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Abstract

The Two-Sample Two-Stage Least Squares (TS2SLS) data combination estimator
is a popular estimator for the parameters in linear models when not all variables are
observed jointly in one single data set. Although the limiting normal distribution
has been established, the asymptotic variance formula has only been stated explic-
itly in the literature for the case of conditional homoskedasticity. By using the fact
that the TS2SLS estimator is a function of reduced form and first-stage OLS esti-
mators, we derive the variance of the limiting normal distribution under conditional
heteroskedasticity. A robust variance estimator is obtained, which generalises to
cases with more general patterns of variable (non-)availability. Stata code and
some Monte Carlo results are provided in an Appendix. Stata code for a nonlinear
GMM estimator that is identical to the TS2SLS estimator in just identified models
and asymptotically equivalent to the TS2SLS estimator in overidentified models is
also provided there.
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1 Introduction

The Two-Sample Two-Stage Least Squares (TS2SLS) estimator was introduced by Klev-

marken (1982) and applies in cases where one wants to estimate the effects of possibly

endogenous explanatory variables x on outcome y, but where y and x are not observed

in the same data set. Instead, one has observations on outcomes y and instruments z

in one sample (sample 1) and on x and z in another (sample 2). Related Two-Sample

IV (TSIV) estimators were proposed by Arellano and Meghir (1992) and Angrist and

Krueger (1992). Furthermore, Angrist and Krueger (1995) proposed the TS2SLS esti-

mator as a Split-Sample IV (SSIV) estimator. Inoue and Solon (2010) show that the

TS2SLS estimator is more effi cient than the TSIV estimator of Angrist and Krueger

(1992). For further details, see Angrist and Pischke (2009) and the review of Ridder and

Moffi tt (2007).

This type of data combination estimation method is popular in economics. It is for ex-

ample used in research on intergenerational mobility, as earnings of different generations

are often not observed in the same data set, see the extensive list of references in Jerrim,

Choi and Rodriguez (2014). A further recent application is Van den Berg, Pinger and

Schoch (2015), who investigate the effect of early-life hunger on late-life health and use

the two-sample IV approach to deal with imperfect recollection of conditions early in life.

Pierce and Burgess (2013) propose the use of the TS2SLS estimator in epidemiology, in

particular when estimating the causal relationship between an exposure and an outcome

using genetic factors as instrumental variables, so-called Mendelian randomisation, and

where obtaining complete exposure data may be diffi cult due to high measurement costs.

Under certain assumptions, as stated below, the TS2SLS estimator is consistent and

has a limiting normal distribution, see e.g. Klevmarken (1982) and Inoue and Solon

(2010). Here we derive the limiting distribution of the TS2SLS estimator under general,

unspecified, forms of conditional heteroskedasticity. As the TS2SLS estimator is a simple

function of the reduced form parameters for y in sample 1, and the first-stage parameters

for x in sample 2, its asymptotic variance is a function of the variances and covariances

of these OLS estimators.

The variance of the limiting normal distribution of the TS2SLS estimator is given in

(10) below and the formula for a robust estimator of the asymptotic variance is presented
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in (12). Neither of these have been derived and/or proposed in the literature before. The

result in Inoue and Solon (2010) for the conditionally homoskedastic case is similar to

our result for that case. They derive the limiting variance of the TS2SLS estimator from

the optimal nonlinear GMM estimator. For overidentified models, these two estimators

are not the same, but they have the same limiting distribution. Inoue and Solon (2010)

did not derive the limiting robust variance for this GMM estimator, but did derive

the limiting variance of the effi cient two-step GMM estimator under general forms of

conditional heteroskedasticity in Inoue and Solon (2005), which is also the approach

presented in Arellano and Meghir (1992). Our derivation is different as we focus solely

on the TS2SLS estimator as defined below in (5). For the conditional homoskedastic

case, our variance estimator differs from the one proposed by Inoue and Solon (2010), as

it uses the information from the two samples differently.

Applied researchers have constructed robust standard errors for the just-identified

single endogenous regressor case by means of the delta method, see e.g. Dee and Evans

(2003). Our result can be seen as a generalisation of this method to situations with multi-

ple regressors and overidentification. Although we consider here a simple cross-sectional

setup, other sampling designs can be accommodated and the result is straightforwardly

extended to compute, for example, cluster-robust standard errors.

Our result also generalises to situations outside the standard TS2SLS setup. For

example, it can accommodate a model with three explanatory variables where one en-

dogenous variable is observed with the outcome variable in sample 1, but not in sample

2, one explanatory variable is only observed in sample 2 and one endogenous variable is

observed in both samples 1 and 2. This is discussed in Section 5 below and we present

Stata code for this example and for the standard TS2SLS setup in the Appendix.

In the next section we present the model, assumptions and the TS2SLS estimator. In

Section 3, we present our main results. Section 4 compares our results to those derived

for nonlinear GMM. The Appendix also presents Stata code for the GMM estimator.

