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Abstract

We derive moment conditions for dynamic, AR(1) panel data models when values of
the outcome variable are missing. In this context, commonly used estimators only
use data on individuals observed for at least three consecutive periods. We derive
moment conditions for observations with at least three non-consecutive observations
for estimation of the parameters by GMM.
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1 Introduction

We derive moment conditions for the AR(1) dynamic panel data model when values of

the outcome variable are missing completely at random. When data on the outcome

variable are available for all periods for all cross-sectional units (referred to as individ-

uals henceforth) the parameters of interest in linear dynamic panel data models can be

estimated effi ciently using a generalised method-of-moment (GMM) estimator based on

the moment restrictions described in e.g. Ahn and Schmidt (1995, 1997).

Denoting T the number of panel time periods, under standard assumptions there are

(T − 1) (T − 2) /2 linear and (T − 3) nonlinear moment conditions available, needing at

least 3 and 4 consecutive observations respectively. In practice, most commonly used

estimation procedures discard the information from the individuals that do not have the

required number of consecutive observations, or only use that part of the observations

∗We would like to thank Pedro Albarran, Jon Temple and an anonymous referee for helpful comments.
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that do. For instance, in a T = 8 panel, for those individuals with missing outcomes in

periods 5 and 8, only the consecutive observations in periods 1 to 4 contribute 4 moment

conditions for the estimation of the parameters.

In contrast, if we denote by Ti the number of observed outcomes for individual i,

we derive (Ti − 1) (Ti − 2) /2 + (Ti − 3) moment conditions for any Ti ≥ 3, allowing for

any missing data pattern. They can be represented in terms of first differences in the

observed observations, but with varying parameters. These are simple functions of the

model parameters and the number of periods between successive observed outcomes.

Several previous studies consider estimation of dynamic panel data models with out-

comes either missing-at-random (e.g., Arellano and Bond, 1991; Abrevaya, 2013; Albar-

ran and Arellano, 2013) or missing not-at-random (e.g., Arellano, Bover and Labeaga,

1997; Semykina and Wooldridge, 2013). Most methods have focused on the available

linear moment conditions for missing data patterns that have at least three consecutive

observations, For example, the commonly used "pooled GMM" estimator uses informa-

tion from at least 3 consecutive observations, but sets the value of any missing observation

to 0 when it is used as an instrument. The "expanded GMM" treats this latter situation

as a different reduced form. This is essentially the method proposed by Muris (2013),

who estimates the parameters by minimum distance after estimation on all subsamples

with at least three consecutive observations separately. Albarran and Arellano (2013)

propose a "cross-sample GMM" estimator that utilises information that effectively re-

duces the number of estimated reduced form parameters. None of these methods use any

of the information contained in non-consecutive observations.

We consider the case when outcomes are missing-at-random, but other explanatory

variables are always observed. This is a situation akin to Kniesner et al. (2012), where

the outcomes, individual wages, were missing for some individuals in some periods, but

the industry level accident rate as the explanatory variable to determine the value of life

was always observed.

We first derive in Section 3 the moment conditions for panels with missing cross-

sections, i.e. outcomes are missing for all individuals in some periods. In this situation,

no additional assumptions are needed for the derived moment conditions to be valid. In

Section 4 we generalise the findings to the case where different individuals can have dif-

ferent missing data patterns and state the assumptions needed for the moment conditions
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to remain valid. Both sections present some Monte Carlo results for a GMM estimator

utilising these new moment conditions.

2 Moments for the AR(1) Panel Data Model

We consider the standard AR(1) panel data model of the form

yit = αyi,t−1 + uit (1)

uit = ηi + vit

for i = 1, ..., n and t = 2, ..., T . n is large, T is fixed and |α| < 1. ηi and vit have the

familiar error component structure with assumptions (for all i and t),

E (ηi) = E (vit) = E (ηivit) = 0, (2)

E (vitvis) = 0, ∀t 6= s. (3)

In addition, there is the standard assumption concerning the initial condition yi1

E (yi1vit) = 0, (4)

for i = 1, ..., n and t = 2, ..., T . Assumptions (2), (3) and (4) are the standard assumptions

implying moment conditions that are suffi cient to identify and estimate α for T ≥ 3.

