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Abstract

The Two-Stage Least Squares instrumental variables (IV) estimator for the para-
meters in linear models with a single endogenous variable is shown to be identical to
an optimal Minimum Distance (MD) estimator based on the individual instrument
specific IV estimators. The 2SLS estimator is a linear combination of the individual
estimators, with the weights determined by their variances and covariances under
conditional homoskedasticity. It is further shown that the Sargan test statistic
for overidentifying restrictions is the same as the MD criterion test statistic. This
provides an intuitive interpretation of the Sargan test. The equivalence results
also apply to the efficient two-step GMM and robust optimal MD estimators and
criterion functions, allowing for general forms of heteroskedasticity. It is further
shown how these results extend to the linear overidentified IV model with multiple
endogenous variables.
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1 Introduction

For a single endogenous variable linear model with multiple instruments, the standard
IV estimator is the Two-Stage Least Squares (2SLS) estimator, which is a consistent and
asymptotically efficient estimator under standard regularity assumptions and conditional
homoskedasticity, see e.g. Hayashi (2000, p 228). This means that the 2SLS estimator
combines the information from the multiple instruments asymptotically optimally under
these conditions. An alternative estimator is the optimal Minimum Distance (MD) esti-
mator, using an estimator of the variance matrix of the individual instrument-specific IV
estimators of the parameter of interest. It is shown in the next section, Section 2, that
this optimal MD estimator, with the variance specified under conditional homoskedastic-
ity, is identical to the 2SLS estimator. It is further shown that the Sargan test statistic
for overidentifying restrictions is the same as the MD criterion test statistic, providing
another intuitive interpretation of the Sargan test.

Surprisingly, it appears that these equivalence results are not available in the litera-
ture, and are not discussed in standard textbooks. Angrist (1991) derives similar results,
but for the special case of orthogonal binary instruments, see also the discussion in An-
grist and Pischke (2009, Section 4.2.2), whereas the results here are for general designs.
Recently, Chen, Jacho-Chavez and Linton (2016) used this setting and the two estima-
tors as an example in their much wider-ranging paper, but they did not realise their
equivalence and the results obtained in Section 2 modify the statements of Chen et al.
(2016, pp 48-49).

In Section 2.2, the result is extended to the equivalence of the two-step GMM estima-
tor and the optimal minimum distance estimator based on a robust variance-covariance
estimator of the vector of instrument-specific IV estimates, robust to general forms of
heteroskedasticity in the cross-sectional setting considered here. The two-step Hansen
J-test statistic for overidentifying restrictions (Hansen, 1982) is also shown to be the
same as the robust MD criterion test statistic.

Section 3 derives equivalence results for the multiple endogenous variables case. The
setting considered there can best be characterised by the following simple example. Con-
sider a linear model with two endogenous variables, and there are four instruments avail-

able. In principle, there are then six distinct sets of two, just identifying instruments.



However, a collection of three sets of two instruments that span all instruments is suffi-
cient to provide all information needed. For example, if the instruments are denoted by
21, 22, 73, and z4, then the collection of sets {(z1, 22), (22, 23) , (23,24)} is sufficient. This
results in three just identified IV estimates of the two parameters of interest, and Section
3 shows that the per parameter optimal minimum distance estimators are identical to

the 2SLS estimators.

2 Equivalence Result for Single Endogenous Vari-
able Model

We have a sample {(y;, %, z/)}_; and consider the model
Yi = xif +

where z; is endogenous, such that F (z;u;) # 0. Note that other exogenous variables
in the model, including the constant, have been partialled out. The k£, > 1 instrument
vector z; satisfies E (z;u;) = 0 and is related to z; via the linear projection, or first-stage
model

T = 2 + v (1)

Let y and o be the n-vectors (y1,¥s, ..., yn) and (1, s, ...,7,)’, and Z the n x k., matrix
with 4-th row z; and j-th column z;, i =1,..,n, j =1, ... k..

Let Py = Z(2'Z)"" Z' and
S (b) = (y — ab)' Py (y — xb). (2)

The well-known Two-Stage Least Squares (2SLS) instrumental variables estimator is then

defined as
B2SLS = arg mbin S (b)

and is given by
Basis = (' Pzz) ' a' Py, (3)

Next consider the individual instrument-specific IV estimators for 3, given by

Bj = (Zé'x)fl %y,



for j =1, .., k.. Let the k,-vector B be defined as

ind
~ ~ ~ ~ /
5ind: <617527"'76kz> 9 (4>
then
Bind = Dz_wlz,y’
where D,, = diag (z§ ) The matrix diag (a;) is a diagonal matrix with j-th diagonal
element a;.

