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Abstract

The Two-Stage Least Squares instrumental variables (IV) estimator for the para-
meters in linear models with a single endogenous variable is shown to be identical to
an optimal Minimum Distance (MD) estimator based on the individual instrument
specific IV estimators. The 2SLS estimator is a linear combination of the individual
estimators, with the weights determined by their variances and covariances under
conditional homoskedasticity. It is further shown that the Sargan test statistic
for overidentifying restrictions is the same as the MD criterion test statistic. This
provides an intuitive interpretation of the Sargan test. The equivalence results
also apply to the effi cient two-step GMM and robust optimal MD estimators and
criterion functions, allowing for general forms of heteroskedasticity. It is further
shown how these results extend to the linear overidentified IV model with multiple
endogenous variables.
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1 Introduction

For a single endogenous variable linear model with multiple instruments, the standard

IV estimator is the Two-Stage Least Squares (2SLS) estimator, which is a consistent and

asymptotically effi cient estimator under standard regularity assumptions and conditional

homoskedasticity, see e.g. Hayashi (2000, p 228). This means that the 2SLS estimator

combines the information from the multiple instruments asymptotically optimally under

these conditions. An alternative estimator is the optimal Minimum Distance (MD) esti-

mator, using an estimator of the variance matrix of the individual instrument-specific IV

estimators of the parameter of interest. It is shown in the next section, Section 2, that

this optimal MD estimator, with the variance specified under conditional homoskedastic-

ity, is identical to the 2SLS estimator. It is further shown that the Sargan test statistic

for overidentifying restrictions is the same as the MD criterion test statistic, providing

another intuitive interpretation of the Sargan test.

Surprisingly, it appears that these equivalence results are not available in the litera-

ture, and are not discussed in standard textbooks. Angrist (1991) derives similar results,

but for the special case of orthogonal binary instruments, see also the discussion in An-

grist and Pischke (2009, Section 4.2.2), whereas the results here are for general designs.

Recently, Chen, Jacho-Chávez and Linton (2016) used this setting and the two estima-

tors as an example in their much wider-ranging paper, but they did not realise their

equivalence and the results obtained in Section 2 modify the statements of Chen et al.

(2016, pp 48-49).

In Section 2.2, the result is extended to the equivalence of the two-step GMM estima-

tor and the optimal minimum distance estimator based on a robust variance-covariance

estimator of the vector of instrument-specific IV estimates, robust to general forms of

heteroskedasticity in the cross-sectional setting considered here. The two-step Hansen

J-test statistic for overidentifying restrictions (Hansen, 1982) is also shown to be the

same as the robust MD criterion test statistic.

Section 3 derives equivalence results for the multiple endogenous variables case. The

setting considered there can best be characterised by the following simple example. Con-

sider a linear model with two endogenous variables, and there are four instruments avail-

able. In principle, there are then six distinct sets of two, just identifying instruments.
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However, a collection of three sets of two instruments that span all instruments is suffi -

cient to provide all information needed. For example, if the instruments are denoted by

z1, z2, z3, and z4, then the collection of sets {(z1, z2) , (z2, z3) , (z3,z4)} is suffi cient. This
results in three just identified IV estimates of the two parameters of interest, and Section

3 shows that the per parameter optimal minimum distance estimators are identical to

the 2SLS estimators.

2 Equivalence Result for Single Endogenous Vari-
able Model

We have a sample {(yi, xi, z′i)}
n
i=1 and consider the model

yi = xiβ + ui,

where xi is endogenous, such that E (xiui) 6= 0. Note that other exogenous variables

in the model, including the constant, have been partialled out. The kz > 1 instrument

vector zi satisfies E (ziui) = 0 and is related to xi via the linear projection, or first-stage

model

xi = z′iπx + vi. (1)

Let y and x be the n-vectors (y1, y2, ..., yn)′ and (x1, x2, ..., xn)′, and Z the n× kz matrix
with i-th row z′i and j-th column zj, i = 1, .., n, j = 1, ..., kz.

Let PZ = Z (Z ′Z)−1 Z ′ and

S (b) = (y − xb)′ PZ (y − xb) . (2)

The well-known Two-Stage Least Squares (2SLS) instrumental variables estimator is then

defined as

β̂2SLS = arg min
b
S (b)

and is given by

β̂2SLS = (x′PZx)
−1
x′PZy. (3)

Next consider the individual instrument-specific IV estimators for β, given by

β̂j =
(
z′jx
)−1

z′jy,
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for j = 1, .., kz. Let the kz-vector β̂ind be defined as

β̂ind =
(
β̂1, β̂2, ..., β̂kz

)′
, (4)

then

β̂ind = D−1zx Z
′y,

where Dzx = diag
(
z′jx
)
. The matrix diag (aj) is a diagonal matrix with j-th diagonal

element aj.