Arellano and Bond (1991) use the set of (T − 1) (T − 2) /2 available linear moment

conditions

E
(
yt−2i (uit − uit−1)

)
= E

(
yt−2i (∆yit − α∆yi,t−1)

)
= 0, (5)

for t = 3, ..., T , where yt−2i = (yi1, yi2, ..., yi,t−2)
′, and ∆yit = yit − yi,t−1. For t = 4, ..., T ,

Ahn and Schmidt (1995) show that there are (T − 3) additional non-linear moment con-

ditions available under the standard assumptions:

E (uit∆ui,t−1) = E ((yit − αyi,t−1) (∆yi,t−1 − α∆yi,t−2)) = 0. (6)

3 Missing Cross Sections

Consider first the situation where outcomes in some periods are not observed for any

individual, i.e. there are gaps in the panel survey. Let yoi be the vector of observed
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outcomes for individual i, and denote by Ti = T o the number of observations in yoi . Denote

by t (j) the panel time period of the j-th observation yoij = yi,t(j). Let dk = t (k)−t (k − 1)

be the number of periods between yoik and y
o
i,k−1. For example, for T = 6, with missing

observations in periods 3 and 4, yoi = (yi1, yi2, yi5, yi6)
′, T o = 4, (d2, d3, d4) = (1, 3, 1) and

{t (1) , t (2) , t (3) , t (4)} = {1, 2, 5, 6}.
From the model structure (1) it follows that yit = αpyi,t−p+ηi

∑p−1
r=0 α

r+
∑p−1

l=0 α
lvi,t−l ,

and hence yoij = αdjyoi,j−1 + ηi
∑dj−1

r=0 α
r +

∑dj−1
l=0 αlvi,t(j)−l. We can therefore write the

model for the observed outcomes as

A (α) yoi = τ (α) ηi + ṽi (α) , (7)

where A (α) and τ (α) are a (T o − 1) × T o matrix and a (T o − 1) vector respectively,

defined as

A (α) =


−αd2 1 0 · · · 0

0 −αd3 1
...

...
. . . . . . 0

0 · · · 0 α−dTo 1

 ; τ (α) =


∑d2−1

r=0 αr∑d3−1
r=0 αr

...∑dTo−1
r=0 αr

 =
1

1− a


1− αd2
1− αd3
...

1− αdTo


and

ṽi (α) =


∑d2−1

l=0 αlvi,t(2)−l∑d3−1
l=0 αlvi,t(3)−l

...∑dTo−1
l=0 αlvi,t(T o)−l

 .

As in (5), we need to find a transformation that eliminate ηi and is such that past

observations are not correlated with the transformed errors. A transformation matrix

that satisfies these conditions is given by

G (a) =


−1−αd3
1−αd2 1 0 · · · 0

0 −1−αd4
1−αd3 1

...
...

. . . . . . 0

0 · · · 0 − 1−αdTo
1−αdTo−1

1

 ,

as then G (α) τ (α) = 0, and hence

G (α)A (α) yoi = G (α) ṽi (α) ≡ ṽ∗i ,
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with

ṽ∗i =



∑d3−1
l=0 αlvi,t(3)−l − 1−αd3

1−αd2

(∑d2−1
l=0 αlvi,t(2)−l

)
∑d4−1

l=0 αlvi,t(4)−l − 1−αd4
1−αd3

(∑d3−1
l=0 αlvi,t(3)−l

)
...(∑dTo−1

l=0 αlvi,t(T o)−l

)
− 1−αdTo

1−αdTo−1

(∑dTo−1−1
l=0 αlvi,t(T o−1)−l

)

 . (8)

The earliest idiosyncratic shock appearing in the first element of ṽ∗i is vi,t(1)+1, and hence

E
[
yi,t(1)ṽ

∗
i1

]
= E [yoi1ṽ

∗
i1] = 0. Similarly, the earliest idiosyncratic shock appearing in ṽ∗i2

is vi,t(2)+1, resulting in E
[
yi,t(1)ṽ

∗
i2

]
= E

[
yi,t(2)ṽ

∗
i2

]
= E [yoi1ṽ

∗
i2] = E [yoi2ṽ

∗
i2] 0, and so forth.

We therefore obtain the following (T o − 1) (T o − 2) /2 moment conditions

E [Zo′
i G (α)A (α) yoi ] = 0,

where

Zo
i =


yoi1 0 0 · · · · · · · · · · · · 0

0 yoi1 yoi2
...

...
. . . 0

0 · · · · · · 0 yoi1 yoi2 · · · yoi,T o−2

 .