It follows that the 2SLS estimator is a linear combination of the individual estimators,

as
Basrs = (0'Pza) " d'Z(Z'2)" DeBia
k.
== Zw%ls,j//éja (5)
j=1
with Zf;l Wasls,j = 1.

Under the assumptions that %Z?:l Zix LN N #O0forj=1,.. k, % o 2%iZ) 2 H,.

and \/Lﬁ Yoy 2l 4N (0,02H..,), the limiting distribution of 3,,, is given by
Vi (Biua = 18) = VD Z'u 2 N (0,029) (6)
where ¢ is a k,-vector of ones, and € is given by
Q= D,'H..D",

with Dy = diag ().
Let
Q=D_'7'ZD}

2T )

with nQ 2 Q. The optimal minimum distance (MD) estimator for /3 is then given by
Boa = arg min @ () ;
~ I
Q) = (Bua—tb) O (B — b)), (7)

resulting in

= (87) 2 B ®

)

md
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It is clear that the the MD estimator is also a linear combination of the individual

instrument specific estimators,
k-
ﬁmd = E wmd,jﬁja
j=1

with Z?; Wma,; = 1.The next proposition states the main equivalence result, @ (b) =

S (b), hence B,y = Bygs and Wng j = o, for j =1, .., k..

Proposition 1 Let S (b), Q (b), Boy. and B,,, be as defined in (2), (7), (3) and (8)
respectively. Then for b € R, Q (b) = S (b) and hence B,,; = By

Proof. As /D,, = Z'x, it follows that, for b € R,

Q) = ( ind — ) - (Bmd— Lb)
(D Z'y ) D..(Z'Z) ' D., (DL Z'y — ub)
(y—ab) Z(Z2'2)"" Z' (y — ab)

= S(b).

Note that the equivalence results obtained in Proposition 1 does, given the choice of
KAZ, not rely on any high level assumptions. For example, whilst the limiting distribution
of B,,; in (6) can only be derived under the assumption that A #0, forall j =1, ..k,
the numerical equivalence results hold also when this assumption is violated and even if
Aj =0 for all j.

Let w; = Wma; = Wass ;. Whilst Z?; w; = 1, the weigths w; can be negative, in
which case 32515 is not a weighted average of the Bj. From the definition of w; in (5)
it follows that sign(w;) = sign(/ﬁxyj (z;x)), where 7, ; is the j-th element of the OLS
estimator of 7, in (1). Wlog, we can code the instruments such that 7, ; > 0 for all j,
and standardise such that 2z;/n = 1. It then follows that sign(w;) = sign <Xj>, where
Xj is the OLS estimator of A; in the first-stage specification z = z;\; + v;. Therefore,
w; > 0 for all j iff Xj > 0 for all j. As /):j = (ng/n) Ty = Ty + Zf;#j DT, Where
Py = 2z /n = py;, it follows that /):j > 0 if Z;{Zuﬁ PiTel > —Tg . A sufficient condition



for w; > 0 for all j is then that ’ﬁjl > 0 for all 5,[, | > j, i.e. the instruments are
uncorrelated or positively correlated with each other.
The weights for the minimum distance estimator are obtained from the constrained

minimisation problem

k=
Wong = inw'Q t =1
ma = argminw'Qw  s.t. w; = 1.
w
j=1

Imposing the constraints w; > 0, for j = 1, ..., k., results in a standard quadratic pro-
gramming problem. If there are negative weigths in the original solution, then imposing
nonnegativity will lead to some of the w,,q; set equal to zero. The resulting estimator
is then equal to a weighted average of the ﬁj for a subset of the instruments that min-
imises the variance over the subsets for which the 2SLS and MD estimators are weighted

averages of the instrument specific estimates.

2.1 Test for Overidentifying Restrictions

The standard test for the null hypothesis Hy : F (z;u;) = 0 is the Sargan test statistic
given by
Sar (B2sls> = 8;28 <§2515) ’
~ \2
where 6> = % Yo (y,- — miﬁlsls) . Under the null, standard regularity assumptions and
conditional homoskedasticity, Sar (328l5> converges in distribution to a x7__, distributed

random variable, see e.g. Hayashi (2000, p 228).

Next consider the MD criterion
MD <6md) - 8;262 <Bmd> )

where we can use 5, because Emd = BZsls' Let §; = plim (@) Under the null hypothesis
Hy : By = By = ... = B, = B3, and the assumptions stated above for the limiting
distribution (6) to hold, M D (Bmd> converges in distribution to a Xiz_l distributed
random variable, see e.g. Cameron and Trivedi (2005, p 203).

It follows directly from the results of Proposition 1 that S (/523[3) =Q @nd) and

hence

Sar <g23ls> =MD (Bmd) .



