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Abstract

We propose cross-validation criteria for the selection of regularisation parameter(s) in

the semiparametric instrumental variable transformation model proposed in Florens and

Sokullu (2016). In the presence of an endogenous regressor, this model is characterized by

the need to choose two regularisation parameters, one for the structural function and one

for the transformation of the outcome. We consider two-step and simultaneous criteria, and

analyze the finite-sample performance of the estimator using the corresponding regularisation

parameters by means of several Monte-Carlo simulations. Our numerical experiments show

that simultaneous selection of regularisation parameters provides significant improvements in

the performance of the estimator. We also apply our methods to the choice of regularisation

parameters in the estimation of two-sided network effects in the German magazine industry.

Keywords: Nonparametric IV Regression, Transformation models, Cross-Validation,

Tikhonov Regularisation, Ill-posed inverse problems

JEL Classification: C14; C26; L14

2



1 Introduction

The semiparametric transformation model is a flexible specification of data generating

mechanisms. Recent work by Florens and Sokullu (2016) proposes a nonparametric in-

strumental variables (NPIV) treatment of this model, allowing for a nonlinear relationship

between the endogenous variable and an unrestricted (i.e. nonlinear and potentially non-

monotone) transformation of the outcome of interest. This setup can be applied to a wide

variety of economic problems, and recent applications include estimation of demand func-

tions in two-sided markets (Sokullu, 2016b), estimation of demand in differentiated products

markets (Berry and Haile, 2014), or the analysis of duration data (Abbring and van den

Berg, 2003; Honore and Paula, 2010). In all of these economic problems, endogeneity is a

crucial feature of the model, and allowing for nonlinear structural relationships is an essential

component of reliable empirical econometric practice.

The main challenge in general NPIV procedures is addressing the so-called ill-posed in-

verse problem. This arises from expressing the unknowns of the model (the parameters)

as the solution to a singular system of equations. In a finite-dimensional setting, this for-

mulation requires the inversion of a nonsingular matrix in order to recover the parameters

of interest. For infinite-dimensional settings one of the solutions adopted in the literature

(see Newey and Powell, 2003; Darolles, Fan, Florens, and Renault, 2011; Horowitz, 2011)

has been to regularize the problem by a method similar to ridge regression: the objective

function should be penalized in order to circumvent ill-posedness.

Regularisation of ill-posed inverse problems necessitates selection of a tuning parameter

which determines the degree of regularisation. It is of crucial importance since it balances

the fitting and smoothing of the estimated functional parameters. Various selection methods

have been considered in the literature, such as the discrepancy rule (Feve and Florens, 2010;

Florens and Sokullu, 2016), truncation (Horowitz, 2011), and cross-validation (Centorinno,

2015). Except for Florens and Sokullu (2016), none of these papers consider a semipara-

metric transformation model, which is characterized by the need for selecting two different

regularisation parameters: one for the transformation of the outcome, and one for the struc-

tural function. The main challenge in such a framework stems from the fact that these

two different regularisation parameters should converge to zero at the same rate. Florens

and Sokullu (2016) get over this challenge by assuming a constant ratio between the two

parameters and constructing a two-step selection procedure.

In this paper, we first propose two selection methods based on cross-validation, then

explore their relative performance compared to the two-step discrepancy rule method in-

troduced in Florens and Sokullu (2016), as well as a simultaneous implementation of the
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discrepancy rule method. The first method is a two-step approach which replaces the dis-

crepancy rule criterion by a cross-validation criterion. Our second approach is a simultane-

ous cross-validation criterion which determines the values of the regularisation parameters

of both the transformation and the structural function, in one step. We further describe

an iterative procedure for the minimization of the simultaneous cross-validation criterion.

We provide numerical evidence that cross-validation improves on the discrepancy rule (and

its simultaneous implementation), and that simultaneous selection has good finite sample

properties. This complements the recent contribution of Centorinno (2015). Although we

show that one-step (simultaneous) selection provides the best finite sample properties among

other selection methods, whether the parameters are converging to zero at the same rate is

an open question that we leave for future work.

In the next section we describe the model analyzed in Florens and Sokullu (2016). In

Section 3, we introduce our cross-validation criteria. In Section 4, we provide small-sample

analysis by means of several Monte Carlo simulations. In Section 5, we apply our methods

to the estimation of two-sided network effects in the German magazine industry. Section 6

concludes.

2 The Model

We consider the general model in Florens and Sokullu (2016). It is a semiparametric

transformation model of the form:

H(Y ) = ϕ(Z) +Xβ + U, E(U |X,W ) = 0, (1)

where Y and Z are endogenous variables, X is a vector of exogenous variables and W is

a vector of instruments. H(.) and ϕ(.) are unknown functions to be estimated, along with

the finite-dimensional parameter β. In this model, one element of the vector β needs to be

normalized to 1 for identification purposes. The model can then be written as

H(Y ) = ϕ(Z) +X0 +X ′1β + U, (2)

where Y, Z,X0, U ∈ R, X = {X0, X1} ∈ Rq and W ∈ Rp. The variables Y, Z,X,W generate

a random vector Λ with a cumulative distribution function F which is characterised by

its square integrable density f(y, z, x, w) with respect to Lebesgue measure. We denote

by L2
F (Y ), L2

F (Z), L2
F (X) and L2

F (W ) the spaces of square integrable functions of Y, Z,X

and W , respectively, with respect to the corresponding marginal of F . We assume that

L2
F (Y ), L2

F (Z), L2
F (X) and L2

F (W ) are subspaces of a common Hilbert space denoted by L2
F .
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Florens and Sokullu (2016) show that the functions H(.) and ϕ(.) as well as the parameter

vector β are identified. Below we present the assumptions needed for identification and state

the theorem. For the proof, we refer the reader to Florens and Sokullu (2016).

Assumption 1 There exist two square integrable functions H and ϕ such that:

H(Y ) = ϕ(Z) +X0 +X ′1β + U

with

E[U |X,W ] = 0.

Assumption 2 Completeness. The distribution of (Y, Z) given (X,W ) is complete in

the following sense:

∀m(Y, Z) ∈ L2
F (Y × Z), E[m(Y, Z)|X,W ] = 0 a.s. ⇒ m(Y, Z) = 0 a.s.

Assumption 3 Conditional Additive Completeness. ∀(m1,m2, β) ∈ L2
F (Y ) ×

L2
F (Z)× Rq E(m1(Y ) +m2(Z) +X ′1β|X,W ) = 0 a.s.⇒ m1(Y ) +m2(Z) +X ′1β a.s.

Assumption 4 Separability. Y and Z are measurably separable i.e., ∀m(Y ) ∈ L2
F (Y ) and

∀l(Z) ∈ L2
F (Z):

m(Y ) = l(Z)⇒ m(.) = l(.) = constant.

Assumption 5 (Y, Z) and X1 are measurably separable:

m(Y, Z) = l(X1)⇒ m(.) = l(.) = constant.

Assumption 6 Normalisation. If ϕ(Z) is constant a.s. then ϕ(Z) = 0 a.s. For simplic-

ity, we will assume that ϕ(.) is normalized by the condition E[ϕ(Z)] = 0. We then consider

as the parameter space:

E0 = {(H,ϕ) ∈ L2
F (Y )× L2

F (Z) : E[ϕ(Z)] = 0}.

Assumption 7 Let ΣX1 denote the variance of X1. Then, ΣX1 is positive definite.

Assumption 1 defines the model. One of the novelty of this model is that neither H(Y )

nor ϕ(Z) needs to be monotone. In contrast to the previous literature on transformation

models, this model allows the transformation to be nonmonotone. Assumptions 2 and 3

are completeness assumptions. The completeness assumption is standard in the NPIV lit-

erature and primitive conditions that lead to completeness have recently been analyzed in
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D’ Haultfoeuille (2011), Hu and Shiu (2011) and Andrews (2011). Intuitively, Assumption

2 means that (Y, Z) and (X,W ) are sufficiently correlated while Assumption 3 means that

(Y, Z,X1) are sufficiently correlated with (X,W ). Assumptions 4 and 5 are also standard

in NPIV literature. Assumption 4 means that there is not an exact relationship between Y

and Z, while Assumption 5 implies the absence of an exact relationship between (Y, Z) and

X1. Both assumptions are satisfied if X0 + U is not equal to a constant. A more detailed

discussion of measurable separability can be found in Florens, Heckman, Meghir, and Vyt-

lacil (2008). Assumption 6 is a normalisation assumption and Assumption 7 implies that

the variance-covariance matrix of X1 is positive definite.

Proposition 1 (Theorem 8 in Florens and Sokullu (2016)) Under Assumptions 1-7, the

functions H(Y ) and ϕ(Z) and the parameter β are identified.