2 Model, Assumptions and TS2SLS Estimator

The structural linear model of interest is given by

yi = x′iβ + εi, (1)
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but we cannot estimate this model as yi and xi are not jointly observed. Instead, we

have two independent samples. In sample 1 we have observations on y and kz exogenous

instruments z. Sample 2 contains observations on the kx explanatory variables x and z.

Denoting by subscripts 1 and 2 whether the variables are observed in sample 1 or sample

2, in the first sample we observe {y1i, z′1i} for i = 1, ..., n1, and in the second sample

we observe
{
x′2j, z

′
2j

}
for j = 1, ..., n2. Throughout we assume that kz ≥ kx. Other

explanatory variables that enter model (1), but that are observed in both samples and

are exogenous, including the constant, have been partialled out.

The TS2SLS estimator is derived as follows. From the information in sample 1, we

can estimate the reduced form model for y1i, given by

y1i = z′1iπy1 + u1i. (2)

From sample 2, we can estimate the linear projections

x2j = Π′x2z2j + v2j, (3)

with Πx2 = E
(
z2jz

′
2j

)−1
E
(
z2jx

′
2j

)
, a kz × kx matrix of rank kx by assumption. As (3)

is a linear projection, it follows that E
(
z2jv

′
2j

)
= 0. Although the x1i are not observed,

the data generating process for y1i is given by the structural model (1) and hence it and

its reduced form are given by

y1i = x′1iβ + ε1i = (z′1iΠx1 + v′1i) β + ε1i

= z′1iΠx1β + ε1i + v′1iβ, (4)

with the linear projection parameters Πx1 = E (z1iz
′
1i)
−1E (z1ix

′
1i). Again, E (z1iv

′
i1) = 0.

From (2) and (4) it follows that πy1 = Πx1β and u1i = ε1i + v′1iβ. Clearly, knowledge of

πy1 and Πx1 identifies the structural parameters β, and the standard 2SLS estimator in a

sample with y1i, x1i and z1i all observed combines the information contained in the OLS

estimators for πy1 and Πx1, denoted by π̂y1 and Π̂x1 as follows

β̂2sls =
(

Π̂′x1Z
′
1Z1Π̂x1

)−1
Π̂′x1Z

′
1Z1π̂y1,

with Z1 the n1 × kz matrix [z′1i].

As x1i is not observed, we cannot estimate Πx1, but we can estimate Πx2 using the

second sample. Denoting the OLS estimator for Πx2 by Π̂x2, the Two-Sample 2SLS
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estimator is given by

β̂ts2sls =
(
X̂ ′1X̂1

)−1
X̂ ′1y1 =

(
Π̂′x2Z

′
1Z1Π̂x2

)−1
Π̂′x2Z

′
1y1

=
(

Π̂′x2Z
′
1Z1Π̂x2

)−1
Π̂′x2Z

′
1Z1π̂y1. (5)

We make the following assumptions:

A1: {y1i, z′1i}
n1
i=1 and

{
x′2j, z

′
2j

}n2
j=1

are i.i.d. random samples from the same population

with finite fourth moments and are independent.

A2: E (z1iz
′
1i) = Qzz1; E

(
z2jz

′
2j

)
= Qzz2. Qzz1 and Qzz2 are nonsingular.

A3: E (z1ix
′
1i) and E (z2ix

′
2i) both have rank kx.

A4: E (z1iε1i) = 0.

A5: E (u21iz1iz
′
i1) = Ωy1, a finite and positive definite matrix.

A6: E
[
(Ikx ⊗ z2j) v2jv′2j

(
Ikx ⊗ z′2j

)]
= E

(
v2jv

′
2j ⊗ z2jz′2j

)
= Ωx2, a finite and positive

definite matrix. Ikx is the identity matrix of order kx.

A7: limn1→∞,n2→∞
n1
n2

= α for some α > 0.

Assumptions A1-A3 and A7 are standard data combination assumptions, see e.g. In-

oue and Solon (2010). Assumptions A2 and A3, combined with A1, result in E (z1iz
′
1i) =

E
(
z2jz

′
2j

)
and E (z1ix

′
1i) = E (z2ix

′
2i), and hence Πx1 = Πx2. A1-A3 are clearly suffi cient,

but not necessary conditions for Πx1 to be equal to Πx2. The condition Πx1 = Πx2 itself

is suffi cient for consistency of β̂ts2sls, and necessary for the limiting normal distribution

of
√
n1

(
β̂ts2sls − β

)
to have a mean of zero. In the derivations below we do not (need

to) impose Qzz1 = Qzz2. The resulting estimator of the variance of β̂ts2sls is a simple

function of the variances of π̂y1 and vec
(

Π̂x2

)
, and this function is unambiguous about

which information from which sample is being utilised.

