃y|j . |e| · {‖W (ϑ̂)−W (ϑ̃)‖2 + |Λ[W (ϑ̂)′β̃(y)]− Λ[W (ϑ̃)′β̃(y)]|} · T

. ζ̂ := e · κ∆n,

where κ = LW maxβ∈B ‖β‖2 + LW , LW = ‖∂vw‖T,∞ ∨ ‖w‖T,∞, and ∆n = o(1/
√
n) is

a deterministic sequence such that

∆n ≥ ‖ϑ̂− ϑ̃‖T,∞.

By part (c) the result follows from

Gn[ζ̂ ] = ōP(1),
√
nEP [ζ̂ ] = ōP(1).
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Indeed,

‖e · κ∆n‖P,2 = ō(1)⇒ Gn[ζ̂ ] = ōP(1),

and

‖e · κ∆n‖P,1 ≤ EP |e| · κ∆n = ō(1/
√
n)⇒ EP |ζ̂| = ōP(1/

√
n),

since ∆n = o(1/
√
n).

Lemma 5. [Local expansion] Under Assumptions 3–5, for

δ̂(y) =
√
n(β̃(y)− β0(y)) = ŌP(1);

∆̂(x, r) =
√
n(ϑ̂(x, r)− ϑ0(x, r)) =

√
n En[`(A, x, r)] + oP(1) in `∞(XR),

‖
√
n En[`(A, ·)]‖T,∞ = OP(1),

we have that

√
n EP [{Λ[W (ϑ̂)′β̃(y)]− 1(Y ≤ y)}W (ϑ̂)T ] = J(y)δ̂(y) +

√
n En [gy(A)] + ōP(1),

where

gy(a) = EP{[Λ(W ′β0(y))− 1(Y ≤ y)]Ẇ + λ(W ′β0(y))WẆ ′β0(y)}T`(a,X,R).

Proof of Lemma 5.

Uniformly in ξ := (X,Z) ∈ XZ and y ∈ Y ,

√
nEP{Λ[W (ϑ̂)′β̃(y)]− 1(Y ≤ y) | X,Z}T

=
√
nEP{Λ[W ′β0(y)]− 1(Y ≤ y) | X,Z}T

+λ[W (ϑ̄ξ)
′β̄ξ(y)]{W (ϑ̄ξ)

′δ̂(y) + Ẇ (ϑ̄ξ)
′β̄ξ∆̂(X,R)}T

=
√
nEP{Λ[W ′β0(y)]− 1(Y ≤ y) | X,Z}T

+λ[W ′β0(y)]{W ′δ̂(y) + Ẇ ′β0(y)∆̂(X,R)}T +Rξ(y),

and

R̄(y) = sup
{ξ∈XZ}

|Rξ(y)| = ōP(1)

where ϑ̄ξ is on the line connecting ϑ0 and ϑ̂ and β̄ξ(y) is on the line connecting β0(y)

and β̃(y). The first equality follows by the mean value expansion. The second equality

follows by uniform continuity of λ(·), uniform continuity of W (·) and Ẇ (·), and by

‖ϑ̂− ϑ0‖T,∞ →P 0 and supy∈Y ‖β̃(y)− β0(y)‖2 →P 0.
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Since λ(·) and the entries of W and Ẇ are bounded, δ̂(y) = ŌP(1), and ‖∆̂‖T,∞ =

OP(1), with probability approaching one uniformly in y ∈ Y ,

√
nEP{Λ[W (ϑ̂)′β̃(y)]−1(Y ≤ y)}W (ϑ̂)T = EP{Λ(W ′β0(y))−1(Y ≤ y)}ẆT ∆̂(X,R)

+ EP{λ[W ′β0(y)]WW ′T}δ̂(y) + EP{λ[W ′β0(y)]WẆ ′β0(y)T ∆̂(X,R)}+OP(R̄(y))

= J(y)δ̂(y)+EP [{Λ(W ′β0(y))−1(Y ≤ y)}Ẇ+λ[W ′β0(y)]WẆ ′β0(y)]T ∆̂(X,R)+oP(1).

