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1 Introduction

The development by Stock & Yogo (2005), hereafter SY, of a quantitative definition

of weak instruments, based on either IV estimator bias or Wald test size distortion,

has had a significant impact on econometric practice. Their idea was to relate the

first-stage F -statistic (or, when there are multiple endogenous regressors, the Cragg-

Donald (1993) statistic) to a non-centrality parameter that, in turn, was related to

the aforementioned estimator bias or test size distortion. In this way they were

able to use this F -statistic to test whether instruments were weak. That such tests

have become part of the toolkit of many practitioners is evidenced by the fact that

critical values for the SY tests are available within standard computer software, such

as Stata (StataCorp, 2015) when using the intrinsic ivregress command or the

ivreg2 package (Baum et al., 2010). The difficulty in the SY approach is that, in

order to compute appropriate critical values, it is necessary to evaluate a complicated

integral as an intermediate step. SY did this by Monte Carlo simulation and the

tables of critical values they provided are widely used in practice.

In this paper we focus on the two-stage least squares (2SLS) bias representation

of weak instruments for the single endogenous variable case. We show that for this

case, the integral mentioned above need not be estimated by simulation methods as it

can be solved analytically and evaluated numerically using the intrinsic functions of

software such as Matlab (MathWorks, 2016). This result, Theorem 1, is presented

in the next section, in which we also provide complete details of the model in question

and the problem to be addressed.

From a empirical perspective there are two important consequences of Theorem 1.

First, it allows us to examine the accuracy of the SY critical values that have become

so important in empirical research. For the most part these critical values concord

reasonably well with those that we derive analytically, although the most substantial

differences occur in regions that we would argue are of practical significance. Second,

it is now straightforward to generate more extensive sets of critical values, something
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that we do in Table 1 (also in Section 2). In particular, we extend the SY tables to

include the kz = 2 case, where kz is the number of instruments. The SY tables do

not start until kz = 3, which is an especially stringent requirement in practice, as

finding valid instruments can be extraordinarily difficult in many applications.

From a theoretical perspective, Theorem 1 provides a foundation that allows us

to explore analytically certain patterns that exist in the SY tables, something that

can only be alluded to on the basis of simulation results. These cases are explored in

Section 3 of the paper, although much of the theoretical development underlying the

discussion is relegated to Appendix C. In order to establish the results of Appendix

C, it proved necessary to derive a number of properties of confluent hypergeometric

functions. These results are developed in Appendix B and represent a contribution

to the theory of confluent hypergeometric functions that is of independent interest.

To further support the discussion of Section 3, we present in Section 4 some Monte

Carlo simulation results, where we explore the sampling distributions of the F -

statistics in relation to the bias of the 2SLS estimator relative to that of the OLS

estimator, for the kz = 2 and kz = 3 cases.

Key to the development of Theorem 1 is the expectation of the ratio of a bilinear

form in perfectly correlated normally distributed random variables, that differ only

in their means, to a quadratic form in one of these same random variables, which is

of some independent interest. We note in passing that the problem could be re-cast

as one involving the expectation of a ratio of quadratic forms in normal variables,

although in this form the normal variables have a singular distribution and both

the numerator and the denominator weighting matrices are also singular, with the

numerator weighting matrix asymmetric. This observation explains the difficulty

in evaluating the integral analytically, but is also the reason that the expectation

ultimately has such a simple structure. This expectation is evaluated in Appendix A.

Given the recent statement on p-values issued by the American Statistical As-

sociation Board of Directors (Wasserstein & Lazar, 2016), it would be remiss of a
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paper such as this to be silent on the matter. In Section 5 we extend our discussion

to show how p-values can be readily calculated on the basis of our earlier results.

Final remarks appear in Section 6, including some comments on extending our

approach to more general situations than the case of a single endogenous regressor

that is the focus of our discussion in this paper.

2 An Analytic Development of Stock-Yogo

Consider the simple model

y = xβ + u, (1)

where y = [y1, . . . , yn]′, x = [x1, . . . , xn]′ and u = [u1, . . . , un]′ are n × 1 vectors,

with n the number of observations. The regressor x is assumed endogenous, so that

E [u|x] 6= 0. Other exogenous regressors in the model, including the constant, have

been partialled out.

We can implicitly define a set of instruments via the following linear projection

x = Zπ + v, (2)

where Z is an n×kz matrix of instruments (with full column rank), π a kz×1 vector

of parameters and v is an n× 1 error vector. In this model, kz − 1 is the degree of

over-identification. We assume that individual observations are independently and

identically distributed, and

ui
vi

 | zi ∼ (0,Σ) , with Σ =

 σ2
u σuv

σuv σ2
v

 , i = 1, 2, . . . , n,

where z′i denotes the ith row of Z. A test for H0 : π = 0 against H1 : π 6= 0, is the
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so-called first-stage F -statistic

F =
π̂′Z ′Zπ̂

kzσ̂2
v

H0−→
d

χ2
kz

kz
, (3)

where π̂ = (Z ′Z)−1Z ′x and σ̂2
v = n−1x′(In − Z(Z ′Z)−1Z ′)x. Here a large value of

the statistic is evidence against the null hypothesis, which is that the nominated

instruments are irrelevant.

Following Staiger & Stock (1997), we consider values of π local to zero, as π =

c/
√
n. We then obtain for the concentration parameter µ2

n,

µ2
n =

π′Z ′Zπ

σ2
v

−→
p

c′Qzzc

σ2
v

≡ µ2,

where Qzz = E [ziz
′
i] = plimn→∞ n

−1Z ′Z is positive definite by assumption. We see

that kzF is a sample analogue of µ2. With this formulation the testing problem

previously discussed is equivalent to that of testing H ′0 : µ2 = 0 against H ′1 : µ2 >

0. Rather than testing for the irrelevance of instruments, SY characterised weak

instruments as a situation where µ2 was greater than zero but proximate to it.

Specifically, their testing problem can be thought of as H ′′0 : µ2 = µ2
0 > 0 against

H ′′1 : µ2 > µ2
0, for some suitably specified value of µ2

0. The statistic F is still a

natural one in this problem although, of course, the null distribution is no longer

the central distribution associated with µ2
0 = 0. Instead we have

F
H0−→
d

χ ′ 2
kz ,µ20

kz
, (4)

where χ ′ 2k,δ denotes a random variable following a non-central chi-squared distribution

with k degrees of freedom and non-centrality parameter δ ≥ 0.1 Let

χα = χ ′ 2kz ,µ20
(1− α)

1Some references specify the non-centrality parameter for a non-central chi-squared distribution
as δ, whereas others specify it as δ/2. We have adopted the former convention here.
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denote the (1 − α)100th quantile of a non-central chi-squared distribution with kz

degrees of freedom and non-centrality parameter µ2
0. Then the relevant size α critical

region is {
F : F > cvα =

χα
kz

}
, (5)

where χα can be obtained, for given µ2
0 and kz, as the solution to either of the

equations

1− α = e−µ
2/2

∞∑
j=0

(µ2/2)j

2kz/2+jj! Γ
(
kz
2

+ j
) ∫ χα

0

e−s/2skz/2+j−1 ds (6a)