Assumptions A5 and A6 explicitly allow for general forms of heteroskedasticity. The

robust variance estimator for β̂ts2sls is obtained incorporating robust variance estimators

for π̂y1 and vec
(

Π̂x2

)
. This was done by Dee and Evans (2003) using the delta method

for the just identified single regressor case, i.e. kx = kz = 1. The result derived below

can be seen as a generalisation of this to multiple regressors and overidentified settings.
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3 Limiting Distribution and Variance Estimator

The OLS estimators for πy1 and Πx2 are given by

π̂y1 = (Z ′1Z1)
−1
Z ′1y1

Π̂x2 = (Z ′2Z2)
−1
Z ′2X2,

with Z1 the n1 × kz matrix [z′1i]; Z2 the n2 × kz matrix
[
z′2j
]
; y1 the n1 vector (y1i) and

X2 the n2 × kx matrix
[
x′2j
]
. Under Assumptions A1-A4 and A7 we obtain

plim (π̂y1) = E (z1iz
′
1i)
−1
E (z1ix

′
1i) β

= πy1 = Πx1β = Πx2β;

plim
(

Π̂x2

)
= E

(
z2jz

′
2j

)−1
E
(
z2jx

′
2j

)
= Πx2,

and hence the TS2SLS estimator is consistent as

plim
(
β̂ts2sls

)
= plim

(
1

n1
Π̂′x2Z

′
1Z1Π̂x2

)−1
1

n1
Π̂′x2Z

′
1Z1π̂y1

= (Π′x2Qzz1Πx2)
−1

Π′x2Qzz1πy1 = β. (6)

Note that the probability limits obtained here and the limiting distributions derived

below are for both n1 →∞ and n2 →∞.
For the derivation of the asymptotic distribution of β̂ts2sls, denote πx2 = vec (Πx2);

π̂x2 = vec
(

Π̂x2

)
; θ =

(
π′y1 π′x2

)′
and θ̂ =

(
π̂′y1 π̂′x2

)′
. Under Assumptions A1-A7

√
n1 (π̂y1 − πy1)

d−→ N
(
0, Vπy1

)
; (7)

√
n2 (π̂x2 − πx2)

d−→ N (0, Vπx2) , (8)

where

Vπy1 = Q−1zz1Ωy1Q
−1
zz1;

Vπx2 =
(
Ikx ⊗Q−1zz2

)
Ωx2

(
Ikx ⊗Q−1zz2

)
.

Hence
√
n1

(
θ̂ − θ

)
d−→ N (0, Vθ) , (9)

with

Vθ =

[
Vπy1 0

0 αVπx2

]
.
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From the limiting distribution of θ̂, the limiting distribution of β̂ts2sls is readily ob-

tained and we give a simple proof in the Appendix. Our main result is:

Under Assumptions A1-A7, the limiting distribution of β̂ts2sls is given by

√
n1

(
β̂ts2sls − β

)
d−→ N (0, Vβ) ;

Vβ = C
(
Vπy1 + α (β′ ⊗ Ikz)Vπx2 (β ⊗ Ikz)

)
C ′

= CVπy1C
′ + α (β′ ⊗ C)Vπx2 (β ⊗ C ′) , (10)

where

C = (Π′x2Qzz1Πx2)
−1

Π′x2Qzz1. (11)

We can obtain an estimator for the asymptotic variance of β̂ts2sls as follows. Let

V âr (π̂y1) and V âr (π̂x2) be estimators of the asymptotic variances of π̂y1 and π̂x2, in

the sense that plim (n1V âr (π̂y1)) = Vπy1 and plim (n2V âr (π̂x2)) = Vπx2 . Let Ĉ be the

matrix of least squares coeffi cients from the regressions of the columns of Z1 on X̂1. As

plim
(
Ĉ
)

= plim

((
X̂ ′1X̂1

)−1
X̂ ′1Z1

)
= C, an estimator of the asymptotic variance of

β̂ts2sls is given by

V âr
(
β̂ts2sls

)
= ĈV âr (π̂y1) Ĉ

′ +
(
β̂
′
ts2sls ⊗ Ĉ

)
V âr (π̂x2)

(
β̂ts2sls ⊗ Ĉ ′

)
, (12)

as

n1V âr
(
β̂ts2sls

)
= Ĉ (n1V âr (π̂y1)) Ĉ

′ +
n1
n2

(
β̂
′
ts2sls ⊗ Ĉ

)
(n2V âr (π̂x2))

(
β̂ts2sls ⊗ Ĉ ′

)
p−→ Vβ.

When the model is just identified, kz = kx, then Ĉ = Π̂−1x2 . When furthermore

kx = kz = 1, (12) reduces to the simple expression

V âr
(
β̂ts2sls

)
=
(
V âr (π̂y1) + β̂

2

ts2slsV âr (π̂x2)
)
/π̂2x2,

with β̂ts2sls = π̂y1
π̂x2
, which is identical to the expression obtained using the delta method

as in Dee and Evans (2003).

Specifying V âr (π̂y1) and V âr (π̂x2) in (12) as being robust to general forms of het-

eroskedasticity results in a robust variance estimator for β̂ts2sls. A small Monte Carlo
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exercise reported in the Appendix confirms that our asymptotic results reflect the be-

haviour of the TS2SLS estimator. Although we have here an i.i.d. cross-sectional setup,

the results generalise to e.g. cluster-robust variances straightforwardly.