It follows that the 2SLS estimator is a linear combination of the individual estimators,

as

β̂2SLS = (x′PZx)
−1
x′Z (Z ′Z)

−1
Dzxβ̂ind

=
kz∑
j=1

w2sls,jβ̂j, (5)

with
∑kz

j=1w2sls,j = 1.

Under the assumptions that 1
n

∑n
i=1 z

′
jx

p→ λj 6= 0 for j = 1, ..., kz, 1n
∑n

i=1 ziz
′
i

p→ Hzz

and 1√
n

∑n
i=1 ziui

d→ N (0, σ2uHzz), the limiting distribution of β̂ind is given by

√
n
(
β̂ind − ιβ

)
=
√
nD−1zx Z

′u
d→ N

(
0, σ2uΩ

)
, (6)

where ι is a kz-vector of ones, and Ω is given by

Ω = D−1λ HzzD
−1
λ ,

with Dλ = diag (λj).

Let

Ω̂ = D−1zx Z
′ZD−1zx ,

with nΩ̂
p→ Ω. The optimal minimum distance (MD) estimator for β is then given by

β̂md = arg min
b
Q (b) ;

Q (b) =
(
β̂ind − ιb

)′
Ω̂−1

(
β̂ind − ιb

)
, (7)

resulting in

β̂md =
(
ι′Ω̂−1ι

)−1
ι′Ω̂−1β̂ind. (8)
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It is clear that the the MD estimator is also a linear combination of the individual

instrument specific estimators,

β̂md =
kz∑
j=1

wmd,jβ̂j,

with
∑kz

j=1wmd,j = 1.The next proposition states the main equivalence result, Q (b) =

S (b), hence β̂md = β̂2sls and wmd,j = w2sls,j for j = 1, .., kz.

Proposition 1 Let S (b), Q (b), β̂2sls and β̂md be as defined in (2), (7), (3) and (8)

respectively. Then for b ∈ R, Q (b) = S (b) and hence β̂md = β̂2sls.

Proof. As ι′Dzx = Z ′x, it follows that, for b ∈ R,

Q (b) =
(
β̂ind − ιb

)′
Ω̂−1

(
β̂ind − ιb

)
=

(
D−1zx Z

′y − ιb
)′
Dzx (Z ′Z)

−1
Dzx

(
D−1zx Z

′y − ιb
)

= (y − xb)′ Z (Z ′Z)
−1
Z ′ (y − xb)

= S (b) .

Note that the equivalence results obtained in Proposition 1 does, given the choice of

Ω̂, not rely on any high level assumptions. For example, whilst the limiting distribution

of β̂ind in (6) can only be derived under the assumption that λj 6= 0, for all j = 1, ..kz,

the numerical equivalence results hold also when this assumption is violated and even if

λj = 0 for all j.

Let wj = wmd,j = w2sls,j. Whilst
∑kz

j=1wj = 1, the weigths wj can be negative, in

which case β̂2sls is not a weighted average of the β̂j. From the definition of wj in (5)

it follows that sign(wj) = sign
(
π̂x,j

(
z′jx
))
, where π̂x,j is the j-th element of the OLS

estimator of πx in (1). Wlog, we can code the instruments such that π̂x,j ≥ 0 for all j,

and standardise such that z′jzj/n = 1. It then follows that sign(wj) = sign
(
λ̂j

)
, where

λ̂j is the OLS estimator of λj in the first-stage specification x = zjλj + vj. Therefore,

wj ≥ 0 for all j iff λ̂j ≥ 0 for all j. As λ̂j =
(
z′jZ/n

)
π̂x = π̂x,j +

∑kz
l=1,l 6=j ρ̂jlπ̂x,l, where

ρ̂jl = z′jzl/n = ρ̂lj, it follows that λ̂j ≥ 0 if
∑kz

l=1,l 6=j ρ̂jlπ̂x,l ≥ −π̂x,j. A suffi cient condition
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for wj ≥ 0 for all j is then that ρ̂jl ≥ 0 for all j,l, l > j , i.e. the instruments are

uncorrelated or positively correlated with each other.

The weights for the minimum distance estimator are obtained from the constrained

minimisation problem

wmd = arg min
w
w′Ω̂w s.t.

kz∑
j=1

wj = 1.