= e−µ
2/2e−χα/2

(
χα
2

)kz/2 ∞∑
j=0

(χαµ
2/4)j

j! Γ
(
kz+2
2

+ j
) 1F 1

(
1; kz+2

2
+ j; χα

2

)
, (6b)

where 1F 1(·; ·; ·) denotes a confluent hypergeometric function (Slater, 1960). Al-

though (6a) is standard (e.g. Johnson et al., 1995, equation (29.2)), somewhat

surprisingly, we have been unable to find (6b) elsewhere in the literature and so

it may be a new representation for the cumulative distribution function (cdf) of a

non-central chi-square distribution, one in the spirit of Venables (1971) (see John-

son et al., 1995, p.438, Equation (29.11)’).2 The distinguishing feature is that the

representation involves confluent hypergeometric functions (1F 1’s) rather than ex-

pressing the distribution in terms of modified Bessel functions, which can themselves

be represented in terms of generalised hypergeometric functions (Slater, 1966) with

no numerator parameters and only a single denominator parameter (0F 1’s), as seen

in the second member of Johnson et al. (1995, equation (29.4)).

The aspect of the SY approach that remains outstanding is the choice of µ2
0.

Their quantitative definition of the weakness of a set of instruments is couched in

terms of the impact that it has on inference. They provided two possible definitions

that variously reflect the known consequences of weak instruments for (i) estimation,

2To derive (6b), set t = s/2, say, and then express the incomplete gamma function as a confluent
hypergeometric function using the first member of NIST (2015, Equation 8.5.1) (with their z
replaced by our 1

2χα).
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through the bias of the estimator, and (ii) hypothesis testing, through the size of

the Wald test relative to its nominal size. It is the former that is in most common

use and the approach of interest here.3

In particular, SY relate the bias of the 2SLS estimator of β, β̂2SLS, relative to

that of the ordinary least squares estimator of β, β̂OLS, to the first-stage F -statistic

by showing that they are both related to µ2. A value for µ2, denoted µ2
0, is then

chosen to allow a certain level of relative bias. Specifically, let Bn denote the relative

bias. Then, provided kz ≥ 2, so that the bias of 2SLS exists,

|Bn| =

∣∣∣∣∣∣
E
[
β̂2SLS

]
− β

E
[
β̂OLS

]
− β

∣∣∣∣∣∣ ,
and

lim
n→∞

|Bn| =
∣∣∣∣E [(ξ − λ0)′ξ

ξ′ξ

]∣∣∣∣ ≡ |B|, (7)

where ξ ∼ N (λ0, Ikz). The test for weak instruments then proceeds as follows:

1. The practitioner chooses a value for |B|, e.g. |B| = 0.1, if an asymptotic

relative bias of less than 10% is deemed acceptable.

2. Given kz and |B|, µ2
0 = λ′0λ0 is obtained on solving (7).

3. Given µ2
0, critical values for F can be determined, which are proportional to

those of the non-central chi-squared distribution as specified in (4).

4. The null of weak instruments is then rejected for sufficiently large values of

the first-stage F -statistic, and we conclude that |B| is no larger than the value

chosen in Step 1 above.

The difficulty in the procedure just described is that, at Step 2, there is an

integral that must be evaluated as part of a search for µ2
0. SY do this using a 20,000

draw Monte Carlo simulation. This is unnecessary as the integral can be solved

analytically. The result is summarized in the following theorem.

3The exact details of these arguments can be found in SY and will not be repeated here.
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Theorem 1. If B is as defined in equation (7) then, provided kz ≥ 2,

B = 1F 1

(
1;
kz
2

;−µ
2
0

2

)
> 0. (8)

Proof. The result follows immediately from Theorem A.1, in Appendix A, which

establishes the equality, and Corollary B.1.1, of Appendix B.1, which establishes

the inequality.

Theorem 1 allows the use of efficiently programmed intrinsic functions in readily

available software, such as Matlab (MathWorks, 2016), at each step of a search for

µ2
0 rather than having to estimate an integral by simulation.4 For the special case

of kz = 2,

1F 1

(
1;
kz
2

;−µ
2
0

2

)
= exp

{
−µ

2
0

2

}
, (9)

making evaluation of the expression especially simple.

Using our result, we provide in Table 1 an extended version of that panel of

SY Table 5.1 corresponding to a single endogenous variable, which is the set of

critical values most commonly used. We note that SY start their tables at kz = 3

even though, following the arguments of Kinal (1980), finite biases will exist for all

kz ≥ 2. As this is a practically relevant case we include it in Table 1.

Where Table 1 overlaps with SY (Table 5.1), we are able to provide an indication

of the difference made by the analytical evaluation of the expectation in (7). As

shown in Table 2, the differences are typically small, with the largest differences

when kz and B are themselves small, which we would argue is the most important

case in practice.5

4In the absence of such intrinsic functions, computational aspects of hypergeometric functions
are discussed in Johansson (2016).

5We have also computed simulated critical values from 20,000 random draws as in SY, but
repeating the exercise 1000 times. The resulting mean critical values are virtually identical to
those in Table 1, with the maximum difference being 0.02.
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Table 1: 5% Critical values (cvSW0.05) for single endogenous regressor, 2SLS bias

kz \B 0.01 0.05 0.1 0.15 0.2 0.25 0.3
2 11.57 9.02 7.85 7.14 6.61 6.19 5.83
3 46.32 13.76 9.18 7.52 6.60 5.96 5.49
4 63.10 16.72 10.23 7.91 6.67 5.88 5.32
5 72.55 18.27 10.78 8.11 6.71 5.82 5.19
6 78.59 19.19 11.08 8.21 6.70 5.75 5.09
7 82.75 19.79 11.25 8.25 6.67 5.69 5.01
8 85.78 20.20 11.36 8.26 6.64 5.63 4.93
9 88.07 20.49 11.42 8.25 6.60 5.58 4.87
10 89.86 20.70 11.46 8.24 6.56 5.52 4.81
11 91.30 20.86 11.49 8.22 6.53 5.48 4.76
12 92.47 20.99 11.50 8.20 6.49 5.43 4.71
13 93.43 21.08 11.50 8.17 6.46 5.39 4.67
14 94.25 21.16 11.50 8.15 6.42 5.36 4.63
15 94.94 21.22 11.49 8.13 6.39 5.32 4.59
16 95.54 21.26 11.49 8.11 6.36 5.29 4.56
17 96.05 21.30 11.48 8.08 6.34 5.26 4.53
18 96.50 21.33 11.46 8.06 6.31 5.23 4.50
19 96.09 21.35 11.45 8.04 6.29 5.21 4.47
20 97.25 21.37 11.44 8.02 6.26 5.18 4.45
21 97.56 21.39 11.43 8.00 6.24 5.16 4.43
22 97.84 21.40 11.41 7.98 6.22 5.14 4.40
23 98.09 21.41 11.40 7.96 6.20 5.12 4.38
24 98.32 21.41 11.39 7.94 6.18 5.10 4.36
25 98.53 21.42 11.38 7.93 6.16 5.08 4.35
26 98.71 21.42 11.36 7.91 6.15 5.06 4.33
27 98.88 21.42 11.35 7.90 6.13 5.05 4.31
28 99.04 21.42 11.34 7.88 6.11 5.03 4.30
29 99.18 21.42 11.32 7.87 6.10 5.02 4.28
30 99.31 21.42 11.31 7.85 6.08 5.00 4.27

3 Some Further Consequences of Theorem 1

Theorem 1 allows us to prove a variety of further results that can only be speculated

about on the basis of simulation results. These results are discussed below, with

proofs relegated to Appendix B.