Substituting in ∆̂(x, r) =
√
n En[`(A, x, r)] + oP(1) and interchanging EP and En, we

obtain

EP [{Λ(W ′β0(y))−1(Y ≤ y)}Ẇ+λ[W ′β0(y)]WẆ ′β0(y)]T ∆̂(X,R) =
√
n En[gy(A)]+ōP(1),

since [{Λ(W ′β0(y)) − 1(Y ≤ y)}Ẇ + λ[W ′β0(y)]WẆ ′β0(y)]T is bounded uniformly

in y ∈ Y . The claim of the lemma follows. �

C.2.2. Proof of Lemma 3. The proof is divided in two parts corresponding to the

FCLT and bootstrap FCLT.

Part 1: FCLT

In this part we show
√
n(β̂(y)− β0(y)) J(y)−1G(y) in `∞(Y)dw .

Step 1. This step shows that
√
n(β̂(y)− β0(y)) = ŌP(1).

Recall that

β̂(y) = arg min
β∈Rdim(W )

En[ρy(Y,W (ϑ̂)′β)T ].

Due to convexity of the objective function, it suffices to show that for any ε > 0 there

exists a finite positive constant Bε such that uniformly in y ∈ Y ,

lim inf
n→∞

P
(

inf
‖η‖2=1

√
nη′En

[
f̂η,Bε,y

]
> 0

)
≥ 1− ε,(C.3)

where

f̂η,Bε,y(A) :=
{

Λ[W (ϑ̂)′(β0(y) +Bεη/
√
n)]− 1(Y ≤ y)

}
W (ϑ̂)T.

Let

fy(A) := {Λ[W ′β0(y)]− 1(Y ≤ y)}WT.
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Then uniformly in ‖η‖2 = 1,

√
nη′En[f̂η,Bε,y] = η′Gn[f̂η,Bε,y] +

√
nη′EP [f̂η,Bε,y]

=(1) η′Gn[fy] + ōP(1) + η′
√
nEP [f̂η,Bε,y]

=(2) η′Gn[fy] + ōP(1) + η′J(y)ηBε + η′Gn[gy] + ōP(1)

=(3) ŌP(1) + ōP(1) + η′J(y)ηBε + ŌP(1) + ōP(1),

where relations (1) and (2) follow by Lemma 4 and Lemma 5 with β̃(y) = β0(y) +

Bεη/
√
n, respectively, using that ‖ϑ̂ − ϑ̃‖T,∞ = oP(1/

√
n), ϑ̃ ∈ Υ, ‖ϑ̃ − ϑ0‖T,∞ =

OP(1/
√
n) and ‖β0(y) + Bεη/

√
n − β0(y)‖2 = Ō(1/

√
n); relation (3) holds because

fy and gy are P -Donsker by step-2 below. Since uniformly in y ∈ Y , J(y) is positive

definite, with minimal eigenvalue bounded away from zero, the inequality (C.3) follows

by choosing Bε as a sufficiently large constant.

Step 2. In this step we show the main result. Let

f̂y(A) :=
{

Λ[W (ϑ̂)′β̂(y)]− 1(Y ≤ y)
}
W (ϑ̂)T.

From the first order conditions of the distribution regression problem,

0 =
√
nEn

[
f̂y

]
= Gn

[
f̂y

]
+
√
nEP

[
f̂y

]
=(1) Gn[fy] + ōP(1) +

√
nEP

[
f̂y

]
=(2) Gn[fy] + ōP(1) + J(y)

√
n(β̂(y)− β0(y)) + Gn[gy] + ōP(1),

where relations (1) and (2) follow by Lemma 4 and Lemma 5 with β̃(y) = β̂(y),

respectively, using that ‖ϑ̂− ϑ̃‖T,∞ = oP(1/
√
n), ϑ̃ ∈ Υ, and ‖ϑ̃−ϑ‖T,∞ = OP(1/

√
n)

by Lemma 2, and ‖β̂(y)− β0(y)‖2 = ŌP(1/
√
n).