Imposing the constraints wj ≥ 0, for j = 1, ..., kz, results in a standard quadratic pro-

gramming problem. If there are negative weigths in the original solution, then imposing

nonnegativity will lead to some of the wmd,j set equal to zero. The resulting estimator

is then equal to a weighted average of the β̂j for a subset of the instruments that min-

imises the variance over the subsets for which the 2SLS and MD estimators are weighted

averages of the instrument specific estimates.

2.1 Test for Overidentifying Restrictions

The standard test for the null hypothesis H0 : E (ziui) = 0 is the Sargan test statistic

given by

Sar
(
β̂2sls

)
= σ̂−2u S

(
β̂2sls

)
,

where σ̂2u = 1
n

∑n
i=1

(
yi − xiβ̂2sls

)2
. Under the null, standard regularity assumptions and

conditional homoskedasticity, Sar
(
β̂2sls

)
converges in distribution to a χ2kz−1 distributed

random variable, see e.g. Hayashi (2000, p 228).

Next consider the MD criterion

MD
(
β̂md

)
= σ̂−2u Q

(
β̂md

)
,

where we can use σ̂2u because β̂md = β̂2sls. Let βj = plim
(
β̂j

)
. Under the null hypothesis

H0 : β1 = β2 = ... = βkz = β, and the assumptions stated above for the limiting

distribution (6) to hold, MD
(
β̂md

)
converges in distribution to a χ2kz−1 distributed

random variable, see e.g. Cameron and Trivedi (2005, p 203).

It follows directly from the results of Proposition 1 that S
(
β̂2sls

)
= Q

(
β̂md

)
and

hence

Sar
(
β̂2sls

)
= MD

(
β̂md

)
.
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Remark 1 The equivalence of Sar
(
β̂2sls

)
andMD

(
β̂md

)
establishes an intuitive inter-

pretation of the Sargan test. It tests whether the individual instrument-specific estimators

all estimate the same parameter value. For a related discussion, see Parente and Santos

Silva (2012).

2.2 Effi cient Two-Step Estimation

The equivalence results extend to the effi cient two-step GMM estimator. For the cross-

sectional setup considered here, this would cover the case of general conditional het-

eroskedasticity, E (u2i |zi) = g (zi). Assume 1
n

∑n
i=1 u

2
i ziz

′
i

p→ Σ. Using β̂2sls as the initial

consistent one-step GMM estimator, the effi cient two-step GMM estimator is defined as

β̂gmm = arg min
b
J (b) ,

where

J (b) = (y − xb)′ ZΣ̂−1
(
β̂2sls

)
Z ′ (y − xb) ;

Σ̂
(
β̂2sls

)
=

n∑
i=1

(
yi − xiβ̂2sls

)2
ziz
′
i.

The Hansen J-test for overidentifying restrictions is given by J
(
β̂gmm

)
. Under standard

assumptions, J
(
β̂gmm

)
d−→ χ2kz−1 under the null H0 : E (ziui) = 0.

Under the assumptions as stated above, the limiting distribution of β̂ind is given by

√
n
(
β̂ind − ιβ

)
d→ N (0,Ωr) ,

where

Ωr = D−1λ ΣD−1λ ,

and, as β̂md = β̂2sls, a robust variance estimator for β̂ind is given by

Ω̂r = D−1zx Σ̂
(
β̂2sls

)
D−1zx ,

Define the robust MD estimator as

β̂md,r = arg min
b
MDr (b) ;

MDr (b) =
(
β̂ind − ιb

)′
Ω̂−1r

(
β̂ind − ιb

)
.
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Under the null as specified above, H0 : β1 = β2 = ... = βkz = β, and the assumptions

stated above, MDr

(
β̂md,r

)
converges in distribution to a χ2kz−1 distributed random vari-

able.

It follows directly from the proof of Proposition 1 that, for b ∈ R, MDr (b) = J (b)

and hence β̂gmm = β̂md,r and J
(
β̂gmm

)
= MDr

(
β̂md,r

)
.

Remark 2 An alternative "one-step" robust variance estimator for the MD estimator is

given by

Ω̂r,ind = D−1zx Σ̂
(
β̂ind

)
D−1zx ,

with the elements of Σ̂
(
β̂ind

)
given by

Σ̂
(
β̂ind

)
j,l

=

n∑
i=1

(
yi − xiβ̂j

)(
yi − xiβ̂l

)
zijzil,

for j, l = 1, ..., kz. The resulting minimum distance estimator, β̂md,ind, has the same

limiting distribution as β̂md,r, but differs in finite samples.