The transformation G (α)A (α) yoi can be simplified. For j = 3, ..., T o, the (j − 2)-th

element of G (α)A (α) yoi is given by(
yoij − αdjyoi,j−1

)
− 1− αdj

1− αdj−1
(
yoi,j−1 − αdj−1yoi,j−2

)
=

(
yoij − yoi,j−1

)
− αdj−1 1− αdj

1− αdj−1
(
yoi,j−1 − yoi,j−2

)
= ∆yoij − αdj−1

1− αdj
1− αdj−1 ∆yoi,j−1,

resulting in the (T o − 1) (T o − 2) /2 moment conditions

E

[(
yoi1, ..., y

o
i,j−2

)′(
∆yoij − αdj−1

1− αdj
1− αdj−1 ∆yoi,j−1

)]
= 0, (9)

for j = 3, ..., T o. These moment conditions are based on simple first differences in any

observed sequence of outcomes, with differing parameters which are simple functions of

α and the number of periods between observed outcomes only.

We can further derive T o − 3 moment conditions equivalent to the Ahn-Schmidt

nonlinear moment conditions (6). 1From the results derived above, we get that, for
1We refrain here from making further assumptions about the initial condition yi1. How-

ever, it is easily established that if the Arellano and Bover (1995) and Blundell and Bond
(1998) moments E [∆yi,t−1 (yit − αyi,t−1)] = 0, for t = 3, ..., T hold in the complete panel, then
E
[
∆yoi,j−1

(
yoij − αdjyoi,j−1

)]
= 0 for j = 3, ..., T o.
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j = 4, .., T o,

E

[(
yoij − αdjyoi,j−1

)(
∆yoi,j−1 − αdj−2

1− αdj−1
1− αdj−2 ∆yoi,j−2

)]
= 0. (10)

3.1 Estimation

We present some Monte Carlo estimation results for a T = 6 panel with various com-

binations of 2 missing cross sections. The moment conditions are nonlinear in α, and

the corresponding errors are also functions of α. A two-step GMM procedure will be

effi cient given the moment conditions, but an initial effi cient weight matrix that does

not depend on estimated parameters is clearly not available. To avoid dependence on

an initial weight matrix, we estimate the parameters using the Continuous Updating

Estimator (CUE). Let gi (α) be the vector of moment conditions for individual i. Define

ĝ (α) = n−1
∑n

i=1 gi (α) and Ω̂ (α) = n−1
∑n

i=1 gi (α) gi (α)′, then the CUE is defined as

α̂CUE = arg min
a
ĝ (a)′

(
Ω̂ (a)

)−1
ĝ (a) .

The CUE has the further advantage that it is invariant to reparameterisation of the

moments, for example, it is invariant to whether we specify the moments as in (9), or

equivalently as

E
[(
yoi1, ..., y

o
i,j−2

)′ ((
1− αdj−1

)
∆yoij − αdj−1

(
1− αdj

)
∆yoi,j−1

)]
= 0.

It is also well behaved under many weak instrument asymptotics, see Newey and Wind-

meijer (2009).

Table 1 presents some Monte Carlo results for a design with ηi ∼ N (0, 1); vit ∼
N (0, 1) and with the initial observation yi1 drawn from the covariance-stationary distri-

bution. We set the value of α to 0.4 or 0.8. The number of Monte Carlo replications is

1000. We present Bias, Root mean squared error (Rmse), Median Bias and Interquartile

Range (IQR) of the CUE estimates for samples of size n = 1000, and Rmse and IQR for

samples of size 10, 000. Median Bias and IQR are generally more reliable measures for

the CUE as some outlying CUE estimates can be obtained in any set of replications.2

2For comparison, the bias, Rmse, Med Bias and IQR of the standard two-step Arellano-Bond GMM
estimator for the α = 0.8, n = 1000 and no missing data case are -0.0269, 0.0897, -0.0276 and 0.1185
respectively.
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For n = 1000, when α = 0.4 there is virtually no bias in the estimator for any of the

designs. Rmse and IQR are smallest for the case when y3 and y4 are missing. The Rmse

and IQR are then only 32% and 29% larger than those for the case where there are no

missing data. In contrast, the Rmse and IQR for the case where y5 and y6 are missing,

i.e. we have a standard T = 4 panel, are about double those of the full T = 6 panel.