Remark 1. Implicit in Theorem 1, and a consequence of Theorem B.1 (see Corol-

lary B.1.1), is the observation that whenever kz ≥ 2, OLS and 2SLS are always

asymptotically biased in the same direction, making the absolute value function of
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Table 2: Differences: cvSW0.05 − cvSY0.05

kz \B 0.05 0.10 0.20 0.30
3 0.15 −0.10 −0.14 −0.10
4 0.13 0.04 0.04 0.02
5 0.10 0.05 0.06 0.06
6 0.09 0.04 0.06 0.06
7 0.07 0.04 0.06 0.07
8 0.05 0.03 0.05 0.06
9 0.04 0.04 0.05 0.05
10 0.04 0.03 0.05 0.05
11 0.04 0.01 0.03 0.04
12 0.02 0.02 0.04 0.04
13 0.02 0.02 0.03 0.04
14 0.02 0.02 0.03 0.04
15 0.01 0.02 0.03 0.04
16 0.02 0.01 0.03 0.03
17 0.01 0.01 0.02 0.03
18 0.01 0.02 0.02 0.03
19 0.01 0.01 0.02 0.04
20 0.01 0.01 0.02 0.03
21 0.00 0.01 0.02 0.03
22 0.00 0.01 0.02 0.03
23 0.00 0.01 0.02 0.03
24 0.00 0.01 0.02 0.03
25 0.00 0.00 0.02 0.02
26 0.00 0.01 0.01 0.02
27 0.00 0.01 0.01 0.03
28 0.00 0.02 0.02 0.02
29 0.00 0.01 0.01 0.03
30 0.00 0.01 0.01 0.02

Note: The values of cvSY0.05 are taken from Stock & Yogo (2005, Table 5.1).

|B| in (7) redundant.

Remark 2. The values of the relative biases of β̂2SLS and β̂OLS are explored in

Figure 1 for different values of the parameters kz and µ2/2. The figure illustrates

that, for kz ≥ 2, the function is increasing in its argument, which is −µ2/2. This

result is established analytically in Theorem B.2. Note also that, as µ2 → 0, the

information in the instruments approaches zero, and so the local-to-zero asymptotic

bias of β̂2SLS approaches that of β̂OLS from below. Hence, the limit of the relative
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Figure 1: Plots of B = 1F 1

(
1; kz

2
;−µ2

2

)
against µ2

2
for kz = 2, 3 and 6.

asymptotic biases at µ2 = 0 is unity, which is the value of 1F 1

(
1; kz

2
; 0
)
.

Remark 3. Certain patterns in Table 1 are readily established, as illustrated by

the following result.6

Theorem 2. The critical values cvα, presented in Table 1, are decreasing functions

of B for given kz.

Proof. See Appendix C.2.

Heuristically, Theorem 2 states that the critical values will necessarily decrease

as one moves from left to right across any given row of Table 1; that is, the critical

values decrease as the practitioner is willing to accept increasing amounts of 2SLS

bias relative to that of OLS. The intuition behind the results is as follows. An

increase inB for fixed kz implies, by Theorem B.2, that the argument of the confluent

6Theorem 2 is similar in spirit to Das Gupta & Perlman (1974, p.180, Remark 4.1), although
they only address the numerator of the ratio in equation (5). Consequently, Das Gupta & Perlman
are silent on the relative magnitudes of χα and kz which, in essence, is the content of Theorem 2.
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hypergeometric function in (8) must increase, i.e. that µ2/2 must decrease. As µ2

approaches zero, the non-central chi-squared distribution from which critical values

are drawn approaches a central chi-squared and the corresponding quantiles become

smaller. Hence, as one moves across columns from left to right in Table 1, the cvα

become smaller.

Theorem 2 explains the row behaviour of Table 1. Explaining the column be-

haviour is much more complicated. Observation suggests the following to be true.

Conjecture. For given B, the critical values cvα, presented in Table 1, are increas-

ing functions of kz up to some value, k say, whereafter they are decreasing functions

of kz. k is a decreasing function of B.

Some intuition for the Conjecture is available from the definition of cvα, see (5),

if one considers the impact of increasing the number of instruments by one, from

kz to kz + 1, with superscripts ‘0’ and ‘1’ distinguishing the two cases, respectively.

For given B and α,

cv1α − cv0α T 0 as
χ1
α − χ0

α

χ0
α

T
1

kz
.

k is then that value of kz after which the cvα start diminishing.

Remark 4. Although B does not exist when kz = 1, the confluent hypergeomet-

ric function of Theorem 1 remains well-defined. In Appendix E we analyse the

properties of 1F 1

(
1; 1

2
;−µ2

2

)
.

4 Some Monte Carlo Results

We follow Sanderson & Windmejer (2016) and specify the model is as in (1) and

(2), with β = 1 and ui
vi

 ∼ N


0

0

 ,
 1 0.5

0.5 1


 .
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Table 3: Simulation results for kz = 3 and kz = 2

B
0.01 0.05 0.10 0.20

kz = 3 mean st dev mean st dev mean st dev mean st dev

β̂OLS 1.4950 0.0086 1.4989 0.0087 1.4994 0.0087 1.4997 0.0087

β̂2SLS 1.0054 0.0998 1.0241 0.2222 1.0506 0.3161 1.1025 0.4276
F 34.713 6.7626 8.0336 3.1828 4.7849 2.3952 3.0948 1.8630
rel bias 0.0108 0.0482 0.1014 0.2052
µ2
0/kz 33.674 7.0445 3.7754 2.0902

cv F 46.316 13.765 9.1815 6.5960
rej freq F 0.0515 0.0505 0.0508 0.0511
kz = 2 mean st dev mean st dev mean st dev mean st dev

β̂OLS 1.4996 0.0087 1.4997 0.0087 1.4997 0.0087 1.4998 0.0087

β̂2SLS 1.0056 0.4398 1.0256 0.7195 1.0519 0.9651 1.0981 1.1404
F 5.6124 3.1989 4.0004 2.6492 3.2963 2.3746 2.6011 2.0502
rel bias 0.0111 0.0513 0.1039 0.1962
µ2
0/kz 4.6052 2.9957 2.3026 1.6094

cv F 11.572 9.0232 7.8521 6.6087
rej freq F 0.0509 0.0507 0.0505 0.0498

Notes: Sample size n = 10, 000, number of Monte Carlo replications is 100,000.