Note that the minimum distance objective function we consider here is different from

the minimum distance approach that leads for example to the LIML and Continuously

Updating (CU) GMM estimators. Consider the OLS estimators π̂x and π̂y for πx in

model (1) and πy in the specification yi = z′iπy + εi = z′i (βπx) + ui + βvi. Then consider

the minimum distance estimator(
β̂nmd, π̂x,nmd

)
= arg min

β,πx

(
π̂y − βπx
π̂x − πx

)′
V̂ −1

(
π̂y − βπx
π̂x − πx

)
,

where V̂ = V âr
((

π̂′y π̂′x
)′)
. If V̂ is a valid variance estimator under conditional

homoskedasiticy only, β̂nmd is equal to the LIML estimator, see Goldberger and Olkin

(1971). If V̂ is a robust variance estimator, β̂nmd is the CU-GMM estimator, see the dis-

cussion in Windmeijer (2018). Other recent approaches to minimum distance estimation

are Sølvsten (2017) and Kolesár (2018).

3 Multiple Endogenous Variables

Consider next the multiple endogenous variables model

yi = x′iβ + ui,
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where xi is a kx vector of endogenous variables. There are kz > kx instruments zi

available. Let X be the n×kx matrix of explanatory variables, with l-th column xl, then
the 2SLS estimator is obtained as

β̂2sls = arg min
b
S (b)

S (b) = (y −Xb)′ PZ (y −Xb)

and is given by

β̂2sls = (X ′PZX)
−1
X ′PZy.

An MD estimator could of course be obtained here in similar fashion to the one-

variable case above, from
(
kz
kx

)
sets of just-identifying instruments and a generalized in-

verse for the now rank deficient variance matrix Ω̂. Calculating the variance matrix under

conditional homoskedasticity leads again to equivalence of the 2SLS and MD estimators.

However, more interesting results can be derived for the 2SLS and MD estimators of

the individual coeffi cients βl, l = 1, .., kx. Denote by X̂.l the l-th column of X̂, and let

X̂−l be the kx − 1 columns of X̂, excluding X̂.l. The 2SLS estimator for βl is given by

β̂l,2sls =
(
X̂ ′.lMX̂−l

X̂.l

)−1
X̂ ′.lMX̂−l

y

= (x̃′lx̃l)
−1
x̃′ly (9)

where for a general n× k matrix A, MA = In − PA, with In the identity matrix of order
n, and

x̃l = MX̂−l
X̂.l. (10)

Let
{
Z [t]
}kz−kx+1
t=1

be a collection of kz − kx + 1 sets of kx instruments Z [t] such that

all instruments have been included. For example,
{
Z [t] = (zt, ..., zt+kx−1)

}kz−kx+1
t=1

is such

a set. From these sets, we get kz − kx + 1 just identified IV estimates β̂
[t]
of β. Let

β̂l,ind =
(
β̂
[t]

l

)
be the (kz − kx + 1)-vector of the individual estimates of βl. Let

X̂ [t] = PZ[t]X,

and X̂ [t]
.l and X̂

[t]
−l defined analogously to above. The elements of β̂l,ind are then given by

β̂
[t]

l,ind =
(
X̂
[t]′
.l MX̂

[t]
−l
X̂
[t]
.l

)−1
X̂
[t]′
.l MX̂

[t]
−l
y

=
(
x̃
[t]′
l x̃

[t]
l

)−1
x̃
[t]′
l y,
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for t = 1, ..., kz − kx + 1, where

x̃
[t]
l = M

X̂
[t]
−l
X̂
[t]
.l . (11)

Hence,

β̂l,ind = D̃−1l X̃ ′ly, (12)

with

X̃l =
(
x̃
[1]
l , ..., x̃

[kz−kx+1]
l

)
and D̃l = diag

(
x̃
[t]′
l x̃

[t]
l

)
, t = 1, ..., kz − kx + 1. From (12) and the proof of Proposition

2 below, it follows that
√
n
(
D̃−1l X̃ ′ly − ιβ

)
=
√
nD̃−1l X̃ ′lu. Hence, the variance of β̂l,ind

under conditional homoskedasticity can be specified as

Var
(
β̂l,ind

)
= σ2uΩ̂l

Ω̂l = D̃−1l X̃ ′lX̃lD̃
−1
l .

The MD estimator for βl is then obtained as

β̂l,md = arg min
b
Ql (b) ;

Ql (b) =
(
β̂l,ind − ιb

)′
Ω̂−1l

(
β̂l,ind − ιb

)
where ι is here a kz − kx + 1 vector of ones. β̂l,md is therefore given by

β̂l,md =

(
ι′D̃l

(
X̃ ′lX̃l

)−1
D̃lι

)−1
ι′D̃l

(
X̃ ′lX̃l

)−1
D̃lβ̂l,ind

=

(
ι′D̃l

(
X̃ ′lX̃l

)−1
D̃lι

)−1
ι′D̃l

(
X̃ ′lX̃l

)−1
X̃ ′ly. (13)

The next proposition establishes the equivalence of β̂l,2sls and β̂l,md for l = 1, ..., kx.