Therefore by uniform invertibility of J(y) in y ∈ Y ,

√
n(β̂(y)− β0(y)) = −J(y)−1Gn(fy + gy) + ōP(1).

The function fy is P -Donsker by standard argument for distribution regression (e.g.,

step 3 in the proof of Theorem 5.2 of Chernozhukov, Fernandez-Val and Melly, 2013).

Similarly, gy is P -Donsker by Example 19.7 in van der Vaart (1998) because gy ∈
{hy(A) : |hy(A)− hv(A)| ≤M(A)|y − v|; EPM(A)2 <∞; y, v ∈ Y}, since

|gy − gv| ≤ LEP [T |`(a,X,R)|]
∣∣
a=A
|y − v|,
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with L = 2LW+L2
W maxβ∈B ‖β‖2/4, LW := ‖∂vw‖T,∞∨‖w‖T,∞, and EP [T`(A,X,R)2] <

∞ by Lemma 2. Hence, by the Functional Central Limit Theorem

Gn(fy + gy) G(y) in `∞(Y)dw ,

where y 7→ G(y) is a zero mean Gaussian process with uniformly continuous sample

paths and the covariance function C(y, v) specified in the lemma. Conclude that

√
n(β̂(y)− β0(y)) J(y)−1G(y) in `∞(Y)dw .

�

Part 2: Bootstrap FCLT

In this part we show
√
n(β̂e(y)− β̂(y)) P J(y)−1G(y) in `∞(Y)dw .

Step 1. This step shows that
√
n(β̂e(y) − β0(y)) = ŌP(1) under the unconditional

probability P.

Recall that

β̂e(y) = arg min
β∈Rdim(W )

En[eρy(Y,W (ϑ̂e)′β)T ],

where e is the random variable used in the weighted bootstrap. Due to convexity

of the objective function, it suffices to show that for any ε > 0 there exists a finite

positive constant Bε such that uniformly in y ∈ Y ,

lim inf
n→∞

P
(

inf
‖η‖2=1

√
nη′En

[
f̂ eη,Bε,y

]
> 0

)
≥ 1− ε,(C.4)

where

f̂ eη,Bε,y(A) := e ·
{

Λ[W (ϑ̂e)′(β0(y) +Bεη/
√
n)]− 1(Y ≤ y)

}
W (ϑ̂e)T.

Let

f ey (A) := e · {Λ[W ′β0(y)]− 1(Y ≤ y)}WT.

Then uniformly in ‖η‖2 = 1,

√
nη′En[f̂ eη,Bε,y] = η′Gn[f̂ eη,Bε,y] +

√
nη′EP [f̂ eη,Bε,y]

=(1) η′Gn[f ey ] + ōP(1) + η′
√
nEP [f̂ eη,Bε,y]

=(2) η′Gn[f ey ] + ōP(1) + η′J(y)ηBε + η′Gn[gey] + ōP(1)

=(3) ŌP(1) + ōP(1) + η′J(y)ηBε + ŌP(1) + ōP(1),

where relations (1) and (2) follow by Lemma 4 and Lemma 5 with β̃(y) = β0(y) +

Bεη/
√
n, respectively, using that ‖ϑ̂e−ϑ̃e‖T,∞ = oP(1/

√
n), ϑ̃e ∈ Υ and ‖ϑ̃e−ϑ0‖T,∞ =
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OP(1/
√
n) by Lemma 2, and ‖β0(y)+Bεη/

√
n−β0(y)‖2 = Ō(1/

√
n); relation (3) holds

because f ey = e·fy and gey = e·gy, where fy and gy are P -Donsker by step-2 of the proof

of Theorem 3 and EP e
2 <∞. Since uniformly in y ∈ Y , J(y) is positive definite, with

minimal eigenvalue bounded away from zero, the inequality (C.4) follows by choosing

Bε as a sufficiently large constant.