4 GMM

Assuming conditional homoskedasticity for both u1i and v2j such that

E
(
u21i|z1i

)
= σ2u and E

(
v2jv

′
2j|z2j

)
= Σv,

we have that

Vπy1 = σ2uQzz1 and Vπx2 = Σv ⊗Q−1zz2,

and hence

Vβ = σ2u (Π′x2Qzz1Πx2)
−1

+ αβ′ΣvβCQ
−1
zz2C

′.

The variance estimator (12) is then

V âr
(
β̂ts2sls

)
= σ̂2u

(
X̂ ′1X̂1

)−1
+ β̂

′
ts2slsΣ̂vβ̂ts2slsĈ (Z ′2Z2)

−1
Ĉ ′, (13)

with σ̂2u = (y1 − Z1π̂y1)′ (y1 − Z1π̂y1) /n1 and Σ̂v =
(
X2 − Z2Π̂x2

)′ (
X2 − Z2Π̂x2

)
/n2.

Inoue and Solon (2010) derive Vβ from the limiting distribution of the optimal GMM

estimator using moment conditions

E [z1i (y1i − z′1iΠx2β)] = 0; (14)

E [z2j ⊗ (x2j − Π′x2z2j)] = 0, (15)

and weight matrix[
V âr (π̂y1) 0

0 V âr (π̂x2)

]
=

[
σ̂2u (Z ′1Z1)

−1 0

0 Σ̂v ⊗ (Z ′2Z2)
−1

]
.

Let ψ =
(
β′ π′x2

)′
, then this GMM estimator is the same as the minimum distance

estimator

ψ̃ = arg min
β,πx2

(
π̂y1 − Πx2β
π̂x2 − πx2

)′ [
(V âr (π̂y1))

−1 0

0 (V âr (π̂x2))
−1

](
π̂y1 − Πx2β
π̂x2 − πx2

)
.

Unless the model is just identified, β̃ 6= β̂ts2sls, but their limiting distributions are the

same. This is a situation similar to that of the LIML and 2SLS estimators in the standard
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IV model. When the model is overidentified, the TS2SLS estimator itself cannot be

obtained as a GMM estimator. The limiting variance of
√
n1

(
β̃ − β

)
is obtained from

the limiting variance of
√
n1

(
ψ̃ − ψ

)
. Inoue and Solon (2010) imposed Qzz1 = Qzz2 and

obtained the variance as

Vβ,IS =
(
σ2u + αβ′Σvβ

)
(Π′x2Qzz1Πx2)

−1

and their variance estimator is given by

V ârIS

(
β̂ts2sls

)
=

(
σ̃2u +

n1
n2
β̂
′
ts2slsΣ̂vβ̂ts2sls

)(
X̂ ′1X̂1

)−1
,

where σ̃2u =
(
y1 − X̂1β̂ts2sls

)′ (
y1 − X̂1β̂ts2sls

)
/n1. Apart from this difference in the

estimation of σ2u, the main difference is the imposition that Qzz1 = Qzz2. Although this is

justified asymptotically given the assumptions A1-A3, the finite sample variance of π̂x2 in

(12) is clearly more naturally estimated by Σ̂v⊗(Z ′2Z2)
−1 than by Σ̂v⊗

(
n2
n1
Z ′1Z1

)−1
. Also,

for the example in footnotes 3 and 2 in Inoue and Solon (2010) and (2005) respectively,

when E (z1ix
′
1i) = cE (z2jx2j)

′ and E (z1iz
′
1i) = cE (z2jz2j)

′, with c 6= 1, then the TS2SLS

estimator is consistent and asymptotically normally distributed but n1V ârIS
(
β̂ts2sls

)
is no longer a consistent estimator of the variance of the limiting distribution, whereas

n1V âr
(
β̂ts2sls

)
is.

Inoue and Solon (2010) did not derive the robust variance of β̃. Although this can

be obtained from the robust variance of ψ̃, the matrix expressions involved are quite

cumbersome. Arellano and Meghir (1992) similarly considered the robust variance of

the GMM estimator ψ̃ but also did not derive a variance estimator for β̃ separately.

One can of course simply obtain robust standard errors for ψ̃ and hence β̃ using GMM

routines that can estimate the parameters using the nonlinear and linear moment condi-

tions (14) and (15). These estimates are then obtained using iterative methods, and for

just-identified models this produces the TS2SLS estimator with robust standard errors.

For overidentified models, the effi cient two-step GMM estimator for ψ can then also be

obtained together with a Hansen test for the validity of the moment conditions. We

present Stata code for this GMM estimation procedure in the Appendix.
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5 Generalising the Result

Although we derived the results in Section 3 for the standard TS2SLS estimator, the

limiting distribution results (17) and (18) in the Appendix apply more generally. Indeed,

the only aspect in Vθ that is particular to this specific two-sample setup is the zero

covariance between π̂y1 and π̂x2, due to the samples being independent.

Consider as a generalisation a model with three explanatory variables x1, x2 and x3.