Proposition 2 For l = 1, ..., kx, let β̂l,2sls, β̂l,ind and β̂l,md be as defined in (9), (12) and

(13) respectively, with β̂l,ind based on a collection of kz − kx + 1 sets of kx instruments{
Z [t]
}kz−kx+1
t=1

that contains all instruments. Then β̂l,2sls = β̂l,md for l = 1, ..., kx.

Proof. From the definitions of x̃l and x̃
[t]
l in (10) and (11) respectively, it follows that

x̃′lx̃
[t]
l = x′l

(
PZ − PZX−l

(
X ′−lPZX−l

)−1
X ′−lPZ

)
∗
(
PZ[t] − PZ[t]X−l

(
X ′−lPZ[t]X−l

)−1
X ′−lPZ[t]

)
xl

= x′l

(
PZ[t] − PZ[t]X−l

(
X ′−lPZ[t]X−l

)−1
X ′−lPZ[t]

)
xl

= x′lx̃
[t]
l = x̃

[t]′
l x̃

[t]
l ,
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for t = 1, ..., kz − kx + 1, and hence

ι′D̃l = x̃′lX̃l.

Therefore, from (13),

β̂l,md =
(
x̃′lPX̃lx̃l

)−1
x̃′lPX̃ly.

As the sets of instruments
{
Z [t]
}kz−kx+1
t=1

contain all kz instruments, it follows that x̃l is

in the column space of X̃l, and so PX̃lx̃l = x̃l. Therefore,

β̂l,md = (x̃′lx̃l)
−1
x̃′ly = β̂l,2sls,

for l = 1, ..., kx.

Next, consider the Sargan test statistic, given by

Sar
(
β̂2sls

)
= σ̂−2u S

(
β̂2sls

)
, (14)

where σ̂2u = 1
n

∑n
i=1

(
yi − x′iβ̂2sls

)2
. Under the null H0 : E (ziui) = 0, standard regularity

conditions and conditional homoskedasticity, Sar
(
β̂2sls

)
d−→ χ2kz−kx .

Consider the MD statistics

MD
(
β̂l,md

)
= σ̂−2u Q

(
β̂l,md

)
, (15)

for l = 1, ..., kx. Let βl,ind = plim
(
β̂l,ind

)
, then MD

(
β̂l,md

)
d−→ χ2kz−kx under the null

H0 : βl,ind = ιβl, but as σ̂
2
u has to be a consistent estimator of σ

2
u, the maintained

assumptions are that βs,ind = ιβs for s = 1, ..., kx, s 6= l.

The following proposition states the equivalence of Sar
(
β̂2sls

)
and MD

(
β̂l,md

)
for

l = 1, ..., kx.

Proposition 3 Let Sar
(
β̂2sls

)
and MD

(
β̂l,md

)
be defined as in (14) and (15), then

Sar
(
β̂2sls

)
= MD

(
β̂l,md

)
for l = 1, ..., kx.

Proof. As X̂ ′
(
y −Xβ̂2sls

)
= 0, β̂l,2sls = β̂l,md, and defining ỹ = MX̂−l

PZy, it follows
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that

S
(
β̂2sls

)
=

(
y −Xβ̂2sls

)′
PZ

(
y −Xβ̂2sls

)
=

(
y − xlβ̂l,2sls −X−lβ̂−l,2sls

)′
PZMX̂−l

PZ

(
y − xlβ̂l,2sls −X−lβ̂−l,2sls

)
=

(
ỹ − x̃lβ̂l,2sls

)′ (
ỹ − x̃lβ̂l,2sls

)
=

(
ỹ − x̃lβ̂l,2sls

)′
PX̃l

(
ỹ − x̃lβ̂l,2sls

)
=

(
D̃−1l X̃ ′l ỹ − D̃−1l X̃ ′l x̃lβ̂l,md

)′
D̃l

(
X̃ ′lX̃l

)−1
D̃l

(
D̃−1l X̃ ′l ỹ − D̃−1l X̃ ′l x̃lβ̂l,md

)
=

(
β̂l,ind − ιβ̂l,md

)′
Ω̂−1l

(
β̂l,ind − ιβ̂l,md

)
= Q

(
β̂l,md

)
and hence Sar

(
β̂2sls

)
= MD

(
β̂l,md

)
for l = 1, ..., kx.

As for the single-endogenous variable case, these results can be extended to the two-

step GMM and robust MD estimators.
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