Step 2. In this step we show that
√
n(β̂e(y)− β0(y)) = −J(y)−1Gn(f ey + gey) + ōP(1)

under the unconditional probability P.

Let

f̂ ey (A) := e · {Λ[W (ϑ̂e)′β̂e(y)]− 1(Y ≤ y)}W (ϑ̂e)T.

From the first order conditions of the distribution regression problem in the weighted

sample, uniformly in y ∈ Y ,

0 =
√
nEn

[
f̂ ey

]
= Gn

[
f̂ ey

]
+
√
nEP

[
f̂ ey

]
=(1) Gn[f ey ] + ōP(1) +

√
nEP

[
f̂ ey

]
=(2) Gn[f ey ] + ōP(1) + J(y)

√
n(β̂e(y)− β0(y)) + Gn[gey] + ōP(1),

where relations (1) and (2) follow by Lemma 4 and Lemma 5 with β̃(y) = β̂e(y),

respectively, using that ‖ϑ̂e − ϑ̃e‖T,∞ = oP(1/
√
n), ϑ̃e ∈ Υ and ‖ϑ̃e − ϑ0‖T,∞ =

OP(1/
√
n) by Lemma 2, and ‖β̂e(y)− β0(y)‖2 = ŌP(1/

√
n).

Therefore by uniform invertibility of J(y) in y ∈ Y ,

√
n(β̂e(y)− β0(y)) = −J(y)−1Gn(f ey + gey) + ōP(1).

Step 3. In this final step we establish the behavior of
√
n(β̂e(y)−β̂(y)) under Pe. Note

that Pe denotes the conditional probability measure, namely the probability measure

induced by draws of e1, ..., en conditional on the data A1, ..., An. By Step 2 of the

proof of Theorem 1 and Step 2 of this proof, we have that under P:

√
n(β̂e(y)− β0(y)) = −J(y)−1Gn(f ey + gey) + ōP(1),
√
n(β̂(y)− β0(y)) = −J(y)−1Gn(fy + gy) + ōP(1).

Hence, under P
√
n(β̂e(y)− β̂(y)) = −J(y)−1Gn(f ey − fy + gey − gy) + rn(y)

= −J(y)−1Gn((e− 1)(fy + gy)) + rn(y),
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where rn(y) = ōP(1). Note that it is also true that

rn(y) = ōPe(1) in P-probability,

where the latter statement means that for every ε > 0, Pe(‖rn(y)‖2 > ε) = ōP(1).

Indeed, this follows from Markov inequality and by

EP[Pe(‖rn(y)‖2 > ε)] = P(‖rn(y)‖2 > ε) = ō(1),

where the latter holds by the Law of Iterated Expectations and rn(y) = ōP(1).

Note that f ey = e · fy and gey = e · gy, where fy and gy are P -Donsker by step-2 of the

proof of the first part and EP e
2 <∞. Then, by the Conditional Multiplier Functional

Central Limit Theorem, e.g., Theorem 2.9.6 in van der Vaart and Wellner (1996),

Ge
n(y) := Gn((e− 1)(fy + gy)) P G(y) in `∞(Y)dw .

Conclude that √
n(β̂e(y)− β̂(y)) P J(y)−1G(y) in `∞(Y)dw .

�

C.3. Proof of Theorems 2–4. In this section we use the notation Wx(ϑ) =

w(x, Z1, V (ϑ)) such that Wx = w(x, Z1, V (ϑ0)). Again we focus on the case where Y
is a compact interval of R.

C.3.1. Proof of Theorem 2. The result follows by a similar argument to the proof of

Lemma 3 using Lemmas 6 and 7 in place of Lemmas 4 and 5, and the delta method.

For the sake of brevity, here we just outline the proof of the FCLT.