For NPIV estimation of this model, define the operator:

T : E0 =
{
L2
F (Y )× L̃2

F (Z)
}
7→ L2

F (X,W ) : T (H,ϕ) = E[H(Y )− ϕ(Z)|X,W ],

where L̃2
F (Z) = {ϕ ∈ L2

F (Z)|E(ϕ) = 0}. As Assumption 6 implies the normalisation

E(ϕ(Z)) = 0, the space L̃2
F (Z) only contains zero-mean functions. We also define the inner

product

〈(H1(Y ), ϕ1(Z)), (H2(Y ), ϕ2(Z))〉L2
F (Y )×L2

F (Z) = 〈H1(Y ), H2(Y )〉L2
F (Y ) + 〈ϕ1(Z), ϕ2(Z)〉L2

F (Z) ,

where 〈g(x), h(x)〉 =
∫
X
g(x)h(x)fX(x)dx. The adjoint operator of T , T ∗, satisfies

〈T (H(Y ), ϕ(Z)), ψ(X,W )〉L2
F (X,W ) = 〈(H(Y ), ϕ(Z)), T ∗ψ(X,W )〉E0 ,

for any (H,ϕ) ∈ E0 where E0 =
{
L2
F (Y )× L̃2

F (Z)
}

and ψ ∈ L2
F (X,W ). This equality then

gives the adjoint operator T ∗:

T ∗ψ = (E[ψ(X,W )|Y ],−PE[ψ(X,W )|Z]),

where P is the projection operator from L2
F (Z) onto L̃2

F (Z).1 Further define the operator

TX : Rq−1 → L2
F (X,W ) : β 7→ X ′1β. Its adjoint is defined as T ∗X : L2

F (X,W ) → Rq−1 : g 7→
E[X1g(X,W )], following from the equality:

〈TXβ, g(X,W )〉L2
F (X,W ) = 〈β, T ∗Xg(X,W )〉Rq−1 .

1See Appendix A for the derivation of the adjoint operator T ∗.
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Given the above definitions, the unknowns (H,ϕ, β) solve a system of normal equations.

Writing

T (H,ϕ)− TXβ = X0, (3)

the normal equations are

T ∗T (H,ϕ)− T ∗TXβ = T ∗X0 (4)

T ∗XT (H,ϕ)− T ∗XTXβ = T ∗XX0. (5)

One can obtain β = (T ∗XTX)−1T ∗XT (H,ϕ)− (T ∗XTX)−1T ∗XX0 from Equation (5). It can then

be substituted into (4) to get:

(T ∗(I − PX)T )(H(Y ), ϕ(Z)) = T ∗(I − PX)X0, (6)

where PX = TX(T ∗XTX)−1T ∗X and I is the identity operator on L2
F (X,W ). In order to obtain

the functions (H(Y ), ϕ(Z)), (T ∗(I − PX)T ) in (6) needs to be inverted. However, note

that the operator T is infinite-dimensional and since f(y, z, x, w) is square integrable, T is

compact. Hence it has infinitely many eigenvalues in the neighbourhood of zero: the inverse

of (T ∗(I − PX)T ) is discontinuous and causes an ill-posed inverse problem.2,3 In order to be

able to solve this ill-posed inverse problem we need to regularize it. In this paper, following

Florens and Sokullu (2016), we adopt Tikhonov Regularisation. The functions (H,ϕ) are

thus given by:

(H(Y ), ϕ(Z)) = (αI + T ∗(I − PX)T )−1T ∗(I − PX)X0, (7)

where α is the regularisation parameter which is strictly positive and converges to zero at a

suitable rate as the sample size increases. Equation (7) can then be rewritten as4:(
αHH + E [(I − PX)E(H|X,W )|Y ]− E [(I − PX)E(ϕ|X,W )|Y ]

−αϕϕ+ PE [(I − PX)E(H|X,W )|Z]− PE [(I − PX)E(ϕ|X,W )|Z]

)
=

(
E [(I − PX)X0|Y ]

PE [(I − PX)X0|Z]

)
.

(8)

The system of equations in (8) form the basis of our estimation strategy. In order

to get estimates of H and ϕ, conditional expectations can be replaced by their empirical

counterparts, i.e., by kernel estimators. In fact, the implementation of this method has

already been discussed in detail in papers such as Darolles, Fan, Florens, and Renault (2011),

2Compact operators have infinitely many countable eigenvalues hence we can write the singular value
decomposition of T , see Theorems 7.22 and 7.23 in Ryanne and Youngson (2008) and Theorem 2.31 in
Carrasco, Florens, and Renault (2007).

3For more information on ill-posed inverse problem in the case of NPIV, see Darolles, Fan, Florens, and
Renault (2011); Horowitz (2011).

4In Equation (8) we denote H(Y ) by H and ϕ(Z) by ϕ for the sake of exposition.
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Feve and Florens (2010) and Sokullu (2016b).

To explain the implementation of the defined method, consider an i.i.d. sample of

(yi, zi, xi, wi), i = 1, ..., N . Let Ky, Kz, Kx and Kw be kernel functions chosen according

to the dimension of Y, Z,X and W , respectively, and such that the technical conditions in

Appendix B are satisfied, with associated bandwidth parameters hy, hz, hx and hw. Define

the matrix Axw(w) whose (i, j)th element is:

Axw(w)(i, j) =
Kx

(
xi−xj
hx

)
Kw

(
w−wj

hw

)
∑

jKx

(
xi−xj
hx

)
Kw

(
w−wj

hw

) .
Moreover, let Ay and Az be the matrices with (i, j)th elements:

Ay(i, j) =
Ky

(
yi−yj
hy

)
∑

jKy

(
yi−yj
hy

) and Az(i, j) =
Kz

(
zi−zj
hz

)
∑

jKz

(
zi−zj
hz

) .
Let P be the matrix with N−1

N
on the diagonal and − 1

N
elsewhere. Denoting by P̂X the

sample analog of PX , the empirical counterpart of Equation (8) can be written as:(
αHH + Ay(I − P̂X)AxwH − Ay(I − P̂X)Axwϕ

−αϕϕ+ PAz(I − P̂X)AxwH − PAz(I − P̂X)Axwϕ

)
=

(
Ay(I − P̂X)X0

PAz(I − P̂X)X0

)
. (9)

For notational simplicity, we leave the dependence of the regularisation parameter α =

(αH , αϕ) on N implicit. The estimators (Ĥ, ϕ̂) are then given by:(
Ĥ

ϕ̂

)
=

(
αHI + Ay(I − P̂X)Axw −Ay(I − P̂X)Axw

PAz(I − P̂X)Axw −(αϕI + PAz(I − P̂X)Axw)

)−1(
Ay(I − P̂X)X0

PAz(I − P̂X)X0

)
.

(10)

It should be noted that the estimates (Ĥ, ϕ̂) can also be obtained by using sieve approxima-

tion, see Horowitz (2011) and Blundell, Chen, and Kristensen (2007) among others. In this

paper, we focus on kernel-based estimators.

Florens and Sokullu (2016) show that under some regularity conditions the estimators

are consistent and β̂ is asymptotically normal. We present the regularity conditions and

the result of Florens and Sokullu (2016) in Appendix B and refer the reader to Florens and

Sokullu (2016) for more details and for the proof.
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3 Selection of Regularisation Parameter(s)

One of the key issues in the practical implementation of Tikhonov Regularised NPIV

estimation is the selection of the regularisation parameter α. The regularisation parameter

plays a very important role in the estimation as it balances the fitting and the smoothing.

An arbitrary selection rule might result in highly oscillatory curves if it is picked too low, or

it may result in very flat curves if it is picked too high.

Selection of regularisation parameter in NPIV problems has already been studied by Feve

and Florens (2010); Darolles, Fan, Florens, and Renault (2011); Centorinno (2015) among

others. Feve and Florens (2010) and Darolles, Fan, Florens, and Renault (2011) extend the

discrepancy rule proposed by Morozov (1993) and Engl, Hanke, and Neubauer (1996) and

suggest a data driven selection method. As explained in Engl, Hanke, and Neubauer (1996),

the discrepancy principle is based on the comparison between the residual of the functional

equation and the assumed bound for the noise level. Moreover, the regularisation parameter

defined by this rule is shown to be convergent and of optimal order. Both Feve and Florens

(2010) and Darolles, Fan, Florens, and Renault (2011) use the idea of minimizing a function

of squared norm of residuals. The squared norm of residuals cannot be used directly and

must be transformed as it reaches its minimum at α = 0. Hence in these papers this function

is constructed by taking the squared norm of residuals obtained from an estimation using

iterated Tikhonov Regularisation of order 2 and then dividing this norm by α (Feve and

Florens, 2010) or by α2 (Darolles, Fan, Florens, and Renault, 2011).5

On the other hand, Centorinno (2015) uses cross-validation to select the regularisation

parameter. He uses leave-one-out estimators to construct the cross-validation criterion func-

tion and his method does not require the use of iterated Tikhonov Regularisation of order 2,

or division of the norm of residuals by any function of α. He shows that the regularisation

parameter obtained with this method converges to zero at the optimal rate.

Deriving a selection rule for α in a semiparametric transformation model such as the

one in Florens and Sokullu (2016), is not straightforward as one has to pick 2 regularisation

parameters to estimate the model, see Equation (8). These two regularisation parameters for

two unknown functions need not necessarily be the same, although they need to converge to

zero at the same rate as the functions H(Y ) and ϕ(Z) are estimated simultaneously. Florens

and Sokullu (2016) show that H(Y ) and ϕ(Z) can be estimated consistently and converge to

their true values at the same rate. Since estimates of these functions depend on each other

and since their rate of convergence is the same, we need αH and αϕ to converge to zero at the

5The qualification of Tikhonov Regularisation is 2 and in case of estimation of a very regular function
this prevents improvement of the convergence rate. The use of residuals obtained from a regression with
iterated Tikhonov Regularisation of order 2 is especially done for cases where the function is very regular.
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same rate, too. α’s converging to zero at different rates would affect the rate of convergence

of the functions. Florens and Sokullu (2016) proposed a method to get over this problem.