Using the same notational convention as before, in sample 1 we observe {y1i, x11i, x31i, z′1i}
n1
i=1.

In sample 2 we observe
{
x22j, x32j, z

′
2j

}n2
j=1
. In this case, x1 is only observed in sample 1, x2

is only observed in sample 2, whereas x3 is observed in both samples. Let Z =
(
Z ′1 Z ′2

)′
and x3 =

(
x′31 x′32

)′
, then the reduced form and first-stage OLS estimators are given

by

π̂y1 = (Z ′1Z1)
−1
Z ′1y1; π̂x11 = (Z ′1Z1)

−1
Z ′1x11

π̂x22 = (Z ′2Z2)
−1
Z ′2x22; π̂x3 = (Z ′Z)

−1
Z ′x3.

Let Π̂x =
[
π̂x11 π̂x22 π̂3

]
, then the two-sample IV estimator is given by

β̂2s =
(

Π̂′xZ
′
1Z1Π̂x

)−1
Π̂′xZ

′
1Z1π̂y1.

We differentiate this estimator from the standard two-sample setup above and reserve

the name β̂ts2sls for that particular setup. Under Assumptions A1-A7, the limiting dis-

tribution is as in (17), but as θ̂ =
(
π̂′y1 vec

(
Π̂x

)′ )
, the variance Vθ differs from the

standard setup as there is a different covariance structure. There are non-zero covariances

between π̂y1 and π̂x11; π̂x11 and π̂x3; and π̂x11 and π̂x3, whereas the covariances between

π̂y1 and π̂x22; and π̂x11 and π̂x22 are zero. From (18), an estimator for the asymptotic

variance is given by

V âr
(
β̂2s

)
=
(
δ̂
′
⊗ Ĉ

)
V âr

(
θ̂
)(

δ̂ ⊗ Ĉ ′
)
, (16)

where δ̂ =
(

1 −β̂
′
2s

)′
and Ĉ =

(
X̂ ′1X̂1

)−1
X̂ ′1Z1 =

(
Π̂′xZ

′
1Z1Π̂x

)−1
Π̂′xZ

′
1Z1.

For the standard TS2SLS setup and the more general structures, one can obtain the

robust variance estimates using standard routines. We give Stata code for two examples

in the Appendix. The structure of the algorithm for the general case is:
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1. Estimate the reduced form and first-stage parameters by OLS, obtain the predicted

values X̂1 and a robust variance estimate for θ̂ =
(
π̂′y1 π̂′x2

)′
, the matrix V âr

(
θ̂
)
. In

Stata, the latter can be obtained using the ‘gmm’or the ‘suest’routine.

2. Regress y1 on X̂1 to obtain the TS2SLS estimator.

3. Regress the columns of Z1 on X̂1 and collect the parameter estimates in the matrix

Ĉ.

4. Calculate V âr
(
β̂2s

)
by the matrix expression in (16).

5. Some adjustments have to be made when parameters on exogenous variables and the

constant are included in the estimation. These are detailed in the code in the Appendix.

6 Conclusions

In this note, we have derived the variance of the limiting normal distribution of the

Two-Sample Two-Stage Least Squares (TS2SLS) estimator under general, unspecified,

forms of heteroskedasticity, and have proposed a new robust variance estimator. This

estimator is a simple function of the robust variance estimates of the reduced-form and

first-stage OLS estimates in the two samples, and only requires linear projections for

its calculation. We provide Stata code for the calculation of the TS2SLS estimator and

its robust variance estimator in the Appendix. It is also straigthforward to obtain a

cluster-robust variance estimator.

Under conditional homoskedasticity, our variance estimator differs from the one de-

rived by Inoue and Solon (2010) in the way it uses the information from the two samples,

as, unlike Inoue and Solon (2010), we don’t impose plim
(
1
n1
Z ′1Z1

)
= Qzz1 = Qzz2 =

plim
(
1
n2
Z ′2Z2

)
in the derivation of the variance of the limiting distribution. Inoue and

Solon (2010) obtained the variance of the limiting distribution of the TS2SLS estimator

from that of an optimal nonlinear GMM estimator. This estimator is identical to the

TS2SLS estimator when the model is just identified, and is asymptotically equivalent

when the model is overidentified. We provide Stata code for this nonlinear GMM estima-

tor in the Appendix, naturally leading to an effi cient two-step GMM estimator and the

Hansen test for overidentification. We therefore provide the tools needed for estimation

and robust inference for this type of two-sample data combination analysis.
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A Appendix

A.1 Derivation of Limiting Distribution

The limiting distribution of β̂ts2sls can be obtained as follows, alternative methods like

the delta method or Newey (1984) give identical results. Rewrite the reduced form model

for y1i as

y1i = z′1iπy1 + u1i = z′1iΠx1β + u1i

= z′1iΠ̂x2β + u1i − z′1i
(

Π̂x2 − Πx1

)
β

= x̂′1iβ + u1i − z′1i
(

Π̂x2 − Πx2

)
β,

where the last equality holds as Πx2 = Πx1 by the assumptions. Then

β̂ts2sls =
(
X̂ ′1X̂1

)−1
X̂1y1

= β +
(
X̂ ′1X̂1

)−1
X̂ ′1

(
u1 − Z1

(
Π̂x2 − Πx2

)
β
)
,

where u1 is the n1 vector (u1i). For the limiting distribution,

√
n1

(
β̂ts2sls − β

)
=

(
1

n1
X̂ ′1X̂1

)−1
1
√
n1
X̂ ′1

(
u1 − Z1

(
Π̂x2 − Πx2

)
β
)
.