Let ψx(A, ϑ, β) := Λ(Wx(ϑ)′β)T such that GT (y, x) = EPψx(A, ϑ0, β0(y))/EPT and

Ĝ(y, x) = Enψx(A, ϑ̂, β̂(y))/EnT . Then, for ψ̂y,x := ψx(A, ϑ̂, β̂(y)) and ψy,x :=

ψx(A, ϑ0, β0(y)),

√
n
[
Enψx(A, ϑ̂, β̂(y))− EPψx(A, ϑ0, β0(y))

]
= Gn

[
ψ̂y,x

]
+
√
nEP

[
ψ̂y,x − ψy,x

]
=(1) Gn[ψy,x] + ōP(1) +

√
nEP

[
ψ̂y,x − ψy,x

]
=(2) Gn[ψy,x] + ōP(1) + Gn[hy,x] + ōP(1),

where relations (1) and (2) follow by Lemma 6 and Lemma 7 with β̃(y) = β̂(y),

respectively, using that ‖ϑ̂− ϑ̃‖T,∞ = oP(1/
√
n), ϑ̃ ∈ Υ, and ‖ϑ̃−ϑ‖T,∞ = OP(1/

√
n)

by Lemma 2, and
√
n(β̂(y)− β0(y)) = −J(y)−1Gn(fy + gy) + ōP(1) from step 2 of the

proof of Lemma 3.
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The functions (y, x) 7→ ψy,x and (y, x) 7→ hy,x are P -Donsker by Example 19.7 in

van der Vaart (1998) because they are Lipschitz continuous on YX . Hence, by the

Functional Central Limit Theorem

Gn(ψy,x + hy,x) Z(y, x) in `∞(YX ),

where (y, x) 7→ Z(y, x) is a zero mean Gaussian process with uniformly continuous

sample paths and covariance function

CovP [ψy,x + hy,x, ψv,u + hv,u], (y, x), (v, u) ∈ YX .

The result follows by the functional delta method applied to the ratio of

Enψx(A, ϑ̂, β̂(y)) and EnT using that(
Gnψx(A, ϑ̂, β̂(y))

GnT

)
 

(
Z(y, x)

ZT

)
,

where ZT ∼ N(0, pT (1− pT )),

CovP (Z(y, x), ZT ) = GT (y, x)pT (1− pT ),

and

CovP [ψy,x + hy,x, ψv,u + hv,u | T = 1]

=
CovP [ψy,x + hy,x, ψv,u + hv,u]−GT (y, x)GT (v, u)pT (1− pT )

pT
.

�

Lemma 6. [Stochastic equicontinuity] Let e ≥ 0 be a positive random variable with

EP [e] = 1, VarP [e] = 1, and EP |e|2+δ < ∞ for some δ > 0, that is independent of

(Y,X,Z,W, V ), including as a special case e = 1, and set, for A = (e, Y,X, Z,W, V ),

ψx(A, ϑ, β) := e · Λ(Wx(ϑ)′β) · T.

Under Assumptions 3–5, the following relations are true.

(a) Consider the set of functions

F := {ψx(A, ϑ, β) : (ϑ, β, x) ∈ Υ0 × B × X},

where X is a compact subset of R, B is a compact set under the ‖ · ‖2 metric

containing β0(y) for all y ∈ Y, Υ0 is the intersection of Υ, defined in Lemma
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2, with a neighborhood of ϑ0 under the ‖·‖T,∞ metric. This class is P -Donsker

with a square integrable envelope of the form e times a constant.

(b) Moreover, if (ϑ, β(y))→ (ϑ0, β0(y)) in the ‖ · ‖T,∞ ∨‖ · ‖2 metric uniformly in

y ∈ Y, then

sup
(y,x)∈YX

‖ψx(A, ϑ, β(y))− ψx(A, ϑ0, β0(y))‖P,2 → 0.