The instruments in Z are kz independent standard normally distributed random

variables and π = (cBkzιkz) /
√
n, where ιkz is a kz vector of ones, and with cBkz

chosen such that the relative bias B is equal to 0.01, 0.05, 0.10 or 0.20, for values

of kz = 3 and kz = 2. The sample size n = 10, 000 and the results are presented in

Table 3 for 100,000 Monte Carlo replications.

For kz = 3, the results are exactly in line with the theory: the Monte Carlo

relative biases are equal to B and the rejection frequencies of the first-stage F -test

are 5% at the 5% nominal level, using the critical values reported in Table 1.

The results for kz = 2 are also in line with the theory, although we see here that

the standard deviations of β̂2SLS are much larger than those of the kz = 3 case at the

same values of B. This is due to the fact that the information needed to obtain the

same relative bias is much smaller for the kz = 2 case than for the kz = 3 case , as

reflected by their smaller µ2
0/kz values, but it also reflects the problem that the sec-

ond moment does not exist when the degree of over-identification is equal to 1. The
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interquartile ranges for the 2SLS estimator when kz = 2 are 0.3296, 0.4170, 0.4811

and 0.5570 for B = 0.01, 0.05, 0.10 and 0.20, respectively. These Monte Carlo results

therefore confirm our theoretical findings for the kz = 2 case. Clearly some caution

should be exercised when working with 2SLS in this case because it possesses no

second moment.

5 p-Values

p-values are readily available as a straightforward extension of our earlier analysis.

Specifically, from (4) we have the limiting result

kz × F
H0−→
d
χ ′ 2kz ,µ20

. (10)

For any particular sample value of the F -test, say F̂ , if X ∼ χ ′ 2
kz ,µ20

then the p-value

for the SY weak instruments test considered in this paper is simply Pr
(
X ≥ kz × F̂

)
.

Of course, the problem here is the determination of µ2
0. Table 4 reports those values

of µ2
0/kz that were calculated in order to construct Table 1. For those values of B

considered in Table 1, we now have the parameters kz and µ2
0/kz. Consequently,

any computer software that can evaluate a non-central chi-squared cdf can readily

calculate p-values for the test for weak instruments considered here.

6 Final Remarks

The main contribution of this paper has been to resolve analytically an integral as

a special function, obviating the need to resolve it by simulation. This integral is of

independent interest in the theory of ratios of quadratic forms in normal variables.

Here it is of primary interest because it provides a functional relationship between

the bias in the 2SLS estimator and the limiting sampling distribution of a test

statistic that SY proposed for testing the presence of weak instruments, when the
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Table 4: Values for µ2
0/kz corresponding to Table 1

kz \B 0.01 0.05 0.1 0.15 0.2 0.25 0.3
2 4.605 2.996 2.303 1.897 1.609 1.386 1.204
3 33.674 7.045 3.775 2.677 2.090 1.706 1.426
4 50.000 10.000 5.000 3.329 2.483 1.960 1.599
5 59.799 11.793 5.784 3.774 2.761 2.144 1.724
6 66.332 12.991 6.315 4.081 2.958 2.277 1.816
7 70.998 13.848 6.696 4.304 3.102 2.375 1.885
8 74.498 14.491 6.982 4.472 3.212 2.450 1.938
9 77.221 14.992 7.205 4.604 3.298 2.510 1.980

10 79.398 15.392 7.384 4.709 3.367 2.558 2.014
11 81.180 15.720 7.531 4.796 3.424 2.597 2.043
12 82.665 15.993 7.653 4.868 3.471 2.630 2.066
13 83.922 16.224 7.756 4.929 3.511 2.658 2.086
14 84.999 16.423 7.845 4.981 3.546 2.682 2.104
15 85.932 16.594 7.922 5.027 3.576 2.703 2.119
16 86.749 16.745 7.989 5.067 3.602 2.721 2.132
17 87.470 16.877 8.048 5.102 3.626 2.738 2.144
18 88.110 16.995 8.101 5.133 3.646 2.752 2.154
19 88.683 17.101 8.148 5.161 3.665 2.765 2.163
20 89.199 17.196 8.191 5.186 3.681 2.777 2.172
21 89.666 17.281 8.229 5.209 3.697 2.787 2.179
22 90.090 17.360 8.264 5.230 3.710 2.797 2.186
23 90.477 17.431 8.296 5.249 3.723 2.806 2.193
24 90.833 17.496 8.326 5.266 3.734 2.814 2.198
25 91.159 17.556 8.353 5.282 3.745 2.821 2.204
26 91.461 17.612 8.377 5.297 3.755 2.828 2.209
27 91.740 17.663 8.400 5.311 3.764 2.834 2.213
28 91.999 17.711 8.422 5.323 3.772 2.840 2.217
29 92.241 17.755 8.442 5.335 3.780 2.846 2.221
30 92.466 17.797 8.460 5.346 3.787 2.851 2.225

null of weak instruments is true. Analysis of this special function provides theoretical

foundations for the remarks of Section 3, which explore patterns observed in Table

1 as the parameters B and kz vary. This analysis required the derivation of certain

results that are of independent interest in the theory of confluent hypergeometric

functions. A final contribution of the paper is to explore the problem of p-values of

the aforementioned test for weak instruments, on the basis of our earlier theoretical

developments. We provide information such that any computer software than can

evaluate a non-central chi-squared cdf can readily compute p-values in essentially
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all practical circumstances.

Relative to what SY provided, there are some things that we have not done and

they merit further comment. First, one aspect of the SY tables that we have not

addressed relates to those tables based on size distortions of a Wald statistic. This

is a much more difficult analytical problem than has been addressed here and it is

not clear that there is much benefit in tackling it as, in our estimation, the bias

tables are in much more frequent use, making them of greater practical relevance.

Second, in the results presented here, we have restricted attention to the case of a

single endogenous regressor. It is possible to extend our results to the more general

case, however, the outcome involves invariant polynomials with multiple matrix

arguments, sometimes referred to as Davis polynomials, which are computationally

troublesome.7 Also, the SY results for multiple endogenous variable cases are only

approximate and provide upper bounds on critical values for the Cragg-Donald

minimum eigenvalue test. This is due to the fact that the SY analysis is for the

full matrix of first-stage parameters Π being local to zero. In contrast, Sanderson

& Windmejer (2016) define weak identification as the rank of Π being local to a

rank reduction of one. For these asymptotics, the single endogenous variable results

apply, only the degrees of freedom need to be adjusted for the number of endogenous

variables, see Sanderson & Windmejer (2016) for details.

Finally, in support of the results presented in the paper we provide two Matlab

programs on an ‘as is’ basis. The first of these, Table1.m, provides the body of Table

1. The second program, entitled sypval.m, provides p-values. Appendix D provides

some discussion on the contents of these programs. The programs are available at

https://sites.google.com/site/skeelscv/.