Remark 1 The equivalence of Sar (stls> and M D <3md> establishes an intuitive inter-
pretation of the Sargan test. It tests whether the individual instrument-specific estimators

all estimate the same parameter value. For a related discussion, see Parente and Santos
Silva (2012).

2.2 Efficient Two-Step Estimation

The equivalence results extend to the efficient two-step GMM estimator. For the cross-
sectional setup considered here, this would cover the case of general conditional het-
eroskedasticity, E (u?|z;) = g (2). Assume £ 37 w222/ 5 . Using Byu. as the initial

consistent one-step GMM estimator, the efficient two-step GMM estimator is defined as
where

JO) = (=) 257 (Boas) 7' (y = 2b);

n

~ [~ ~ 2
b <ﬂ2sl5> = Z (yl - miﬁQslS) le;

=1

The Hansen J-test for overidentifying restrictions is given by J (Bgmm>. Under standard
assumptions, J (Bgmm> N Xt._1 under the null Hy : E (zu;) = 0.
Under the assumptions as stated above, the limiting distribution of Bmd is given by

~

Vi (Bia —18) 5 N (0,0),

where

Q, = D,'YD*,

and, as [3,,; = (445, @ robust variance estimator for f3,,, is given by

QT = D;xli (E2sls> D;;?
Define the robust MD estimator as
Bmdﬂ« = arg mbin MD, (b);
%

MQ@::@M—@Qf@M—@.
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Under the null as specified above, Hy : 8, = f, = ... = 8, = 3, and the assumptions
stated above, M D, (Bmd?r> converges in distribution to a xj__, distributed random vari-
able.

It follows directly from the proof of Proposition 1 that, for b € R, M D, (b) = J (b)

and hence Bgmm = Bmdw and J (Bgmm) =MD, (Bmdv,).
Remark 2 An alternative "one-step” robust variance estimator for the MD estimator is
given by
ﬁr,ind = D;xli <and> Dz_mla
with the elements of 5 (Emd) gwen by

5 (EWJ . = Zn: (y@- - 3713]) (yz - ngz) ZijZils
i=1

Js

~

Jor j,l = 1,.... k.. The resulting minimum distance estimator, [,,4 .4, has the same

limiting distribution as Bmd,r, but differs in finite samples.

Note that the minimum distance objective function we consider here is different from
the minimum distance approach that leads for example to the LIML and Continuously
Updating (CU) GMM estimators. Consider the OLS estimators 7, and 7, for 7, in
model (1) and 7, in the specification y; = 27, + ¢; = 2} (f7,) + w; + Bv;. Then consider
the minimum distance estimator

—~ !/ o~
~ ~ . Ty — Bme \ 5.1 ( Ty — BTa
<Bnmd,ﬂ'z7nmd> = arg mm( Y ) V Y ,

B, Ty — Ty Tg — Tg
where V = Var (( T, T, )/> If V is a valid variance estimator under conditional
homoskedasiticy only, Bnmd is equal to the LIML estimator, see Goldberger and Olkin
(1971). If V is a robust variance estimator, 3,,,, is the CU-GMM estimator, see the dis-

cussion in Windmeijer (2018). Other recent approaches to minimum distance estimation

are Sglvsten (2017) and Kolesar (2018).

3 Multiple Endogenous Variables
Consider next the multiple endogenous variables model
yi = 70 + w;,
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where x; is a k, vector of endogenous variables. There are k, > k, instruments z;
available. Let X be the n x k, matrix of explanatory variables, with [-th column x;, then

the 2SLS estimator is obtained as

323l5 = arg mblnS (b)
S) = (y—Xb) Pz (y— XD)

and is given by

B2sls - (X/PZX)_l X,PZ:I/'

An MD estimator could of course be obtained here in similar fashion to the one-
variable case above, from (,’;) sets of just-identifying instruments and a generalized in-
verse for the now rank deficient variance matrix Q. Calculating the variance matrix under
conditional homoskedasticity leads again to equivalence of the 2SLS and MD estimators.

However, more interesting results can be derived for the 2SLLS and MD estimators of
the individual coefficients 3;, [ = 1, .., k,. Denote by )?,l the I-th column of X , and let
X_; be the k, — 1 columns of X , excluding X ;. The 2SLS estimator for B, is given by

~ ~ ~\ 1 ~
Brosis = (X‘/ZMX,ZXJ) X./ZM)?,ly
= (@@) 'y (9)
where for a general n x k matrix A, M, = I,, — P4, with I,, the identity matrix of order
n, and
T=Mg X, (10)

kr—kz+1
t=1

Let {7}

all instruments have been included. For example, {Z M = (2, ..., zt+kx_1)}

be a collection of k, — k, + 1 sets of k, instruments Z¥ such that

ko ko1
“h

a set. From these sets, we get k, — k, + 1 just identified IV estimates 5 of 5. Let