As

1
√
n1
X̂ ′1

(
u1 − Z1

(
Π̂x2 − Πx2

)
β
)

=
1
√
n1

Π̂′x2Z
′
1

(
u1 − Z1

(
Π̂x2 − Πx2

)
β
)

=
1
√
n1

Π̂′x2Z
′
1Z1

(
(Z ′1Z1)

−1
Z ′1u1 −

(
Π̂x2 − Πx2

)
β
)

= Π̂′x2

(
1

n1
Z ′1Z1

)(√
n1 (π̂y1 − πy1)−

√
n1

(
Π̂x2 − Πx2

)
β
)
,
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and (
Π̂x2 − Πx2

)
β = vec

((
Π̂x2 − Πx2

)
β
)

= (β′ ⊗ Ikz) vec
(

Π̂x2 − Πx2

)
= (β′ ⊗ Ikz) (π̂x2 − πx2) ,

it follows that

√
n1

(
β̂ts2sls − β

)
=

(
1

n1
X̂ ′1X̂1

)−1
Π̂′x2

(
1

n1
Z ′1Z1

)
(δ′ ⊗ Ikz)

√
n1

(
θ̂ − θ

)
,

where δ =
(

1 −β′
)′
.

As

plim

(
1

n1
X̂ ′1X̂1

)−1(
Π̂′x2

(
1

n1
Z ′1Z1

))
= (Π′x2Qzz1Πx2)

−1
Π′x2Qzz1 = C,

it follows that
√
n1

(
β̂ts2sls − β

)
d−→ N (0, Vβ) , (17)

where

Vβ = C (δ′ ⊗ Ikz)Vθ (δ ⊗ Ikz)C ′

= (δ′ ⊗ C)Vθ (δ ⊗ C ′) (18)

= C
(
Vπy1 + α (β′ ⊗ Ikz)Vπx2 (β ⊗ Ikz)

)
C ′

= CVπy1C
′ + α (β′ ⊗ C)Vπx2 (β ⊗ C ′) .

A.2 Some Monte Carlo Results

We generate data according to the standard setup for the TS2SLS estimator above. The

parameters in model (19) are set to β1 = 0.3, β2 = −0.1, βw = 0.1 and β0 = 0.2. Further,

wi ∼ N (0, 1), and

x1 = Zπ1 + wπw1 + π01 + v1

x2 = Zπ2 + wπw2 + π02 + v2

where Z =
[
z1 z2 z3

]
and zi ∼ N (0, I3). The parameters for x1 are given by

(0.4, 0.6,−0.2, 0.4, 0.2), those for x2 by (0.2,−0.2, 0.6, 0.4,−0.6). We draw

ui =

 u1i
u2i
u3i

 ∼ N

 0
0
0

 ,

 1 ρ1 ρ2
ρ1 1 ρ1ρ2
ρ2 ρ1ρ2 1


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with ρ1 = 0.3 and ρ2 = −0.2., and set εi = u1i
√

exp (γεz1), v1i = u2i
√

exp (z′iγ) and

v2i = u3i
√

exp (z′iγ).

The first design is homoskedastic and hence γε = 0 and γ = 0. The second design is

heteroskedastic, with γε = 1.5, and γ = (0.5, 0.8,−0.3)′. We standardise the n-vectors

ε, v1 and v2 such the square of their L2-norms are equal to n, where n = n1 + n2.

Estimation results for these two designs are presented in Table 1. Sample sizes are n1 =

500 and n2 = 1000 for both designs. Results are presented from 10,000 MC replications.

The table reports the means and standard deviations of the TS2SLS estimates for β1
and β2, the means of the non-robust and robust standard errors, plus the rejection

frequencies of the Wald tests, testing H0 : β1 = 0.3, and H0 : β2 = −0.1 respectively,

at the 5% nominal size. The results clearly show that the means of the robust standard

errors are very close to the standard deviation of the TS2SLS estimates for both designs,

whereas the non-robust standard errors underestimate the variability of the estimates in

the heteroskedastic design. This is reflected in the behaviour of the Wald tests. Those

based on the robust variance estimates have correct size, whereas those based on the

non-robust variance estimates overreject the null in the heteroskedastic design.