They first assume that there is a constant ratio between two regularisation parameters, i.e.

αϕ = cαH for c > 0, and then propose to choose optimal values for αH and c in two steps.

The regularisation parameter αH is chosen as if one is estimating a function of (Y, Z)

instead of 2 separate functions H(Y ) and ϕ(Z). It is then replaced in the original estimating

equation in order to optimize over c. Let G : L2
F (Y, Z) 7→ R be the function defined as:

G(Y, Z) = H(Y )− ϕ(Z).

Define also the operators TG : L2
F (Y, Z) 7→ L2

F (X,W ) : TGG = E[G(Y, Z)|X,W ]. The

adjoint T ∗G is defined as: T ∗G : L2
F (X,W ) 7→ L2

F (Y, Z) : T ∗Gφ = E[φ(X,W )|Y, Z], with sample

analog T̂G and T̂ ∗G.

Since H(Y )− ϕ(Z) = X0 +X ′1β + U , we can write:

TGG(Y, Z) = X0 + TXβ,

which leads to the normal equations:

T ∗GTGG(Y, Z) = T ∗GX0 + T ∗GTXβ (11)

T ∗XTGG(Y, Z) = T ∗XX0 + T ∗XTXβ. (12)

As is already done in the estimation of the model, Equation (12) is used to get an expression

for β which is then substituted in Equation (11). From (12):

β = (T ∗XTX)−1(T ∗XTGG(Y, Z)− T ∗XX0),

then one obtains

T ∗GTGG(Y, Z) = T ∗GX0 + T ∗GTX(T ∗XTX)−1T ∗XTGG(Y, Z)− T ∗GTX(T ∗XTX)−1T ∗XX0.

Hence the estimate Ĝα
(1) is given by:

Ĝα
(1) = (αHI + T̂ ∗G(I − P̂X)T̂G)−1T̂ ∗G(I − P̂X)X0, (13)

with P̂X = T̂X(T̂ ∗X T̂X)−1T̂ ∗X . The iterated Tikhonov regularized estimator of order 2 is given

by:

Ĝα
(2) = (αHI + T̂ ∗G(I − P̂X)T̂G)−1(T̂ ∗G(I − P̂X)X0 + αHĜ

α
(1)),
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whose vector of residuals can be written as:

ûα(2) = T̂ ∗G(I − P̂X)X0 − (T̂ ∗G(I − P̂X)T̂G)Ĝα
(2).

The optimal αH in Florens and Sokullu (2016) is then defined as

α∗H = argmin
α

1

α2
‖ûα(2)‖2. (14)

In the second step α∗H is replaced in the original problem below and the optimal c is chosen

as the minimizer of the squared norm of residuals.6(
α∗HH + E [(I − PX)E(H|X,W )|Y ]− E [(I − PX)E(ϕ|X,W )|Y ]

−α∗Hcϕ+ PE [(I − PX)E(H|X,W )|Z]− PE [(I − PX)E(ϕ|X,W )|Z]

)
=

(
E [(I − PX)X|Y ]

PE [(I − PX)X|Z]

)
.

(15)

As already mentioned, in this paper we extend Centorinno (2015)’s cross-validation se-

lection of regularisation parameter to the case of semi-parametric transformation models.

We consider two main extensions: In the first one, we replicate the 2-step method proposed

by Florens and Sokullu (2016), but we use a cross-validation criterion to select α∗H and c.

In the second one, we propose to select both α∗H and α∗ϕ simultaneously in one step by min-

imizing a cross-validation criterion obtained from the original problem. The performance

of two additional variations are also studied numerically: 1. extension of the discrepancy

rule to simultaneous selection of αH and αϕ, and 2. iterative minimization of the one-step

cross-validation criterion.

3.1 Two-step cross-validated selection of regularisation parameter

The two-step cross-validated selection of regularisation parameter follows closely the se-

lection rule introduced in Florens and Sokullu (2016). The only difference is that we use

leave-one-out estimators to construct the cross-validation criterion function. Note that the

first step estimator of the function G(Y, Z) is given by Equation (13). Define the leave-one-

out matrices A−ixw(w) and A−iyz (z) with (i, j)th elements:

A−ixw(w)(i, j) =
Kx

(
xi−xj
hx

)
Kw

(
w−wj

hw

)
∑

j 6=iKx

(
xi−xj
hx

)
Kw

(
w−wj

hw

) , for i 6= j

6In Equation (15) we denote H(Y ) by H and ϕ(Z) by ϕ for the sake of exposition.
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A−iyz (z)(i, j) =
Ky

(
yi−yj
hy

)
Kz

(
z−zj
hz

)
∑

j 6=iKy

(
yi−yj
hy

)
Kz

(
z−zj
hz

) , for i 6= j

with diagonal elements set to zero. Hence when it is applied it gives exactly the same formula

for leave-one-out estimator as in Li and Racine (2006) on page 69. For instance,

A−iyz (z)X0 =



0 a12 a13 ... a1N

a21 0 a23 ... .

. . . . .

. . . . .

. . . . .

aN1 aN2 aN3 ... 0





x10

x20

.

.

.

xN0


=



∑
j 6=1 a1jxj0∑
j 6=2 a2jxj0

.

.

.∑
j 6=N aNjxj0


.

Then the leave-one-out estimator of G in Equation (13) is given by:

Ĝα
−i(Y, Z) = (αHI + A−iyz (I − P̂X)A−ixw)−1A−iyz (I − P̂X)X0,

which leads to the following cross-validation criterion function:

CV1(α) =
N∑
i=1

[T̂ ∗G(I − P̂X)T̂GĜ
α
−i(Y, Z)− T̂ ∗G(I − P̂X)X0]

2. (16)

The cross-validated αH , αCV is the minimizer of the cross-validation criterion in (16). As

in Florens and Sokullu (2016) the second step consists in replacing the αCV in the original

problem below, and estimating H and ϕ by using leave-one-out operators for different values

of c.(
Ĥ−i

ϕ̂−i

)
=

(
αCV I + A−iy (I − P̂X)A−ixw −A−iy (I − P̂X)A−ixw

PA−iz (I − P̂X)A−ixw −(cαCV I + PA−iz (I − P̂X)A−ixw)

)−1(
A−iy (I − P̂X)X0

PA−iz (I − P̂X)X0

)
.

(17)

The second step cross-validation function is given by:

CV2(c) =
N∑
i=1

[(T̂ ∗(I − P̂X)T̂ )(Ĥ−i(Y ), ϕ̂−i(Z))− T̂ ∗(I − P̂X)X0]
2. (18)

The cross-validated c, denoted cCV , is then defined as the minimizer of Equation (18).
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3.2 One-step cross-validated selection of regularisation parame-

ters

One issue with having two regularisation parameters in the model we are considering is

that although the two parameters may differ, they should converge to zero at the same rate.

This is the reason why Florens and Sokullu (2016) propose to have a constant ratio between

αH and αϕ, although they do not consider cross-validation criteria. Following Centorinno

(2015), we propose minimizing a cross-validation criterion over αH and αϕ simultaneously,

and compare the performance of this approach to the two-step selection methods described

above. A formal proof that the cross-validated α’s are converging to zero at the same rate

is left for future work.

The leave-one-out estimation of (H,ϕ) is given by:(
Ĥ−i

ϕ̂−i

)
=

(
αHI + A−iy (I − P̂X)A−ixw −A−iy (I − P̂X)A−ixw

PA−iz (I − P̂X)A−ixw −(αϕI + PA−iz (I − P̂X)A−ixw)

)−1(
A−iy (I − P̂X)X0

PA−iz (I − P̂X)X0

)
,

(19)

which leads to the cross-validation criterion function:

CV (αH , αϕ) =
N∑
i=1

[(T̂ ∗(I − P̂X)T̂ )(H−i(Y ), ϕ−i(Z))− T̂ ∗(I − P̂X)X0]
2. (20)

The optimal values of αH and αϕ are then those which minimize Equation (20):

(α∗H , α
∗
ϕ) = argmin

αH ,αϕ

CV (αH , αϕ).

This is a two-dimensional minimization problem. We consider two methods in order

to implement this minimization. First, we evaluate criterion (20) over a two-dimensional

grid, and select the pair of parameter values which yields the smallest objective value. As

a faster alternative, we also experiment with an iterative procedure which, at a given step

m, proceeds by (i) evaluating criterion (20) over a one-dimensional grid for αH given a value

α
(m−1)
ϕ , and selecting the optimal value α

(m)
H , and (ii) evaluating criterion (20) over a one-

dimensional grid for αϕ given α
(m)
H , and selecting the optimal value α

(m)
ϕ . We then iterate

until convergence of the sum of squared differences (α
(m)
H − α(m−1)

H )2 + (α
(m)
ϕ − α(m−1)

ϕ )2 ≤ τ ,

for some specified tolerance τ .

The intuition behind our proposal is that the simultaneous criterion should be minimized

by regularisation parameter values that are jointly optimal for both functions H(.) and ϕ(.).