Bl,m = (BF) be the (k, — k, + 1)-vector of the individual estimates of ;. Let

is such

)?[ﬂ = Pz[t]X,

and X _[lt] and X E}l defined analogously to above. The elements of Bl,ind are then given by

A[t

] > s\ ! o
B = (X" Mg X)X Mgy
-1
_ (ﬁtpﬂt]) ﬁt}/y’
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fort=1,....,k, — k; + 1, where
#l = Mg Xt (11)
Hence,
Bz,md = 51_155;% (12)
with
X, = (f}”, z}kz—kw“l)
and D; = diag (’:El[t]lfxvl[tg, t=1,...k, — k, + 1. From (12) and the proof of Proposition
2 below, it follows that /n (ﬁfl)?{y — Lﬁ) = \/ﬁﬁfl)zl’u Hence, the variance of Bz,md
under conditional homoskedasticity can be specified as
Var <Bz,md> = o2
O, = D7'X|X,Di".
The MD estimator for 3, is then obtained as
Bl,md = arg mbin Qi (b) ;
Qi (b) = (El,ind - Lb>,§f1 (Bz,md - Lb)

where ¢ is here a k, — k, + 1 vector of ones. mad is therefore given by

e N1 o NTY
<L'Dl <X{Xl> Dzb) /' Dy <X5/Xl> Dlﬁz,md

Bl,md
~ -1~ TP N
_ <L/Dl (XZ’XZ> DZL) /D, (XZ’XZ> Xly. (13)
The next proposition establishes the equivalence of Bl,2sls and Bl,md for il =1,... k,.
Proposition 2 Forl=1,...,k,, let BZ,QSZS, Bl,md and /Bl,md be as defined in (9), (12) and

(18) respectively, with Bl,md based on a collection of k, — k, + 1 sets of k, instruments

{Z[t]}f;kﬁl that contains all instruments. Then Eusls = Elmd forl=1, .. k,.
Proof. From the definitions of 7; and Elm in (10) and (11) respectively, it follows that
75l = 4 (PZ — PX L (X PyX ) XL,PZ)
* <sz — Py X (X'_lemX—z)fl X'_le[ﬂ) T

—1
= (PZ[t] — Py X_y (X! Py X)) Xl_lpz[t]> 2

_ $Ef£ﬂ _ fl[t]/gl[t]

)
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fort=1,....k, — k, + 1, and hence
L,jjl = .,’11\3'/;5(:[
Therefore, from (13),
~ -1
Bima = (.T;P)}ZLEO x;P;(ly.

kr—kz+1

1 contain all &, instruments, it follows that z; is

As the sets of instruments {Z [t]}
in the column space of X 1, and so Pg, x; = x;. Therefore,
~ 1 ~
Bl,md = (xf:cl) xgy = 51,2sz$7
forl=1,....k,. m
Next, consider the Sargan test statistic, given by

Sar (Baue) = 5.°5 (Baas) - (14)

~\2
where 52 = LD <yz — xéﬂws) . Under the null Hy : E (z;u;) = 0, standard regularity
conditions and conditional homoskedasticity, Sar <Z§2515> N Xb. e, -

Consider the MD statistics
MD (Byyna) =5.°Q (Bima) - (15)

for I =1,....k,. Let (3, = plim (Bl’md>, then M D (Bl,md> N Xiz—kw under the null
Hy : Biina = 1B;, but as 52 has to be a consistent estimator of o2, the maintained

assumptions are that =1f,for s=1,....k;, s # L.

sind
The following proposition states the equivalence of Sar (Bzm) and M D </Bl,md> for
I=1,.. k.

Proposition 3 Let Sar (Bzm) and M D (@l,md) be defined as in (14) and (15), then
Sar (BQSIS) =MD <Bl,md) fOT = 1, R ]{,'x

Proof. As X' <y — ngs) =0, Bmsls = Bl7md, and defining y = My  Pzy, it follows

11



that

S (B2sls> =

(= XBau) Pz (v~ XBau)

(v~ 1Brate = X iB_raae) PaMg Pr (4= 5o = X 1B1aa,)
= (y — @By m) (ﬂ - 515;,25@

(7 - Fhiau) Pr, (7 - i)

(D' X5 - Dy Xlxlﬁlmd) D (X

(Buina = Bruma) ™ (Brina = Buma
= Q (Bima)

-1 s~ -~
X> D, <Df1Xlg_ DlelilBl,md)
and hence Sar <stzs> =MD <Bl,md> forl=1,..,k,. m

As for the single-endogenous variable case, these results can be extended to the two-

step GMM and robust MD estimators.
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