7Some progress towards addressing the computational aspects of these polynomials has been
made by Hillier et al. (2009, 2014).
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A The Expectation of a Particular Function of

Normal Random Variables

Theorem A.1. Suppose that ξ ∼ N (λ, Ik). Then,

E

[
(ξ − λ)′ξ

ξ′ξ

]
=


1F 1

(
1;
k

2
;−µ

2

2

)
, k ≥ 2,

diverges, k = 1,

where µ2 = λ′λ.

Proof. The proof is in two parts. First, we establish conditions under which the

expectation exists, which proves to be when k > 1. Second, we evaluate the expec-

tation in this case.

(i) Existence

Let E(ξ;λ) = (ξ − λ)′ξ/ξ′ξ. The existence of E [E(ξ;λ)] requires the existence of

some finite constant C such that E [|E(ξ;λ)|] ≤ C. Observe that

|E(ξ;λ)| =
∣∣∣∣1− λ′ξ

ξ′ξ

∣∣∣∣ ≤ 1 +
|λ′ξ|
ξ′ξ
≤ 1 + (µ2)1/2

(ξ′ξ)1/2

ξ′ξ
= 1 +

(
µ2

ξ′ξ

)1/2

.

Hence,

E [|E(ξ;λ)|] ≤ 1 + (µ2)1/2 E
[
(ξ′ξ)−1/2

]
.

Next, write

E
[
(ξ′ξ)−1/2

]
=

exp{−µ2/2}
(2π)k/2

∫ ∞
−∞

exp

{
−ξ
′ξ

2

}
(ξ′ξ)−1/2 exp {λ′ξ} dξ,

where
∫∞
−∞ f(ξ) dξ denotes the k-fold integral,

∫∞
−∞ . . .

∫∞
−∞ f(ξ1, . . . , xk)

∏k
i=1 dξi

with ξi the ith element of ξ. In accord with Herz (1955, Lemma 1.4), we can

decompose almost all k-vectors ξ into ξ = hr1/2, where h = ξ(ξ′ξ)−1/2, so that
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h′h = 1, and r = ξ′ξ > 0, with volume elements

dξ = 2−1r(k−2)/2 dh dr. (A.1)

This is essentially a transformation to polar coordinates. The resulting expression

is

E
[
(ξ′ξ)−1/2

]
=

exp{−µ2/2}
2(2π)k/2

∫
r>0

∫
h′h=1

exp
{
−r

2

}
r(k−3)/2 exp

{
r1/2λ′h

}
dh dr,

almost everywhere. The integral with respect to h is readily evaluated using Hillier

et al. (1984, Equation (6)):

∫
h′h=1

exp
{
r1/2λ′h

}
dh =

2πk/2

Γ
(
k
2

) 0F 1

(
k

2
;
µ2r

4

)
. (A.2)

Making this substitution we obtain

E
[
(ξ′ξ)−1/2

]
=

exp{−µ2/2}
2k/2Γ

(
k
2

) ∫
r>0

exp
{
−r

2

}
r(k−3)/2 0F 1

(
k

2
;
µ2r

4

)
dr,

where the integral a variant of the well-known Laplace transform of a generalised

hypergeometric function; see for example (NIST, 2015, Equation 16.5.3).8 The

Laplace transform will be convergent provided (k−1)/2 > 0⇒ k > 1, in which case

1

Γ
(
k
2

) ∫
r>0

exp
{
−r

2

}
r(k−3)/2 0F 1

(
k

2
;
µ2r

4

)
dr

= 2(k−1)/2
1F 1

(
k − 1

2
;
k

2
;
µ2

2

)
. (A.3)

8All the references to NIST (2015) are also available online at http://dlmf.nist.gov by adding
the equation number with the final digit prepended by ‘E’ instead of a decimal point. Thus, NIST
(2015, Equation 16.5.3) is available at http://dlmf.nist.gov/16.5E3, and so on. Similarly,
http://dlmf.nist.gov/16.2 and http://dlmf.nist.gov/16.2.ii are the URL’s of Section 16.2
and Section 16.2(ii), respectively.

20

http://dlmf.nist.gov/16.5E3
http://dlmf.nist.gov
http://dlmf.nist.gov/16.5E3
http://dlmf.nist.gov/16.5E3
http://dlmf.nist.gov/16.2
http://dlmf.nist.gov/16.2.ii


Consequently, we have established that, for k > 1,

E [|E(ξ;λ)|] ≤ 1 + exp{−µ2/2}(µ2/2)1/2 1F 1

(
k − 1

2
;
k

2
;
µ2

2

)
= 1 + (µ2/2)1/2 1F 1

(
1

2
;
k

2
;−µ

2

2

)
,

where the final equality is an application of Kummer’s transformation (NIST, 2015,

Equation 13.2.39), and so E [E(ξ;λ)] exists as the confluent hypergeometric function

is known to be convergent for all finite values of its parameters and argument (Slater,

1966, p.45).

In the event that k = 1, we see that E [E(ξ;λ)] reduces to 1− λE [ξ−1]. But the

expectation of the inverse of of a Normal random variable is known not to exist, see

for example Piegorsch & Casella (1985, Example 2.2), which completes our existence

results.

(ii) Expectation when k > 1

The development of the expectation is very similar to the process of determining its

existence. Given the normality assumption on ξ and assuming that k ≥ 2, we can

write

E

[
(ξ − λ)′ξ

ξ′ξ

]
=

exp{−λ′λ/2}
(2π)k/2

∫ ∞
−∞

[
1− λ′ξ

ξ′ξ

]
exp

{
−ξ
′ξ

2

}
exp {λ′ξ} dξ = I (say).

Make the transformation to polar coordinates in accord with (A.1) to obtain

I =
exp{−λ′λ/2}

2(2π)k/2

∫
r>0

exp{−r/2}r(k−2)/2

×
{∫

h′h=1

exp{λ′hr1/2} dh− r−1
∫
h′h=1

λ′hr1/2 exp{λ′hr1/2} dh

}
dr.

Next, write

λ′hr1/2 exp{λ′hr1/2} =
d exp

{
(1 + t)λ′hr1/2

}
dt

∣∣∣∣∣
t=0

and evaluate the integrals over h′h = 1 using (A.2). This yields, on replacing λ′λ
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by µ2,

I =
exp{−µ2/2}

2k/2Γ
(
k
2

) ∫
r>0

exp
{
−r

2

}
r(k−2)/2

×
{

0F 1

(
k

2
;
µ2r

4

)
− r−1

[
d

dt 0F 1

(
k

2
;
(1 + t)2µ2r

4

)]
t=0

}
dr,

where pF q(a1, . . . , ap; b1, . . . , bq; ξ) denotes a generalized hypergeometric function .

Finally, differentiating with respect to t, using say NIST (2015, Equation 16.3.1),

evaluating the derivative at t = 0, and then resolving the resulting Laplace trans-

forms using (A.3) yields

I = exp{−µ2/2}
[
1F1

(
k

2
;
k

2
;
µ2

2

)
− µ2

k 1F 1

(
k

2
;
k + 2

2
;
µ2

2

)]
= exp{−µ2/2} 1F 1

(
k − 2

2
;
k

2
;
µ2

2

)
(A.4)

= 1F 1

(
1;
k

2
;−µ

2

2

)
,

where the second last equality exploits one of the relationships for contiguous conflu-

ent hypergeometric functions (NIST, 2015, Equation 13.3.4) and the final equality

is another application of Kummer’s transformation. This completes the proof.