This may not be the case for the discrepancy rule or the two-step cross-validation criterion

13



which select a regularisation parameter which is optimal for the function G(.). Moreover,

we conjecture that regularisation parameters chosen jointly by simultaneous cross-validation

converge to zero at the same rate, whereas simultaneous selection by the discrepancy rule

might not preserve this property. In the next Section we provide numerical evidence that

simultaneous cross-validation does perform better than other methods, and in particular

than the discrepancy rule, as well as its simultaneous implementation: we implement the

simultaneous discrepancy rule by mimimizing the sum of squared norms of residuals (scaled

by α2
H + α2

ϕ) formed with the estimates

(
Ĥ

ϕ̂

)
=

(
αHI + Ay(I − P̂X)Axw −Ay(I − P̂X)Axw

PAz(I − P̂X)Axw −(αϕI + PAz(I − P̂X)Axw)

)−1(
Ay(I − P̂X)X0

PAz(I − P̂X)X0

)
.

4 Numerical simulations

In this Section we study the sensitivity of the finite-sample performance of the estimator

to the method chosen for selecting the regularisation parameters. We compare the two cross-

validation methods introduced as well as the iterative variant of the one-step approach, to

the method proposed in Florens and Sokullu (2016) based on the discrepancy principle. We

also include a simultaneous implementation of the discrepancy principle, which minimizes the

sum of squared norms of residuals of both steps of the original two-step implementation. The

smoothing parameters are held fixed throughout the simulations, but we provide two further

sets of simulation results in Appendix C.4 for different choices of bandwidth parameters.7

We study the performance of each selection method across two different data generating

processes. For comparison purposes, the simulation data generating process of Florens and

Sokullu (2016) is taken as our initial setup. We generate 499 samples of size N = 100, 200

and 400, from the semiparametric transformation model (Design 1):

log

(
1− Y
Y

)
= (Z2 − E(Z2)) +X0 + 0.3X1 + U

Z = 0.2W + ηW

ηW = 0.5U + εW .

The covariates X0, X1 and the instrumental variable W are drawn from a standard uniform

distribution, and the disturbance U is taken normally distributed with mean 0 and variance

(X0 + X1 + W )/50. In addition, εW is normally distributed with mean 0 and variance 0.4.

7The choice of bandwidth parameter values is fixed throughout simulations and chosen using Silverman’s
rule-of-thumb, see Florens and Sokullu (2016) for details about the bandwidth choice.
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Florens and Sokullu (2016) provide additional discussion of this experimental design.

We also consider a second data generating process where only the specification of the

ϕ(.) function is altered. In this second design (Design 2), the specified model is:

log

(
1− Y
Y

)
= (exp(−|Z|)− E(exp(−|Z|))) +X0 + 0.3X1 + U

Z = 0.2W + ηW

ηW = 0.5U + εW .

This model allows for studying the robustness of our numerical findings to the smoothness

of ϕ(.).

Following Centorinno (2015), the performance of each method is assessed relative to the

performance of the estimator using the optimal α. Let ||·||p denote the Lp norm, where for f :

R→ R, ||f ||p =
{∫

R |f(s)|pds
}1/p

. In addition, define the rectangular grid G = G1×G2, with

G1 = {0.0001, ..., 0.01} and G2 = {0.001, ..., 0.1}, respectively, two logarithmically spaced

grids of 20 elements. In the context of the semiparametric transformation model (2), we

consider optimal values of α defined as the minimizer of the following simultaneous criteria

α∗p = arg min
α∈G
||ϕ̂α − ϕ||pp + ||Ĥα −H||pp + ||β̂α − β||2, p = 1, 2,∞.

Thus the optimal regularisation parameter is chosen such that estimates of both the nonpara-

metric and the parametric parts of the model are (jointly) optimal. We vary the choice of

norm in the definition of α∗ in order to assess the robustness of each method under different

metrics.

We then compare the estimated parameters obtained by each of our five methods to those

obtained using the optimal regularisation parameter α∗p using the deviation statistics

DEVp(ϕ̂α̂, Ĥα̂, β̂α̂) =
||ϕ̂α̂ − ϕ||pp + ||Ĥα̂ −H||pp + ||β̂α̂ − β||2

||ϕ̂α∗p − ϕ||
p
p + ||Ĥα∗p −H||

p
p + ||β̂α∗p − β||2

, p = 1, 2,∞,

where α̂ is the estimator of α obtained by the discrepancy principle (Disc.R), simultaneous

implementation of the discrepancy principle (Disc.R 2), two-step cross-validation (CV1),

simultaneous cross-validation (CV2), and iterated cross-validation (It.CV2).8

Our main simulation results for Design 1 are summarized in Tables 1–3. These tables show

8For both the discrepancy rule and CV1, we consider a grid of values Gα = G1 following the original
implementation in Florens and Sokullu (2016). For the simultaneous cross-validation and simultaneous
discrepancy rule procedures, we use G as our grid. Simulations with a finer and wider grid yield similar
qualitative results.
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the average and standard deviation of DEVp(ϕ̂α̂, Ĥα̂, β̂α̂), p = 1, 2,∞, across simulations,

for each sample sizes and each of the five selection methods.

The main feature of the results is that the simultaneous cross-validation method domi-

nates the other methods both in terms of average performance relative to the optimal esti-

mator as well as of precision, with smaller standard deviation of the deviation measure across

simulations, across all sample sizes. Indeed, estimates from simultaneous cross-validation ex-

hibit much less variability across simulations, with the standard error of DEV2(ϕ̂α̂, Ĥα̂, β̂α̂)

ranging from 0.34 to 0.51 across sample sizes under CV2 compared to 1.52 to 2.18 for the

discrepancy rule-based estimates, and 0.75 to 1.16 for CV1 estimates.

The iterated implementation of simultaneous cross-validation is very competitive, espe-

cially for N = 400, and represents a useful, faster, alternative for large samples due to

its implementation based on a sequence of minimizations over one-dimensional grids.9 On

the other hand, the performance of the simultaneous implementation of the discrepancy

rule and the two-step cross-validation method appears to be weak compared to one-step

cross-validation. In particular, as shown by Tables 1-3, their performance does not improve

markedly as sample size increases. This reflects the fact that both methods choose a regu-

larisation parameter for the G function, which need not be optimal for the target function

H. Thus, the one-step criterion provides a principled approach to choosing regularisation

parameters in transformation models.

The cross-validation method CV1 also exhibits good finite-sample performance relative

to the estimator based on the discrepancy rule. Although their respective performance is

comparable in terms of DEV1, estimates based on CV1 appear more precise in terms of the

DEV2 and DEV∞ metrics, indicating more stability across simulations of CV 1 estimates.

Additional insights into the relative performance of each method can be gained by visual

inspection of the simulation results shown in Figure 3-5 in Appendix C.1. As reflected

by the standard deviation of DEVp, estimates obtained using simultaneous cross-validation

exhibit much less variability across simulations, and most of the gains arise from increased

stability in the estimation of ϕ(Z), across the support of Z. This is especially the case at

the extremes of the support of Z where estimates using regularisation parameters chosen

by the discrepancy rule and, to a lesser extent, by CV1 potentially diverge greatly from the

true function, ϕ(Z). Estimates obtained based on CV2, on the other hand, exihibit greater

stability across the support of Z, and at the boundaries of the support as well.

These observations are confirmed by considering the ratios of mean square errors (MSE)

for each function separately: Tables 4 and 5 present MSE ratios of CV2-based estimates over

Disc.R-, CV1-, and It.CV2-based estimates of H(Y ) and ϕ(Z). Table 4 shows that whereas

9We thank an anonymous referee for suggesting the study of iterative implementations of our proposals.
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Table 1: Summary statistics for DEV2(ϕ̂α̂, Ĥα̂, β̂α̂) - Design 1.

Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

Mean S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d.
N = 100 2.24 2.12 2.28 0.83 1.76 1.16 1.56 0.51 1.68 0.70
N = 200 1.86 2.18 2.00 0.51 1.51 0.96 1.34 0.35 1.35 0.36
N = 400 1.81 1.52 2.36 0.60 1.56 0.75 1.31 0.34 1.30 0.36

Table 2: Summary statistics for DEV1(ϕ̂α̂, Ĥα̂, β̂α̂) - Design 1.

Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

Mean S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d.
N = 100 1.42 0.26 1.45 0.24 1.25 0.23 1.18 0.17 1.26 0.21
N = 200 1.33 0.19 1.34 0.19 1.19 0.17 1.13 0.14 1.17 0.15
N = 400 1.33 0.17 1.46 0.20 1.23 0.18 1.15 0.13 1.12 0.15

Table 3: Summary statistics for DEV∞(ϕ̂α̂, Ĥα̂, β̂α̂) - Design 1.

Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

Mean S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d.
N = 100 1.74 1.40 1.31 0.47 1.28 0.83 1.12 0.32 1.26 0.49
N = 200 1.22 0.83 1.13 0.31 1.08 0.38 1.04 0.20 1.02 0.24
N = 400 1.72 1.48 1.23 0.38 1.30 0.76 1.14 0.35 1.13 0.34

gains in MSE from using CV2 are non-negligible across sample sizes and methods for H(Y ),

the relative performance of the estimator based on CV2 is much stronger for the structural

function ϕ(Z), gains in MSE ranging from 16% to 65%, with the noticeable exception of

It.CV2 for N = 400 which outperforms CV2.

Table 4: Ratio of Mean Square Errors for Ĥ - Design 1.

Sample size MSECV 2(Ĥ)

MSEDisc.R(Ĥ)

MSECV 2(Ĥ)

MSEDisc.R2(Ĥ)

MSECV 2(Ĥ)

MSECV 1(Ĥ)

MSECV 2(Ĥ)

MSEIt.CV 2(Ĥ)

N = 100 79.40 86.90 93.75 100.43

N = 200 73.58 87.96 94.29 99.59

N = 400 82.36 75.59 92.93 95.12

Table 5: Ratio of Mean Square Errors for ϕ̂ - Design 1.