Table 1. Monte Carlo results for the TS2SLS estimator
Design mean std dev mean se mean rob se Wald rob Wald

Homoskedastic
β1 0.300 0.075 0.074 0.074 0.049 0.051
β2 -0.099 0.086 0.083 0.083 0.054 0.055

Heteroskedastic
β1 0.301 0.102 0.072 0.099 0.155 0.052
β2 -0.099 0.099 0.082 0.096 0.102 0.054

Notes: results from 10,000 MC replications. Rej. freq. of Wald tests at 5% nominal size.
Sample sizes n1= 500, n2= 1000

A.3 Stata Code

A.3.1 TS2SLS

In the first example, we want to estimate the following model

y = x1β1 + x2β2 + wβw + β0 + ε. (19)

We are in the standard setup for the TS2SLS estimator. In sample 1, we have observations

on the variables y, w, z1, z2 and z3. In sample 2, we have observations on the variables

14



x1, x2, w, z1, z2 and z3. Simple Stata syntax to compute the TS2SLS estimator and the

non-robust and robust standard errors is given below.

use sample2.dta, clear
gen const = 1

qui gmm (x1 - {xb1: z1 z2 z3 w const}) ///
(x2 - {xb2:z1 z2 z3 w const}), ///
instruments(1 2: z1 z2 z3 w) ///
winit(unadjusted,independent) onestep ///
deriv(1/xb1 = -1) ///
deriv(2/xb2 = -1)

mat Vx2het = e(V) /*Robust variance estimate of pix2*/

qui sureg (x1 x2 = z1 z2 z3 w )
mat Vx2hom = e(V) /*Non-robust variance estimate of pix2*/

use sample1.dta, clear

/*Generating predicted X*/
qui predict x1h, equation(x1)
qui predict x2h, equation(x2)

scalar kx = 2 /*Number of predicted variables, here x1 and x2*/
scalar ke = 2 /*Number of exogenous variables, here w and constant*/

qui reg y z1 z2 z3 w
mat Vy1hom = e(V)*e(df_r)/_N /*Non-robust variance estimate of piy1,*/

/*without degrees of freedom correction*/
qui reg y z1 z2 z3 w, rob
mat Vy1het = e(V)*e(df_r)/_N /*Robust variance estimate of piy1,*/

/*without degrees of freedom correction*/

/*TS2SLS estimator*/
qui reg y x1h x2h w
mat b2s = e(b)
mat b2sx = b2s[1,1..kx]’ /*Selecting beta for predicted X only*/

/*Constructing C hat*/
qui reg z1 x1h x2h w
mat ch = e(b)’
qui reg z2 x1h x2h w
mat ch = ch,e(b)’
qui reg z3 x1h x2h w
mat ch = ch,e(b)’
mat ch = ch,(J(kx,ke,0)\I(ke)) /*Adjusting ch for the exogenous variables*/

/*Calculating non-robust standard errors*/
mat var1hom = ch*Vy1hom*ch’ + (b2sx’ # ch)*Vx2hom*(b2sx # ch’)
mat seb2shom = vecdiag(cholesky(diag(vecdiag(var1hom))))’
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/*Calculating robust standard errors*/
mat var1het = ch*Vy1het*ch’ + (b2sx’ # ch)*Vx2het*(b2sx # ch’)
mat seb2shet = vecdiag(cholesky(diag(vecdiag(var1het))))’

/*Displaying the results*/
mat res = b2s’,seb2shom,seb2shet
mat colnames res = b_ts2sls se "rob se"
mat rownames res = x1 x2 w _cons
matlist res

A.3.2 A Generalisation

In the second example, we are interested in estimating the model

y = x1β1 + x2β2 + x3β3 + wβw + β0 + ε.

We now observe in sample 1 the variables y, x1, x3, w, z1, z2, z3 and z4. In sample 2

we observe the variables x2, x3, w, z1, z2, z3 and z4. The Stata code for computing the

Two-Sample estimator and the robust standard errors is as follows.

/*Merging Sample1 and Sample2 data on identifier id*/
use sample1.dta, clear
qui merge 1:1 id using sample2.dta

/*Generating Var(theta) and predicted X*/
qui reg y z1 z2 z3 z4 w
est store eqn_y
qui reg x1 z1 z2 z3 z4 w
est store eqn_x1
qui predict x1h
qui reg x2 z1 z2 z3 z4 w
est store eqn_x2
qui predict x2h
qui reg x3 z1 z2 z3 z4 w
est store eqn_x3
qui predict x3h

qui suest eqn_y eqn_x1 eqn_x2 eqn_x3

mat var = e(V)*(_N-1)/_N /*Robust variance estimate of theta*/
/*without degrees of freedom correction*/

/*Selecting rows and columns from var associated with theta*/
mata
kz = 6 /*Total number of instruments, here z1, z2, z3, z4, w and const*/
kyx = 4 /*Number of variables in X, here x1, x2 and x3, plus 1 for y*/
sel = range(1,kz,1)

16



j = 2
while (j<=kyx)
{
ss = range((j-1)*kz+j,j*kz+(j-1),1)
sel = sel\ss
j = j+1
}

var = st_matrix("var")
var = var[sel,sel]
st_matrix("Vthetahet",var)
end

/*Selecting Sample1 data and variables*/
/*to compute TS estimator and variance*/
drop if y==.
keep y x1h x2h x3h w z1 z2 z3 z4

scalar kx = 3 /*Number of predicted variables, here x1, x2 and x3*/
scalar ke = 2 /*Number of exogenous variables, here w and constant*/