B Some Useful Properties of Confluent Hyperge-

ometric Functions

In this appendix we establish some properties of the confluent hypergeometric func-

tion that are used in the body of the paper. Specifically, we develop two results that

apply in quite general settings to the response of confluent hypergeometric functions

to changes in their argument when the numerator and denominator parameters are

held fixed. A third result is presented that applies to a confluent hypergeometric

function with specific parameter values that is of particular interest to this paper,
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the proof of which exploits the previously developed results.

B.1 Some Consequences for 1F 1 (a; b; s) as s Changes

Theorem B.1. If a > 0, b > 0, and s ≥ 0 then 1F 1 (a; b; s) ≥ 1.

Proof. Consider the series expansion of the confluent hypergeometric function (NIST,

2015, Equation 13.2.2):

1F 1 (a; b; s) =
∞∑
j=0

(a)j
(b)j

sj

j!
, (B.1)

where the Pochhammer symbol (α)j denotes the rising factorial function, a polyno-

mial of order j in a,9

α(α + 1)(α + 2) . . . (α + n− 1) = Γ(α + j)/Γ(α), (B.2)

and where Γ(α) denotes the usual Gamma function. For α > 0, (α)n > 0 follows

immediately from the left-hand side of (B.2).

From the positivity of (α)n for all 0 < α < ∞, it follows that if a > 0, b > 0,

and s > 0 then 1F 1 (a; b; s) is an infinite sum of positive terms, with the first term

in the sum being equal to unity. Given that the series converges absolutely to some

finite number (see, for example, Slater, 1966, p.45), it must be that the value of the

series is some number greater than unity.

If s = 0 then the series on the right-hand side of (B.1) terminates at n = 0,

whereupon 1F 1 (a; b; 0) = 1, which completes the proof.

Corollary B.1.1. If b ≥ a > 0 but s < 0 then 0 < 1F 1 (a; b; s) ≤ 1.

Proof. Positivity: If s < 0, Kummer’s transformation yields es 1F 1 (b− a; b;−s).

Then es > 0 for all −∞ < s < ∞ and, if b > a, 1F 1 (b− a; b;−s) > 0 by

Theorem B.1, whereas, if b = a, the series terminates after the first term and

so 1F 1 (0; b;−s) = 1 > 0.

9Important special cases of this function are (a)0 = 1, including (0)0 = 1, and (1)j = j!. A
useful collection of results on (a)j can be found in Slater (1966, Appendix I).
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Upper Bound: If b ≥ a > 0 then (b− a)j ≤ (b)j for all j = 1, 2, 3, . . . Conse-

quently, for s < 0,

1F 1 (b− a; b;−s) = |1F 1 (b− a; b;−s)| ≤
∞∑
j=0

∣∣∣∣∣(b− a)j
(b)j

sj

j!

∣∣∣∣∣ ≤
∞∑
j=0

∣∣∣∣sjj!
∣∣∣∣ = e|s|,

where the first equality follows from the positivity of the confluent hypergeometric

function and the second inequality follows because b ≥ a > 0 ⇒ (b− a)j ≤ (b)j.

Hence, es 1F 1 (b− a; b;−s) ≤ 1.

Theorem B.2. If b ≥ a > 0 then 1F 1 (a; b; s) is an increasing function of s.

Proof. We need to establish that the derivative 1F 1 (a; b; s) with respect to s is

everywhere positive. It is well-known (NIST, 2015, Equation 16.3.1) that

d

ds 1F 1 (a; b; s) =
a

b 1F 1 (a+ 1; b+ 1; s) . (B.3)

Clearly, a/b > 0, as b ≥ a > 0 by assumption. Similarly, by Theorem B.1,

1F 1 (a+ 1; b+ 1; s) ≥ 1 for s ≥ 0. Consequently, 1F 1 (a; b; s) is an increasing func-

tion of s under these conditions.

Now suppose that s < 0, which we will represent as s = −w, w = |s|. By

Kummer’s transformation (NIST, 2015, Equation 13.2.39)

1F 1 (a+ 1; b+ 1;−w) = e−w 1F 1 (b− a; b+ 1;w) . (B.4)

The exponential function is positive for all −∞ < w < ∞ and, by Theorem B.1,

1F 1 (b− a; b+ 1;w) > 0, as b−a ≥ 0 by assumption. That is, d 1F 1 (a; b; s) / ds > 0

when s < 0. This completes the proof.

Theorem B.3. The function 1F 1

(
1; 1

2
;−s

)
is decreasing for 0 < s < s0, increasing

for s > s0, and is neither increasing nor decreasing for s = s0, where s0 ≈ 2.2559.

Proof. Differentiating the function with respect to s and then applying Kummer’s
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transformation yields

d

ds 1F 1

(
1;

1

2
;−s

)
= −2 1F 1

(
2;

3

2
;−s

)
= −2e−s 1F 1

(
−1

2
;
3

2
; s

)
.

Hence,

d

ds 1F 1

(
1;

1

2
;−s

)
= −2e−s

∞∑
j=0

(
−1

2

)
j(

3
2

)
j

sj

j!

= −2e−s

{
1− s

3

∞∑
j=1

(
1
2

)
j−1 (1)j−1

(2)j−1
(
5
2

)
j−1

sj−1

(j − 1)!

}

= −2e−s +
2se−s

3 2F 2

(
1

2
, 1; 2,

5

2
; s

)
,

where the second equality has used the identity j! = (1)j = (2)j−1. In particular,

d

ds 1F 1

(
1;

1

2
;−s

)
Q 0 as 2F 2

(
1

2
, 1; 2,

5

2
; s

)
Q

3

s

The zero of the derivative is s0 ≈ 2.2559; 1F 1

(
1; 1

2
;−s0

)
≈ −0.2847. For s > 0, the

hypergeometric function is an increasing function of s, whereas 3/s is a decreasing

function of s, hence there can be at most one such zero; see Figure B.1. It follows

that 1F 1

(
1; 1

2
;−s

)
is decreasing for 0 < s < s0 and increasing for s > s0.

B.2 Some Consequences for 1F 1 (a; b; s) as b Changes

Let us now turn to the behaviour of confluent hypergeometric functions as the

denominator parameter changes.

Theorem B.4. If s > 0 then, for b > m, m = 1, 2, 3, . . ., 1F 1 (m; b;−s) is an

increasing function of b.