Sample size MSECV 2(ϕ̂)
MSEDisc.R(ϕ̂)

MSECV 2(ϕ̂)
MSEDisc.R2(ϕ̂)

MSECV 2(ϕ̂)
MSECV 1(ϕ̂)

MSECV 2(ϕ̂)
MSEIt.CV 2(ϕ̂)

N = 100 34.19 57.83 67.54 63.22

N = 200 42.61 70.52 76.65 82.58

N = 400 48.58 76.98 76.40 113.57
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Sample size Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

N = 100 0.25
(0.07)

0.20
(0.06)

0.23
(0.07)

0.23
(0.06)

0.24
(0.07)

N = 200 0.26
(0.05)

0.21
(0.04)

0.25
(0.05)

0.25
(0.05)

0.25
(0.05)

N = 400 0.27
(0.03)

0.22
(0.03)

0.26
(0.03)

0.26
(0.03)

0.26
(0.03)

(a) Average and standard errors.

Sample size Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

N = 100 7.70 14.18 9.21 9.37 8.09

N = 200 3.22 8.90 4.58 4.55 3.90

N = 400 2.06 6.88 2.82 2.45 2.44

(b) Mean Square Error ×1000.

Table 6: Simulation results for estimation of β. Design 1. (a) Average of β̂ estimates
across simulations and selection methods. Simulation standard errors in parenthesis; (b)
Mean square error across simulations ×1000.

It is interesting to note that estimates of the parametric component of the model, β,

appear to be much less sensitive to the method of selection of the regularisation method.

Table 6(a) summarizes the average and standard deviation of estimates of β across simula-

tions, for each method, and Table 6(b) shows the mean square error. Except for Disc.R 2, all

estimators perform similarly in terms of bias and standard errors, estimates based on CV2

even underperforming slightly in terms of MSE. These results seem to indicate that, per-

haps unexpectedly, estimates of β are fairly robust to the method of choice of regularisation

parameter.

Overall, our results are robust across metrics and sample sizes, although the contrast

between CV2 and the other methods is especially stark under DEV2 and DEV∞. Thus CV2

yields the best overall performance, and It.CV2 provides a useful alternative as the sample

size increases. The additional simulations provided in Appendix C.2-C.3 for Design 2 yield

similar qualitative conclusions, and simulations with different bandwidth parameter values

in Appendix C.4 show the robustness of our results to the choice of bandwidths.
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5 Two-Sided Network Effects in the German Magazine

Industry

In this section we estimate the demand system in German magazine industry studied in

Sokullu (2016a). Magazines are two-sided platforms which serve to readers and advertisers

on each side. Readers care about the amount of ad pages in the magazines and advertisers

care about the circulation rate (number of readers) of the magazine which brings about two-

sided network externalities, in other words, two-sided network effects.10 These effects play a

crucial role in the pricing strategy of the magazine. If, for instance, advertisers benefit more

from the existence of readers of the magazine, this may lead to prices below marginal costs

for readers and ad rates well above marginal costs for advertisers. Moreover, the benefit that

the two sides gets may not be linear in two-sided network effects. Although the readers may

enjoy seeing advertisements in the magazine, if the number of advertising pages increases

too much, the benefit of readers may decrease as a consequence. In such a case, the pricing

strategy of the magazine would change according to the number of advertising pages. Hence,

an anti-trust economist may arrive at erroneous conclusions if he/she cannot estimate these

two-sided network effects correctly.

Sokullu (2016b) shows that the two-sided network effects are nonlinear and nonmonotone

on both sides in the local American newspaper industry while, using data from the German

magazine industry, Sokullu (2016a) shows that the two-sided network effects are nonlinear

and nonmonotone only on readers’ side. We re-estimate the demand system in German mag-

azine industry to demonstrate the effect of selection of regularisation parameter in empirical

work.

In Sokullu (2016a) readers (r) and advertisers (a) are heterogenous in their net benefit of

joining the platform and these benefits are drawn from a continuous distribution. The reader

i buys the magazine if his net benefits bri are higher than a threshold level, br. Similarly,

advertiser j advertises in the magazine if his net benefits baj are higher than a threshold level,

ba. The German magazine industry is composed of several segments and in each segment

there are more than one magazine. Thus, threshold benefit levels on both sides, bk, k ∈ {a, r},
depend on relative magazine price for side k, P k, the number of agents (market share of the

magazine) on the other side of the platform, Nk′ , and unobservable magazine characteristics

Uk. All agents with net benefits higher than the threshold level join the platform. Then the

probability of joining the platform, and hence the market share of the magazine on side k,

10Note that we do not refer to network formation literature in this section. Two-sided network effects
mean the externality one side exerts on the other side on a two-sided platform.
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is given by:

Nk = P (bki ≥ bk(Nk′ , P k, Uk)) = 1− F k(bk(Nk′ , P k, Uk)), (21)

where F k is the cumulative distribution function of the net benefits of agents on side k.

Let Sk(.) = 1− F k(.) be the survival function. Sokullu (2016a) assumes that the threshold

benefit function is partially linear:

bk = ϕk(Nk′) + P k + Uk,

which leads to the demand system of readers and advertisers:

N r = Sr(ϕr(Na) + P r + U r) (22)

Na = Sa(ϕa(N r) + P a + Ua). (23)

Assuming that the survival functions Sa(.) and Sr(.) are strictly decreasing. The survival

functions can be inverted to get the estimating equations:

Hr(N r) = ϕr(Na) + P r + U r (24)

Ha(Na) = ϕa(N r) + P a + Ua. (25)

We estimate the system using the same data as in Sokullu (2016a), available online at

www.medialine.de. It contains annual data on cover prices, ad prices, number of ad pages,

number of content pages, and circulation numbers of German magazines for the year 2009.

The sample consists of information on 171 magazines and there are 17 different group of

magazines such as actuality, DIY, women’s, sports, etc. Moreover, the magazines in the

sample belong to 25 different publishers. Some of the publishers own magazines only in one

group while some others are publishing in several different groups.

Prices and shares of agents on the other side in equations (24) and (25) are endogenous so

that instruments are needed. We use the same instruments as in Sokullu (2016a). The cover

price is instrumented with the average cover price of the publisher’s other magazines and

the ad rate is instrumented with the number of titles of the publisher. Moreover, the share

of readers in the advertising demand equation is instrumented with the average circulation

rate of the publisher’s other magazines and the share of advertisers in the reader demand

equation is instrumented with the average number of advertising pages of the publisher’s

other magazines.

We estimate the demand system (24) and (25) equation by equation using NPIV esti-

mation for transformation models developed in Florens and Sokullu (2016) and extended in
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Sokullu (2016b) for the case where all the right-hand side variables are endogenous. Moreover

we estimate each equation using three different regularisation parameter selection criteria.

Note that the model in this section is slightly different than the one given in (1). First

neither (24) nor (25) includes any finite-dimensional parameter hence it is simpler than the

model given in (1). Second, all the right-hand side variables in (24) and (25) are endogenous.

Sokullu (2016b) shows that the model is identified under similar assumptions as in Florens

and Sokullu (2016). Below we explain the estimation of this simple model briefly using the

readers’ demand equation (Equation 24) only.

Denote the instruments for reader demand equation by Zr, so that E[U r|Zr] = 0. Then

one can write:

E[Hr(N r)|Zr] = E[ϕr(Na)|Zr] + E[P r|Zr]

E[Hr(N r)− ϕr(Na)|Zr] = E[P r|Zr]. (26)

Define the operator T r as:

T r : Er =
{
L2
Nr × L̃2

Na

}
7→ L2

Zr : T r(Hr, ϕ) = E[Hr(N r)− ϕ(Na)|Zr]

where L̃2
Na = {ϕ ∈ L2

Na : E(ϕr) = 0}. As in Section 2, L̃2
Na is the space of functions where

E[ϕr] = 0. The adjoint operator of T r, T r∗ follows from Section 2, as well and it is equal to:

T r∗ξ = (E[ξ|N r],−PE[ξ|Na])

where P is the projection operator from L2
Na onto L̃2

Na . Then Equation (26) can be rewritten

as:

T r(Hr(N r), ϕr(Na)) = f r (27)

where f r = E(P r|Zr). Note that in the model given in Section 2, there is an exogenous

variable X instead of the P r. The system given in (27) is also an ill-posed inverse problem

and the regularized solution of (Hr(N r), ϕr(Na)) can be obtained by minimization of

min
Hr(Nr),ϕr(Na)

{
‖T r(Hr(N r), ϕr(Na))− f r‖2 + α ‖(Hr(N r), ϕr(Na))‖2

}
.

The Tikhonov regularised solution is then given by:

(Hr(N r), ϕr(Na))′ = (γrnI + T r∗T r)−1T r∗f r, (28)

where I is the identity operator in L2
Nr × L2

Na . The counterpart of Equation (8) for this
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endogenous simple model is given by(
γrnH

r + E [E(Hr|Zr)|N r]− E [E(ϕ|Zr)|N r]

γrnϕ
r − PE [E(Hr|Zr)|Na] + PE [E(ϕ|Zr)|Na]

)
=

(
E[E(P r|Zr)|N r]

−PE[E(P r|Zr)|Na]

)
(29)

The estimation strategy introduced in Section 2 can be used here too. Given an i.i.d. sample

(N r
i , N

a
i , P

r
i , Z

r
i ), i = 1, ..., N , the expectations are replaced by their empirical counterparts

and the system of equations is solved for Hr(N r
i ) and ϕr(Na

i ) for i = 1, ..., N . Details

regarding the implementation of the model as well as its asymptotic properties can be found

in Sokullu (2016b).