(c) Hence for any (ϑ̃, β̃(y))→P (ϑ0, β0(y)) in the ‖ · ‖T,∞ ∨‖ · ‖2 metric uniformly

in y ∈ Y such that ϑ̃ ∈ Υ0,

sup
(y,x)∈YX

‖Gnψx(A, ϑ̃, β̃(y))−Gnψx(A, ϑ0, β0(y))‖2 →P 0.

(d) For any (ϑ̂, β̃(y)) →P (ϑ0, β0(y)) in the ‖ · ‖T,∞ ∨ ‖ · ‖2 metric uniformly in

y ∈ Y, so that

‖ϑ̂− ϑ̃‖T,∞ = oP(1/
√
n), where ϑ̃ ∈ Υ0,

we have that

sup
(y,x)∈YX

‖Gnψx(A, ϑ̂, β̃(y))−Gnψx(A, ϑ0, β0(y))‖2 →P 0.

Proof of Lemma 6. The proof is omitted because is similar to the proof of Lemma

4. �

Lemma 7. [Local expansion] Under Assumptions 3–5, for

δ̂(y) =
√
n(β̃(y)− β0(y)) = ŌP(1);

∆̂(x, r) =
√
n(ϑ̂(x, r)− ϑ0(x, r)) =

√
n En[`(A, x, r)] + oP(1) in `∞(XR),

‖
√
n En[`(A, ·)]‖T,∞ = OP(1),

we have that

√
n
{

EPΛ[Wx(ϑ̂)′β̃(y)]T − EPΛ[W ′
xβ0(y)]T

}
= EP{λ[W ′

xβ0(y)]WxT}′δ̂(y)

+ EP{λ[W ′
xβ0(y)]Ẇ ′

xβ0(y)T`(a,X,R)}
∣∣
a=A

+ ōP(1),

where ōP(1) denotes order in probability uniform in (y, x) ∈ YX .

Proof of Lemma 7. The proof is omitted because is similar to the proof of Lemma

5. �
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C.3.2. Proof of Theorem 3. The result follows from Theorem 2 and the functional

delta method, because the map φ : H 7→
´
Y+ 1(H(y, x) ≤ τ)dy −

´
Y− 1(H(y, x) ≥

τ)dy is Hadamard differentiable at H = GT under the conditions of the theorem by

Proposition 2 of Chernozhukov, Fernandez-Val and Galichon (2010) with derivative

φ′GT (h) = − h(φ(·, x), x)

gT (φ(·, x), x)
.

C.3.3. Proof of Theorem 4. The result follows from Theorem 2 and the functional

delta method, because the map ϕ : H 7→
´
Y [1(y ≥ 0) − H(y, x)]dy is Hadamard

differentiable at H = GT by Lemma 8 with derivative

ϕ′GT (h) = −
ˆ
Y
h(y, x)ν(dy).

Lemma 8. [Hadamard Differentiability of ASF Map] The ASF map ϕ : `∞(YX )→
`∞(X ) defined by

H 7→ ϕ(H) :=

ˆ
Y

[1(y ≥ 0)−H(y, x)]ν(dy),

is Hadamard-differentiable at H = G, tangentially to the set of uniformly continuous

functions on YX , with derivative map h 7→ ϕ′G(h) defined by

ϕ′G(h) := −
ˆ
Y
h(y, x)ν(dy),

where the derivative is defined and is continuous on `∞(YX ).

Proof of Lemma 8. Consider any sequence H t ∈ `∞(YX ) such that for ht :=

(H t −G)/t, ht → h in `∞(YX ) as t↘ 0, where h is a uniformly continuous function

on YX . We want to show that as t↘ 0,

ϕ(H t)− ϕ(G)

t
− ϕ′G(h)→ 0 in `∞(YX ).

The result follows because by linearity of the map ϕ

ϕ(H t)− ϕ(G)

t
= −
ˆ
Y
ht(y, x)ν(dy)→ −

ˆ
Y
h(y, x)ν(dy) = ϕ′G(h).

The derivative is well-defined over `∞(YX ) and continuous with respect to the sup-

norm on `∞(YX ).
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