Proof. Observe that

d

db 1F 1 (m; b;−s) = e−s
d

db 1F 1 (b−m; b; s) = e−s
∞∑
j=0

sj

j!

d

db

(b−m)j
(b)j

,
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)

and y = 3
s
.

where the first equality follows from Kummer’s transformation and the second from

(B.1). Noting that (Ancarani & Gasaneo, 2008, Equation (4))

d (τ)j
dτ

= (τ)j [Ψ(τ + j)−Ψ(τ)] ,

where Ψ(τ)Γ(τ) = dΓ(τ)/ dτ defines the psi function, and then using the recursion

(Abramowitz & Stegun, 1964, Equation 6.3.6)

Ψ(τ + j) = Ψ(τ) +

j−1∑
p=0

1

τ + p
,

we find that

d

db

(b−m)j
(b)j

=

[
d (b−m)j

db
(b)j − (b−m)j

d (b)j
db

] [
(b)j

]−2
=

(b−m)j
(b)j

{[Ψ(b−m+ j)−Ψ(b−m)]− [Ψ(b+ j)−Ψ(b)]}

=
(b−m)j

(b)j

m−1∑
p=0

[
1

b−m+ p
− 1

b−m+ j + p

]
.

=
(b−m)j

(b)j

m−1∑
p=0

1

b−m+ p

[
1−

(b−m+ p)j
(b−m+ p+ 1)j

]
.
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Thus,

d

db 1F 1 (m; b;−s) =
m−1∑
p=0

e−s

b−m+ p
[1F 1 (b−m; b; s)

− 2F 2 (b−m, b−m+ p; b, b−m+ p+ 1; s)] . (B.5)

This representation of the derivative depends crucially upon the assumption that

m is integer valued. Alternate representations, based on 1F 1 (m; b;−s) directly, can

be obtained from Ancarani & Gasaneo (2008, Equations (6b) and (16)), with (B.5)

closest in spirit to the former.

The derivative can be signed by first noting that

1F 1 (b−m; b; s) = 2F 2 (b−m, b−m+ p+ 1; b, b−m+ p+ 1; s)

whence it follows, on writing νj(b−m, p) = (b−m)j /
[
(b)j (b−m+ p+ 1)j

]
, that

1F 1 (b−m; b; s)− 2F 2 (b−m, b−m+ p; b, b−m+ p+ 1; s)

=
∞∑
j=0

νj(b−m, p)sj

j!

[
(b−m+ p+ 1)j − (b−m+ p)j

]
=
∞∑
j=0

νj(b−m, p)sj (b−m+ p+ 1)j−1 j

j!

=
(b− 1)s

b(b−m+ p+ 1)

×
∞∑
j=1

(b−m+ 1)j−1 (b−m+ p+ 1)j−1
(b)j−1 (b−m+ p+ 2)j−1

sj−1

(j − 1)!

=
(b− 1)s

b(b−m+ p+ 1)

× 2F 2 (b−m+ 1, b−m+ p+ 1; b+ 1, b−m+ p+ 2; s) .

Given the assumptions on the parameters, the hypergeometric function is larger
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than unity. Hence

d

db 1F 1 (m; b;−s) =
m−1∑
p=0

(b− 1)se−s

b(b−m+ p)(b−m+ p+ 1)

× 2F 2 (b−m+ 1, b−m+ p+ 1; b+ 1, b−m+ p+ 2; s) (B.6)

>

m−1∑
p=0

(b− 1)se−s

b(b−m+ p)(b−m+ p+ 1)
> 0,

which completes the proof.

C Analysis of Table 1

C.1 Preliminaries

In this appendix we analyse how the critical values cvα, presented in Table 1, change

in response to changes in one of either kz or B when the other is held fixed; that

is, as one either moves down columns of the table or across rows, from left to right,

respectively. From equation (5),

cvα =
χα
kz
, (C.1)

with χα the solution to the equation

1− α =

∫ χα

0

f(s | kz, µ2) ds, (C.2)

where f(s | kz, µ2) denotes the density function of a non-central chi-squared random

variable; specifically

f(s | kz, µ2) = e−µ
2/2

∞∑
j=0

(µ2/2)j

j!2(kz+2j)/2Γ
(
kz+2j

2

)e−s/2s(kz+2j−2)/2

=
∞∑
j=0

κj(kz, µ
2) e−s/2s(kz+2j−2)/2, (C.3)
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where

κj(kz, µ
2) =

e−µ
2/2(µ2/2)j

j!2(kz+2j)/2Γ
(
kz+2j

2

) . (C.4)

The parameter µ2 is chosen to satisfy

B = 1F 1

(
1;
kz
2

;−µ
2

2

)
. (C.5)

By Corollary B.1.1, the absolute values can be ignored as the confluent hypergeo-

metric function is positive for all µ2 ≥ 0 whenever kz ≥ 2, which shall be assumed

for the rest of this appendix unless indicated otherwise.

C.2 The Consequence of Varying B for Fixed kz ≥ 2

With kz held fixed we have, from (C.1),

dcvα
dB

=
1

kz

dχα
dµ2

/
dB

dµ2
(C.6)

First, from (B.3) and Theorem B.4 (with m = 2),

dB

dµ2
=

dB

d(−µ2/2)

d(−µ2/2)

dµ2
= − 1

kz
1F 1

(
2;
kz + 2

2
;−µ

2

2

)
< 0, (C.7)

for all µ2 and kz. Second, using Leibniz’s Rule for the differentiation of integrals,

we can differentiate both sides of (C.2) with respect to µ2 to obtain,

0 =

∫ χα

0

∂f(s | kz, µ2)

∂µ2
ds+ f(χα | kz, µ2)

dχα
dµ2

⇒ dχα
dµ2

= − 1

f(χα | kz, µ2)

∫ χα

0

∂f(s | kz, µ2)

∂µ2
ds. (C.8)

Note that (C.8) implicitly assumes 0 < χα < ∞, so that 0 < α < 1. In the event

that either χα = 0 or χα is infinite, then f(s | kz, µ2) = 0, as does its derivative

with respect to µ2, making the representation (C.8) invalid. Indeed, as these cases
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are on the boundaries of support of a non-central chi-squared random variable, the

ordinary derivative is not well-defined and so the approach taken above would require

modification. For this reason, hereafter, we shall assume that 0 < α < 1.

From (C.3), the integrand in (C.8) is (Cohen, 1988, Equation (2))

∂f(s | kz, µ2)

∂µ2
=

1

2

[
f(s | kz + 2, µ2)− f(s | kz, µ2)

]
.