Results are presented in Figures 1 and 2. In all figures, red dots show the estimates

obtained with discrepancy rule, green dots show those obtained with two-step cross-validation

and finally blue ones show the estimates obtained with one-step cross-validation.

As can be seen from Figures 1a and 2a, all selection methods give similar rearranged down-

ward sloping demand curves, especially inverse of advertiser demand is almost estimated to

be the same with three methods. The more important issue in this empirical exercise is the

estimation of the two-sided network effect functions. Sokullu (2016a) finds that two-sided

network effects are nonlinear and nonmonotone on the readers’ side (discrepancy rule), and

our estimates obtained with cross-validation selection of regularisation parameter confirm

this result. Indeed, Figure 1b shows that the network effects are estimated to be weaker

compared to results of Sokullu (2016a) and the level of ads from which the readers start to

get positive utility is a little bit higher. When we consider Figure 2b, it can be seen that

the two-sided network effects are estimated to be monotonic with all methods although they

are estimated to be stronger with cross-validation. In other words, benefits the advertisers

get are estimated to be much higher with cross-validation selection rules. In Appendix D,

Figure 9 includes estimates for reader’s demand based on iterative cross-validation which are

similar to those obtained with one-step cross-validation, and estimates based on simultane-

ous discrepancy rule, which are wiggly due to under-regularisation. Figure 10 shows that

estimates for advertiser’s demand based on the iterative method also differ. This is in line

with results of Monte-Carlo simulations which show that for small sample sizes estimates

based on CV2 and It.CV2 may differ.

To sum up, when the selected α’s are not significantly different from each other, all

selection rules perform similarly. Especially for an empirical application in which the non-

parametric estimation is done to obtain information about the monotonicity of the function,

all methods would give similar results. On the other hand, if we are more interested in the

magnitude of an estimated effect, the use of a selection method with better small sample

properties will be important.
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Figure 1: Estimation of reader’s demand. (a) Inverse demand function, Hr(N r). (b)
Network effect of advertisers on readers, ϕr(Na). Choice of regularisation parameter(s):
Discrepancy rule (red), CV1 (green) and CV2 (blue).
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Figure 2: Estimation of advertiser’s demand. (a) Inverse demand function, Ha(Na).
(b) Network effect of readers on advertisers, ϕa(N r). Choice of regularisation parameter(s):
Discrepancy rule (red), CV1 (green) and CV2 (blue).
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6 Conclusion

This paper proposes several criteria for the selection of regularisation parameters in

semiparametric transformation models. We have provided extensive numerical simulations

to study the finite sample behaviour of our various criteria.

In practice, we recommend using the one-step cross-validation criterion for choosing the

regularisation parameters. In small samples, our preferred implementation requires perform-

ing the minimization over a two-dimensional grid. Our simulations show that this approach

dominates alternative criteria and implementations. In large samples, our simulations show

that the proposed iterative implementation provides a reliable alternative. This is useful nu-

merically since minimization over a two-dimensional grid may be computationally demand-

ing. The iterative approach is easy to implement, and not very sensitive to the convergence

tolerance threshold.

Overall, this paper suggests that choosing regularisation parameters simultaneously in

transformation models yields substantial improvements in the finite sample performance of

the estimator introduced in Florens and Sokullu (2016). In future work, we will study the

theoretical properties of the one-step criterion we have proposed.
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A Derivation of the Adjoint Operator

To compute the adjoint operator of T , T ∗, let us first assume that T : E =

{L2
F (Y )× L2

F (Z)} 7→ L2
F (X,W ), i.e we do not impose normalization. Then we can write:

〈T (H(Y ), ϕ(Z)), ψ(X,W )〉L2
F (X,W )

=

∫ [∫
(H(y)− ϕ(Z))

f(y, z, x, w)

fY (y)fZ(z)fXW (x,w)
fY (y)fZ(z)dydz

]
ψ(X,W )fXW (x,w)dxdw

=

∫ [∫
H(Y )

f(y, z, x, w)

fY (y)fXW (x,w)
fY (y)dy

]
ψ(X,W )fXW (x,w)dxdw

−
∫ [∫

ϕ(Z)
f(y, z, x, w)

fZ(z)fXW (x,w)
fZ(z)dz

]
ψ(X,W )fXW (x,w)dxdw

=

∫ [∫
ψ(X,W )

f(y, z, x, w)

fY (y)

]
︸ ︷︷ ︸

E[ψ(X,W )|Y ]

H(Y )fY (y)dy −
∫ [∫

ψ(X,W )
f(y, z, x, w)

fZ(z)

]
︸ ︷︷ ︸

−E[ψ(X,W )|Z]

ϕ(Z)fZ(z)dz.

Note however that our parameter space is E0. For this parameter space, following Lemma

3 in Florens and Sokullu (2016), T ∗ is given by:

T ∗ψ = (E[ψ(X,W )|Y ],−PE[ψ(X,W )|Z]).

B Consistency and Rate of Convergence

In this section we present the asymptotic properties of the estimators. These properties

have already been shown in Florens and Sokullu (2016). Hence, here we present the needed

assumptions and the main results and refer the reader to Florens and Sokullu (2016) for

further details and proofs.

For the sake of exposition Florens and Sokullu (2016) show the asymptotic properties in

two steps. In the first step, they assume that there is no finite dimensional parameter in the

model and that X ∈ R. Under this setting, it is easier to show the asymptotic properties of

Ĥ(Y ) and ϕ̂(Z). Then in the second step they assume that the model is the one given in

Equation (1) and show the asymptotic properties of β̂.

To present the results of the first step, assume that the model we consider is given by:

H(Y ) = ϕ(Z) +X + U (30)

E[U |X,W ] = 0,
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where Y, Z ∈ R are endogenous variables, X ∈ R is an exogenous variable and W ∈ Rp is a

vector of instruments. As in the general model introduced in Section 2, U ∈ R is an error

term. Before turning to assumptions, let us introduce the following definitions:

Definition 1 Let {λj, φj, ψj} be the singular system of the operator T such that:

Tφj = λjψj and T ∗ψj = λjφj,

where λj denote the sequence of nonzero singular values of the compact linear operator T ,

φj and ψj, for all j ∈ N, are orthonormal sequences of functions in E0 and L2
F (X,W ),

respectively. We can moreover write the singular value decomposition for each ϕ ∈ E0:11

Tϕ =
∞∑
j=1

λj〈ϕ, φj〉ψj

Definition 2 If K : E1 7→ E2 is a linear operator between two normed spaces, then the

operator norm of K is given by:

‖K‖ := sup{‖Kφ‖E2 : φ ∈ E1 and ‖φ‖E1 ≤ 1}

The following assumptions are needed for consistency:

Assumption 8 Source Condition: There exists ν > 0 such that:

∞∑
j=1

〈Φ, φj〉2

λ2νj
=
∞∑
j=1

[〈H,φ1,j〉+ 〈ϕ, φ2,j〉]2

λ2νj
<∞

where Φ = (H,ϕ).

Assumption 9 There exists s ≥ 2 such that:

•
∥∥∥T̂ − T∥∥∥2 = Op

(
1

Nhp+2
N

+ h2sN

)
•
∥∥∥T̂ ∗ − T ∗∥∥∥2 = Op

(
1

Nhp+2
N

+ h2sN

)
where s is the minimum between the order of the kernel and the order of the differentiability

of f , p is the dimension of the instrument vector W and hN is the bandwidth.

Assumption 10 ∥∥∥T̂ ∗X − T̂ ∗T̂Φ
∥∥∥2 = Op

(
1

N
+ h2sN

)
11For more on singular value decomposition, see Carrasco, Florens, and Renault (2007).
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Assumption 11 limN→∞ αN = 0, limN→∞ α
2
NN →∞, limN→∞Nh

p+2
N →∞,

limN→∞
h2sN
α2
N

= 0, limN→∞ α
2−ν
N Nhp+2

N →∞ or ν ≥ 2.

Proposition 2 (Theorem 5 in Florens and Sokullu (2016)) Let us define Φ = (H(Y ), ϕ(Z)).

Let s be the minimum between the order of the kernel and the order of the differentiability

of f and ν be the regularity of Φ. Under Assumptions 8 to 11:

•
∥∥∥Φ̂α

N − Φ
∥∥∥2 = Op

(
1
α2

(
1
N

+ h2sN
)

+ 1
α2

(
1

Nhp+2
N

+ h2sN

) (
αmin{ν,2})+ αmin{ν,2}

)
•
∥∥∥Φ̂α

N − Φ
∥∥∥→ 0 in probability.

For the second step, consider again the general model given in Assumption 1. Below we

introduce the assumptions needed to show that β̂ is consistent and asymptotically normal.

Note that once
√
N -consistency for β̂ is shown, consistency of (Ĥ, ϕ̂) follows from step 1

straightforwardly.

Let {λj, φj, ψj} for j ≥ 1 be the singular system of the operator T as defined before and

let {µl, el, ψ̃l} for l = 1, 2, .., q − 1 be the singular system of the operator TX , such that for

each β ∈ Rq−1 we can write:

TXβ =

q−1∑
l=1

µl〈β, el〉ψ̃l.