/*TS Estimator*/
qui reg y x1h x2h x3h w
mat b2s = e(b)
mat b2sx = b2s[1,1..kx]’ /*Selecting beta for predicted X only*/

/*Constructing C hat*/
qui reg z1 x1h x2h x3h w
mat ch = e(b)’
qui reg z2 x1h x2h x3h w
mat ch = ch,e(b)’
qui reg z3 x1h x2h x3h w
mat ch = ch,e(b)’
qui reg z4 x1h x2h x3h w
mat ch = ch,e(b)’
mat ch = ch,(J(kx,ke,0)\I(ke)) /*Adjusting ch for the exogenous variables*/

/*Calculating robust standard errors*/
mat delta = 1\-b2sx
mat var1het = (delta’ # ch)*Vthetahet*(delta # ch’)
mat seb2shet = vecdiag(cholesky(diag(vecdiag(var1het))))’

/*Displaying the results*/
local names = "x1 x2 x3 w _cons"
mat colnames b2s = ‘names’
mat colnames var1het = ‘names’
mat colnames var1het = _:
mat rownames var1het = ‘names’
mat rownames var1het = _:

cap prog drop output2s
prog output2s, eclass

17



eret post b2s var1het
eret local depvar y
eret local vcetype Robust
eret dis
end

output2s

A.3.3 GMM

Stata code for the nonlinear GMM estimator for the example as in Section A.3.1.

use sample2.dta, clear
qui sureg (x1 x2 = z1 z2 z3 w)
mat Vpx2 = e(V)

use sample1.dta, clear
qui reg y z1 z2 z3 w
matrix Vpy1 = e(V)

/*vyvxmat is weightmatrix for optimal GMM estimator under conditional homoskedasticity*/
mat vyvxmat = Vpy1,J(rowsof(Vpy1),colsof(Vpx2),0)
mat vyvxmat = vyvxmat\(J(rowsof(Vpx2),colsof(Vpy1),0),Vpx2)

/*s1 is sample 1 identifier*/
gen s1 = 1

/*Merging Sample1 and Sample2 data on identifier id*/
/*No overlap in id here*/
qui merge 1:1 id using sample2.dta

/*s2 is sample 2 identifier*/
replace s1 = 0 if s1==.
gen s2 = 1-s1

/*setting values of y and x to zero in samples where missing*/
replace y = 0 if s2==1
replace x1 = 0 if s1==1
replace x2 = 0 if s1==1

/*instruments with different names for different samples, with zero values elsewhere*/
gen z11 = z1*s1
gen z12 = z1*s2
gen z21 = z2*s1
gen z22 = z2*s2
gen z31 = z3*s1
gen z32 = z3*s2
gen w1 = w*s1
gen w2 = w*s2

#delimit ;
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gmm (y - {b1}*({p11}*z11+{p12}*z21+{p13}*z31+{p1w}*w1+{p10}*s1)
- {b2}*({p21}*z11+{p22}*z21+{p23}*z31+{p2w}*w1+{p20}*s1)
- {bw}*w1-{b0}*s1)

(x1 - {p11}*z12-{p12}*z22-{p13}*z32-{p1w}*w2-{p10}*s2)
(x2 - {p21}*z12-{p22}*z22-{p23}*z32-{p2w}*w2-{p20}*s2),
instruments(1:z11 z21 z31 w1 s1, nocons)
instruments(2 3:z12 z22 z32 w2 s2, nocons)
winit(vyvxmat) onestep
deriv(1/b1 = -({p10}*s1+{p1w}*w1+{p11}*z11+{p12}*z21+{p13}*z31))
deriv(1/b2 = -({p20}*s1+{p2w}*w1+{p21}*z11+{p22}*z21+{p23}*z31))
deriv(1/bw = -w1)
deriv(1/b0 = -s1)
deriv(1/p11 = -{b1}*z11)
deriv(1/p12 = -{b1}*z21)
deriv(1/p13 = -{b1}*z31)
deriv(1/p1w = -{b1}*w1)
deriv(1/p10 = -{b1}*s1)
deriv(1/p21 = -{b2}*z11)
deriv(1/p22 = -{b2}*z21)
deriv(1/p23 = -{b2}*z31)
deriv(1/p2w = -{b2}*w1)
deriv(1/p20 = -{b2}*s1)
deriv(2/p11 = -z12)
deriv(2/p12 = -z22)
deriv(2/p13 = -z32)
deriv(2/p1w = -w2)
deriv(2/p10 = -s2)
deriv(3/p21 = -z12)
deriv(3/p22 = -z22)
deriv(3/p23 = -z32)
deriv(3/p2w = -w2)
deriv(3/p20 = -s2);

/*use twostep option and ‘estat overid’ command for efficient GMM and Hansen test*/
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