Integrating by parts allows us to write

∫ χα

0

e−s/2s(kz+2j)/2 ds =

[
−2e−s/2s(kz+2j)/2

]χα
0

+ (kz + 2j)

∫ χα

0

e−s/2s(kz+2j−2)/2 ds

= −2e−χα/2χ(kz+2j)/2
α + (kz + 2j)

∫ χα

0

e−s/2s(kz+2j−2)/2 ds,

and so (C.8) becomes

dχα
dµ2

= − 1

2f(χα | kz, µ2)

∞∑
j=0

{
κj(kz + 2, µ2)

[
−2e−χα/2χ(kz+2j)/2

α

+ (kz + 2j)

∫ χα

0

e−s/2s(kz+2j−2)/2 ds

]
− κj(kz, µ2)

∫ χα

0

e−s/2s(kz+2j−2)/2 ds

}
=
f(χα | kz + 2, µ2)

f(χα | kz, µ2)

−
∞∑
j=0

κj(kz + 2, µ2)(kz + 2j)− κj(kz, µ2)

2f(χα | kz, µ2)

∫ χα

0

e−s/2s(kz+2j−2)/2 ds

=
f(χα | kz + 2, µ2)

f(χα | kz, µ2)
> 0, (C.9)

as κj(kz +2, µ2)(kz +2j)−κj(kz, µ2) = 0. The positivity of the ratio follows because

each of the functions f are values of non-central chi-squared density functions which

differ only in their degrees of freedom, kz versus kz + 2 respectively, and so are both

everywhere positive for all 0 < χα <∞, as is assumed above. As an aside, we know

that as degrees of freedom increase for given µ2 these functions cross, which means

that sometimes f(χα | kz, µ2) > f(χα | kz + 2, µ2) and sometimes the converse is

true. That is, we are unable to bound dχα/ dµ2 from above.
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Combining (C.6), (C.7), and (C.9), we find that

dcvα
dB

= − f(χα | kz + 2, µ2)

f(χα | kz, µ2) 1F 1

(
2; kz+2

2
;−µ2

2

) < 0, (C.10)

which confirms the behaviour observed in Table 1. That is, for given values of kz,

the critical values cvα are decreasing functions of the asymptotic bias B.

D Some Remarks on Computational Aspects

For the most part, both the programs Table1.m and sypval.m rely on intrinsic Mat-

lab functions. Once the relevant inputs are available then the structure of the

programs is immediately apparent. Specifically, for given values of kz and B, it is

necessary to obtain the corresponding value for µ2
0 from the non-linear equation (8).

We adopt a fairly simple-minded approach to this, by iterating from a starting value

to the correct solution using a bisection algorithm.

Our starting values are chosen as follows. When kz = 2, we know from (9) that

the values of µ2
0 can be calculated exactly as µ2

0 = −2 lnB and so no search is re-

quired. When kz > 2 we exploit an approximation asymptotic in µ2
0 (Slater, 1960,

equation (4.1.8)) that reduces to µ2
0 ≈ (kz − 2)/B. As expected, the performance

of the approximation improves as B decreases which, for fixed kz, corresponds to

increasing µ2
0 (see Appendix C.2). Nevertheless, for all cases where kz > 2, this ap-

proximation provides much better starting values in the search for µ2
0 than do naive

alternatives, such as starting the search from zero (say). Moreover, this approxima-

tion performs best under exactly the same circumstances that naive methods are

at their slowest, affording considerable computational time savings. As the values

of µ2
0/kz are much more stable for any given B than are the µ2

0, as can be deduced

from Table 4, we use this parameterisation in our search algorithm.
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E Some Remarks on the kz = 1 Case

The SY approach is not available if kz = 1 because the bias of 2SLS does not exist,

hence |B| is undefined.10 Nevertheless, given the difficulties often encountered in

finding appropriate instruments, the exactly identified model is one of considerable

practical relevance. As the confluent hypergeometric function of Theorem 1 remains

well-defined when kz = 1, one might ask if it could provide an ad hoc basis for a

test for weak instruments in this case, based on F , in the spirit of the SY approach.

The function 1F 1

(
1; 1

2
;−µ2

2

)
displays behaviours that are quite different to what

was observed in over-identified models. These behaviours are displayed in Figure

E.1 where we plot both the confluent hypergeometric function and its absolute value

against µ2/2, when kz = 1. Note that in the figure we use the symbol B to represent

the confluent hypergeometric function 1F 1

(
1; 1

2
;−µ2

2

)
, rather than the expectation

E [(ξ − λ)′ξ/ξ′ξ], with the latter unbounded when kz = 1.

In Figure E.1 we see that neither B nor |B| are monotonic in µ2/2 when kz = 1,

in contrast to the over-identified cases. This lack of monotonicity is established in

Theorem B.3. That the confluent hypergeometric function can take negative values

when kz = 1 means that this case is the only one considered where taking the

absolute value of the hypergeometric function has any material impact on observed

behaviour. We can establish numerically that B, and hence |B|, both have a zero

at µ2/2 ≈ 0.8540. As this is in the region where the hypergeometric function is a

decreasing value of its argument (Theorem B.3), we see that as B moves through

its zero to the right, so that µ2 is increasing, it becomes negative and appears to

stay that way, with a minimum of approximately −0.2847 occurring at µ2/2 ≈

2.2559. Clearly |B| cannot become negative and so, at µ2/2 ≈ 2.2559, it has a

local maximum of approximately 0.2847. Consequently, there are three values of µ2

that yield the same value of |B| for 0 < |B| < 0.2847, there are two values of µ2

10Similarly, in the proof of Theorem A.1, we established that E [(ξ − λ0)′ξ/ξ′ξ] was unbounded
when kz = 1.
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Figure E.1: Plots of B = 1F 1

(
1; 1

2
;−µ2

2

)
and its absolute value against µ2

2
.

corresponding to |B| = 0.2847, and for |B| ∈ {0} ∩ (0.2847, 1] there is a one-to-one

mapping between |B| and µ2 <∞.

Observe in Figure E.1 that there are 3 values of µ2 corresponding to |B| = 0.1.

Setting µ2
0 = 13.83, the largest of these numbers, we find a critical value for the

first-stage F -test of 28.77. At this level of information, the 2SLS estimator appears

well-behaved. This is shown in Table E.1, which shows the estimation result of a

Monte Carlo analysis as in Section 4 for kz = 1. Even though it has no moments

as the model is just-identified, we find that the Monte Carlo relative bias is indeed

10% with the rejection frequency of the F -test again 5%. The same holds at the

smaller values of |B| of 0.05 and 0.01, for which the largest implied values of µ2
0

are 23.41 and 103.06, with the estimation results very similar to those for kz = 3.

However, when we consider the |B| = 0.20 case, for which µ2
0 is 8.198, the lack of

moments of the 2SLS estimator becomes apparent, with the standard deviation now

very large at 6.05. These results suggest that the approximation might be useful for
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Table E.1: Simulation results for kz = 1

B
-0.01 -0.05 -0.10 -0.20

mean st dev mean st dev mean st dev mean st dev

β̂OLS 1.4949 0.0086 1.4988 0.0086 1.4993 0.0086 1.4996 0.0087

β̂2SLS 0.9954 0.1003 0.9753 0.2327 0.9495 0.4389 0.8936 6.0492
F 104.11 20.411 24.429 9.8352 14.821 7.5732 9.1757 5.8671
relbias -0.0092 -0.0496 -0.1011 -0.2130
µ2
0 103.06 23.412 13.830 8.198

cv F 139.17 42.035 28.769 20.323
rej freq F 0.0496 0.0507 0.0485 0.0489

Notes: Sample size n = 10, 000, number of Monte Carlo replications is 100,000.

the smaller values of |B|, if one works with the largest implied values of µ2
0, even

though the 2SLS estimator does not possess any moments in this case.

Confirming the approximate median unbiasedness of the just-identified 2SLS

estimator, see for example the discussion in Angrist & Pischke (2009, p.209), we

find that the median biases, not reported in the table, are very close to 0 at all

values of µ2.
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