Assumption 12 Source Condition: There exists η > 0 such that:

max
l=1,...,q−1

∞∑
j=1

〈
ψ̃l, ψj

〉2
λ2ηj

<∞.

Assumption 13 Parameters given in the Source Conditions in Assumptions 8 and 12 are

both greater than or equal to two, i.e., ν ≥ 2 and η ≥ 2.

Assumption 14 limN→∞Nα→ 0, limN→∞NαNh
2s
N → 0, limN→∞

αN

hp+q+1
N

→ 0.

We also modify Assumptions 9 and 11 to account for the change in the dimension of X.

Assumption 15 There exists s ≥ 2 such that:

•
∥∥∥T̂ − T∥∥∥2 = Op

(
1

Nhp+q+1
N

+ h2sN

)
•
∥∥∥T̂ ∗ − T ∗∥∥∥2 = Op

(
1

Nhp+q+1
N

+ h2sN

)
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where s is the minimum between the order of the kernel and the order of the differentiability

of f , p is the dimension of the instrument vector W , q is the dimension of X and hN is the

bandwidth.

Assumption 16 limN→∞ αN → 0, limN→∞ h
2s
N → 0, limN→∞Nh

p+q+1
N →∞.

Let us denote R(T ) the range of T and R(T )⊥ its orthogonal space in L2
F (X,W ). The

null space of T ∗ is denoted by N (T ∗). We assume that the set of instruments is sufficiently

rich such that:

Assumption 17 R(T )⊥ = N (T ∗) 6= {0}.

In practice, this assumption implies that there exists an element ψj defined by the SVD of

T such that ψj ∈ R(T )⊥. For example, this condition is satisfied in the joint nondegenerate

normal case, i.e, if (Y, Z,X,W ) is jointly distributed as a nondegenerate normal distribution.

In such a case, the null space of T ∗ is {0} if the range of the covariance with (Y, Z) and

(X,W ) is equal to the dimension of (X,W ). Note that this is impossible even if X0, X1 ∈ R
and W has at least one element.

Assumption 18 For δ > 0, we have:

• E[|U |2+δ |X,W ] = c, for any c ∈ R

• E[|(I − PY Z)X1|2+δ] <∞ where PY Z = T (T ∗T )−1T ∗

Proposition 3 (Theorem 9 in Florens and Sokullu (2016)) Assume that V ar[U |X,W ] = σ2.

Moreover assume that Assumptions 8, 10 and 12-18 hold. Then:

√
N(β̂ − β)→ N (0, V )

where V = σ2M−1[
∑

j/ψj∈R(T )⊥ E(X1ψj)E(X1ψj)
′]M−1 and M = T ∗XT (T ∗T )−1T ∗TX−T ∗XTX

and ψj ∈ R(T )⊥.

31



C Additional Simulations and Figures

C.1 Figures for Design 1

Figure 3: Simulation results for estimation of H(y). N = 400. Simulation estimates
(grey), average estimate (blue) and true function (red) across methods (TOP: left: Disc. R;
middle: CV1; right: CV2. BOTTOM: left: Disc. R 2, right: It. CV 2).
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Figure 4: Simulation results for estimation of ϕ(z). N = 400. Simulation estimates
(grey), average estimate (blue) and true function (red) across methods (TOP: left: Disc. R;
middle: CV1; right: CV2. BOTTOM: left: Disc. R 2, right: It. CV 2).
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Figure 5: Simulation results for estimation of H(y) and ϕ(z). N = 400. Average
simulation estimates of H(y) (left) and ϕ(z) (right) across methods: Disc. R (black), CV1
(green), CV2 (blue), Disc. R 2 (light blue), It. CV 2 (magenta), and true function (red).
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C.2 Simulation results for Design 2

Table 7: Summary statistics for DEV2(ϕ̂α̂, Ĥα̂, β̂α̂) - Design 2.

Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

Mean S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d.
N = 100 1.94 2.35 1.86 0.59 1.60 0.90 1.43 0.46 1.49 0.62
N = 200 1.62 0.99 1.97 0.47 1.47 0.59 1.39 0.41 1.34 0.39
N = 400 1.55 1.50 1.89 0.41 1.39 0.95 1.22 0.28 1.28 0.32

Table 8: Summary statistics for DEV1(ϕ̂α̂, Ĥα̂, β̂α̂) - Design 2.

Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

Mean S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d.
N = 100 1.24 0.20 1.21 0.18 1.15 0.15 1.10 0.13 1.13 0.15
N = 200 1.18 0.13 1.29 0.14 1.14 0.14 1.11 0.12 1.10 0.11
N = 400 1.13 0.10 1.10 0.12 1.07 0.10 1.03 0.07 1.08 0.09

Table 9: Summary statistics for DEV∞(ϕ̂α̂, Ĥα̂, β̂α̂) - Design 2.

Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

Mean S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d.
N = 100 1.49 1.00 1.23 0.35 1.19 0.52 1.08 0.21 1.19 0.41
N = 200 1.61 1.03 1.29 0.39 1.23 0.47 1.13 0.29 1.18 0.35
N = 400 1.59 1.19 1.25 0.35 1.30 0.88 1.14 0.34 1.06 0.25
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Table 10: Ratio of Mean Square Errors for Ĥ - Design 2.

Sample size MSECV 2(Ĥ)

MSEDisc.R(Ĥ)

MSECV 2(Ĥ)

MSEDisc.R2(Ĥ)

MSECV 2(Ĥ)

MSECV 1(Ĥ)

MSECV 2(Ĥ)

MSEIt.CV 2(Ĥ)

N = 100 72.55 93.11 92.24 92.43
N = 200 93.40 82.05 99.08 103.32
N = 400 79.70 109.53 92.75 96.06

Table 11: Ratio of Mean Square Errors for ϕ̂ - Design 2.

Sample size MSECV 2(ϕ̂)
MSEDisc.R(ϕ̂)

MSECV 2(ϕ̂)
MSEDisc.R2(ϕ̂)

MSECV 2(ϕ̂)
MSECV 1(ϕ̂)

MSECV 2(ϕ̂)
MSEIt.CV 2(ϕ̂)

N = 100 52.76 77.01 80.71 82.90
N = 200 57.96 79.28 83.94 91.37
N = 400 64.53 86.07 82.59 96.07

Sample size Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

N = 100 0.24
(0.07)

0.20
(0.06)

0.23
(0.07)

0.22
(0.06)

0.24
(0.07)

N = 200 0.26
(0.05)

0.22
(0.04)

0.25
(0.05)

0.25
(0.05)

0.25
(0.05)

N = 400 0.27
(0.03)

0.22
(0.03)

0.26
(0.03)

0.26
(0.03)

0.26
(0.03)

(a) Average and standard errors.

Sample size Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

N = 100 7.72 13.94 9.79 9.62 8.40
N = 200 3.90 8.90 5.04 5.24 4.46
N = 400 2.22 6.58 2.78 2.58 2.70

(b) Mean Square Error ×1000.

Table 12: Simulation results for estimation of β. Design 2 (a) Average of β̂ estimates
across simulations and selection methods. Simulation standard errors in parenthesis; (b)
Mean square error across simulations ×1000.
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C.3 Figures for Design 2

Figure 6: Simulation results for estimation of H(y). N = 400. Simulation estimates
(grey), average estimate (blue) and true function (red) across methods (TOP: left: Disc. R;
middle: CV1; right: CV2. BOTTOM: left: Disc. R 2, right: It. CV 2).
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Figure 7: Simulation results for estimation of ϕ(z). N = 400. Simulation estimates
(grey), average estimate (blue) and true function (red) across methods (TOP: left: Disc. R;
middle: CV1; right: CV2. BOTTOM: left: Disc. R 2, right: It. CV 2).
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Figure 8: Simulation results for estimation of H(y) and ϕ(z). N = 400. Average
simulation estimates of H(y) (left) and ϕ(z) (right) across methods: Disc. R (black), CV1
(green), CV2 (blue), Disc. R 2 (light blue), It. CV 2 (magenta), and true function (red).
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C.4 Robustness to bandwidth choice

We show results of two Monte-Carlo simulations for Design 1 with two different band-

width specifications: Silverman’s rule-of-thumb divided by 2 (Tables 13-18), and Silverman’s

rule of thumb multiplied by 2 (Tables 19-24), for each of the bandwidth parameters hy, hz, hx

and hw. Compared to simulations with bandwidths chosen by Silverman’s rule-of-thumb,

the main difference is that with larger bandwidths, Tables 13-15 show that the simultane-

ous implementation of the discrepancy rule performs relatively well in all metrics, while the

best performing method is the iterative method It.CV2. As Table 16 indicates, the relative

performance of CV2 mostly deteriorates due to estimation of H, since the relative MSE

for ϕ̂ remains favorable to CV2 (Table 17). Interestingly, It.CV2 dominates in terms of

MSE of both Ĥ and ϕ̂, suggesting that its performance may be more robust to bandwidth

choice. With smaller bandwidths, CV2 and It.CV2 dominate. The performance of all meth-

ods deteriorates compared to results obtained with Silverman’s rule-of-thumb. Overall the

conclusions are qualitatively similar to those obtained with Silverman’s rule of thumb.

Table 13: Summary statistics for DEV2(ϕ̂α̂, Ĥα̂, β̂α̂) - Design 1. Bandwidths speci-
fication: Silverman’s rule-of-thumb ×2.

Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

Mean S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d.
N = 100 3.46 2.09 2.34 1.12 2.36 4.83 1.74 0.89 1.81 0.95
N = 200 3.50 2.01 2.29 0.94 3.18 2.75 1.81 0.97 1.89 1.15
N = 400 3.25 1.84 2.07 0.77 3.29 3.21 2.12 0.89 1.85 0.77

Table 14: Summary statistics for DEV1(ϕ̂α̂, Ĥα̂, β̂α̂) - Design 1. Bandwidths speci-
fication: Silverman’s rule-of-thumb ×2.

Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

Mean S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d.
N = 100 1.82 0.49 1.53 0.35 1.43 0.46 1.29 0.31 1.31 0.32
N = 200 1.81 0.46 1.50 0.30 1.69 0.50 1.30 0.31 1.27 0.31
N = 400 1.82 0.43 1.44 0.29 1.84 0.49 1.48 0.33 1.35 0.28

Table 15: Summary statistics for DEV∞(ϕ̂α̂, Ĥα̂, β̂α̂) - Design 1. Bandwidths speci-
fication: Silverman’s rule-of-thumb ×2.

Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

Mean S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d.
N = 100 2.53 1.36 1.88 1.00 1.76 1.32 1.47 0.69 1.56 0.76
N = 200 2.80 1.75 1.96 1.16 2.54 1.83 1.60 0.80 1.71 0.97
N = 400 2.24 1.23 1.57 0.71 2.21 1.87 1.59 0.65 1.45 0.65
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Table 16: Ratio of Mean Square Errors for Ĥ - Design 1. Bandwidths specification:
Silverman’s rule-of-thumb ×2.

Sample size MSECV 2(Ĥ)

MSEDisc.R(Ĥ)

MSECV 2(Ĥ)

MSEDisc.R2(Ĥ)

MSECV 2(Ĥ)

MSECV 1(Ĥ)

MSECV 2(Ĥ)

MSEIt.CV 2(Ĥ)

N = 100 89.99 135.17 88.26 92.02
N = 200 96.32 157.37 75.30 91.68
N = 400 134.46 254.45 90.19 105.71

Table 17: Ratio of Mean Square Errors for ϕ̂ - Design 1. Bandwidths specification:
Silverman’s rule-of-thumb ×2.

Sample size MSECV 2(ϕ̂)
MSEDisc.R(ϕ̂)

MSECV 2(ϕ̂)
MSEDisc.R2(ϕ̂)

MSECV 2(ϕ̂)
MSECV 1(ϕ̂)

MSECV 2(ϕ̂)
MSEIt.CV 2(ϕ̂)

N = 100 27.65 47.18 56.78 96.48
N = 200 25.48 47.54 33.84 117.17
N = 400 31.45 55.78 38.51 150.80

Sample size Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

N = 100 0.23
(0.10)

0.20
(0.08)

0.25
(0.08)

0.25
(0.08)

0.26
(0.08)

N = 200 0.25
(0.07)

0.22
(0.05)

0.28
(0.06)

0.27
(0.06)

0.28
(0.06)

N = 400 0.27
(0.05)

0.24
(0.04)

0.30
(0.04)

0.30
(0.04)

0.30
(0.04)

(a) Average and standard errors.

Sample size Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

N = 100 14.88 15.00 8.88 8.23 8.10
N = 200 7.58 9.03 4.29 4.01 3.96
N = 400 3.65 5.13 1.75 1.53 1.61

(b) Mean Square Error ×1000.

Table 18: Simulation results for estimation of β. Design 1. Bandwidths specifica-
tion: Silverman’s rule-of-thumb ×2. (a) Average of β̂ estimates across simulations and
selection methods. Simulation standard errors in parenthesis; (b) Mean square error across
simulations ×1000.
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Table 19: Summary statistics for DEV2(ϕ̂α̂, Ĥα̂, β̂α̂) - Design 1. Bandwidths speci-
fication: Silverman’s rule-of-thumb/2.

Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

Mean S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d.
N = 100 1.98 1.59 1.94 0.49 1.58 0.48 1.62 0.43 1.64 0.53
N = 200 1.35 0.62 1.71 0.25 1.49 0.40 1.46 0.27 1.36 0.29
N = 400 1.42 0.98 1.82 0.23 1.51 0.39 1.48 0.31 1.34 0.32

Table 20: Summary statistics for DEV1(ϕ̂α̂, Ĥα̂, β̂α̂) - Design 1. Bandwidths speci-
fication: Silverman’s rule-of-thumb/2.

Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

Mean S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d.
N = 100 1.36 0.22 1.37 0.17 1.19 0.15 1.20 0.14 1.25 0.17
N = 200 1.16 0.09 1.24 0.10 1.13 0.10 1.12 0.09 1.13 0.09
N = 400 1.14 0.08 1.19 0.10 1.10 0.10 1.07 0.08 1.08 0.08

Table 21: Summary statistics for DEV∞(ϕ̂α̂, Ĥα̂, β̂α̂) - Design 1. Bandwidths speci-
fication: Silverman’s rule-of-thumb/2.

Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

Mean S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d.
N = 100 1.54 0.98 1.22 0.31 1.13 0.21 1.11 0.16 1.14 0.25
N = 200 1.36 0.78 1.16 0.27 1.09 0.28 1.06 0.12 1.09 0.21
N = 400 1.56 1.22 1.18 0.29 1.12 0.22 1.09 0.18 1.10 0.24
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Table 22: Ratio of Mean Square Errors for Ĥ - Design 1. Bandwidths specification:
Silverman’s rule-of-thumb/2.

Sample size MSECV 2(Ĥ)

MSEDisc.R(Ĥ)

MSECV 2(Ĥ)

MSEDisc.R2(Ĥ)

MSECV 2(Ĥ)

MSECV 1(Ĥ)

MSECV 2(Ĥ)

MSEIt.CV 2(Ĥ)

N = 100 80.37 90.98 99.77 100.58
N = 200 100.67 94.02 97.82 105.33
N = 400 86.17 93.35 96.24 104.26

Table 23: Ratio of Mean Square Errors for ϕ̂ - Design 1. Bandwidths specification:
Silverman’s rule-of-thumb/2.

Sample size MSECV 2(ϕ̂)
MSEDisc.R(ϕ̂)

MSECV 2(ϕ̂)
MSEDisc.R2(ϕ̂)

MSECV 2(ϕ̂)
MSECV 1(ϕ̂)

MSECV 2(ϕ̂)
MSEIt.CV 2(ϕ̂)

N = 100 25.70 55.19 90.47 61.49
N = 200 42.97 67.13 92.53 73.11
N = 400 40.96 72.27 92.75 78.22

Sample size Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

N = 100 0.22
(0.08)

0.17
(0.07)

0.19
(0.07)

0.18
(0.06)

0.20
(0.07)

N = 200 0.24
(0.04)

0.19
(0.04)

0.20
(0.04)

0.20
(0.04)

0.22
(0.04)

N = 400 0.24
(0.03)

0.20
(0.03)

0.21
(0.03)

0.21
(0.03)

0.22
(0.03)

(a) Average and standard errors.

Sample size Disc. R Disc. R 2 CV 1 CV 2 It. CV 2

N = 100 12.02 20.31 16.30 17.22 15.68
N = 200 5.61 13.25 10.87 11.06 8.98
N = 400 4.35 11.22 8.65 8.71 6.89

(b) Mean Square Error ×1000.

Table 24: Simulation results for estimation of β. Design 1. Bandwidths specifica-
tion: Silverman’s rule-of-thumb/2. (a) Average of β̂ estimates across simulations and
selection methods. Simulation standard errors in parenthesis; (b) Mean square error across
simulations ×1000.
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D Empirical Application: Additional Figures
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Figure 9: Estimation of reader’s demand. (a) Inverse demand function, Hr(N r). (b)
Network effect of advertisers on readers, ϕr(Na). Choice of regularisation parameter(s):
Disc.R (red), Disc. R 2 (light blue), CV1 (green), CV2 (blue), It.CV2 (magenta).
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Figure 10: Estimation of advertiser’s demand. (a) Inverse demand function, Ha(Na).
(b) Network effect of readers on advertisers, ϕa(N r). Choice of regularisation parameter(s):
Disc.R (red), Disc. R 2 (light blue), CV1 (green), CV2 (blue), It.CV2 (magenta).
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E Illustration of cross-validation criteria

In this Section we illustrate the shape of the cross-validation criteria CV1(α) and

CV (αH , αϕ). We generate a random sample of size 400 according to Design 1 in the Monte-

Carlo simulations and compute the optimal values of the regularisation parameters using the

same grid that we used in the simulations. Then for illustrative purposes we recalculate the

criteria’s values in a much smaller area but with a larger grid (1500 grid points instead of

20). For CV (αH , αϕ), Figure 12 shows the value of the criterion fixing the value of αϕ to

its optimal value. On the other hand, Figure 13 shows the value of the criterion fixing the

value of αH to its optimal value. These figures illustrate the presence of multiple minima

which motivate our use of a grid in order to select the optimal values.
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Figure 11: Cross-validation objective CV1
.
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Figure 12: Cross-validation objective CV (., α∗ϕ)
.
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Figure 13: Cross-validation objective CV (α∗H , .)
.

46


	samisenayfinaldpcovsheet
	SokulluStouli2016_Rev2