This result is even stronger for the α = 0.8 case, where the standard T = 4 panel case

is performing the worst on all measures by a considerable amount. The best results in

terms of bias, Rmse, median bias and IQR are obtained for α = 0.8 and n = 1000 when y2

and y5 are missing. This missing data pattern actually resulted in the worst performance

overall when α = 0.4, as also confirmed for the n = 10, 000 case. In the larger sample,

the missing y3 and y4 case also performs well, and best on IQR, when α = 0.8. For this

missing data pattern, there are no standard moment conditions available.3

Table 1. Monte Carlo Estimation Results, T = 6

n = 1000 n = 10, 000
Missing obs Bias Rmse Med Bias IQR Rmse IQR

α = 0.4 None 0.0020 0.0234 0.0011 0.0325 0.0072 0.0093
y5, y6 0.0027 0.0481 0.0003 0.0629 0.0148 0.0198
y4, y5 0.0010 0.0452 0.0007 0.0622 0.0143 0.0196
y3, y5 0.0010 0.0392 0.0004 0.0530 0.0124 0.0169
y2, y5 -0.0006 0.0479 0.0023 0.0639 0.0156 0.0206
y3, y4 0.0017 0.0308 0.0018 0.0420 0.0098 0.0131

α = 0.8 None 0.0240 0.0793 0.0047 0.0774 0.0149 0.0196
y5, y6 0.0648 0.1697 0.0272 0.2297 0.0522 0.0575
y4, y5 0.0235 0.1147 0.0015 0.1256 0.0269 0.0360
y3, y5 0.0306 0.1310 0.0130 0.1148 0.0238 0.0272
y2, y5 0.0185 0.1014 -0.0027 0.1053 0.0233 0.0301
y3, y4 0.0471 0.1107 0.0191 0.1301 0.0245 0.0260

4 Missing Completely at Random

For the missing cross-sections case, the derived moment conditions lead to a consistent

estimator of α under no further assumptions than (2)-(4), as this type of missingness

is clearly exogenous and hence ignorable. In practice, we observe different missingness

3One could clearly specify the linear moment condition E [yi1 ((yi6 − yi2)− α (yi5 − yi1))] = 0. This
can be shown to be a linear combination of the moments (9).
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patterns, and in order for the moment conditions to remain valid, we make the assumption

that there is no systematic selection in the missingness generating process and that

outcomes are missing completely at random.

Let sit be an indicator variable equal to 1 if yit is observed and zero otherwise and

define Ti =
∑T

t=1 sit. We further define the vectors si = (si1, .., siT ) and vi = (vi2, ...viT )′.

We assume

Assumption M (Data are Missing Completely at Random) Data are available

from an unbalanced panel {sityit, sit}n,Ti=1,t=1 with Ti ≥ 3. For all i and for every possible

realization sr ∈ S of si, the probability P (si = sr|yi1, ηi, vi) = πr, 0 < πr < 1 does not

depend on (yi1, ηi, vi).

We assume that Ti ≥ 3 for all i since individuals with Ti ≤ 2 do not provide infor-

mation about α. For any individual with Ti ≥ 3 observations, the results from Section

3 produce a total of (Ti − 1) (Ti − 2) /2 + (Ti − 3) moment conditions. Under Assump-

tion M, we can combine the sets of moment conditions for groups with different missing

outcome data patterns for consistent estimation of α, and improve effi ciency by adding

these new moment conditions.

As an illustration, consider a T = 5 panel with nc individuals with a complete

set of observations, si = {1, 1, 1, 1, 1}. For this group we have the 8 standard linear

and nonlinear moment conditions. There are n3 individuals that miss observation yi3,

si = {1, 1, 0, 1, 1}. As this latter group does not have three consecutive observations,
they get omitted by most estimation procedures, (although again, the linear moment

E [yi1 ((yi5 − yi2)− α (yi4 − yi1))] = 0 is available). We assume that nc/n and n3/n con-

verge to constants for n → ∞, and n = nc + n3. We estimate α by the CUE. As there

is no overlap in the two sets of moment conditions and we assume random sampling, we

get a simple block-diagonal structure.

Table 2 presents the estimation results for the same design as in Section 3.1, for α =

0.4 and α = 0.8, n = 1000 and for 1000MC replications. The proportions n3/n considered

are 0, 0.2, 0.5, 0.8 and 1. "CC" denotes the estimator based on the standard moment

conditions using only the group of individuals with a complete set of observations. "All"

denotes the estimator based on all available moment conditions. For α = 0.4, we see that

the Rmse and IQR increase for "CC" with increasing n3/n, as expected. The increase in
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variability for the "All" estimator is smaller and bounded by the relatively good behaviour

of the estimator when there are only individuals with missing y3. The same pattern is

found, in this case for both bias and variability, when α = 0.8.

Table 2. Monte Carlo Estimation Results, T = 5, n = 1000

n3/n Moments Bias Rmse Med Bias IQR
α = 0.4 0 0.0028 0.0308 0.0016 0.0408

0.2 CC 0.0029 0.0337 0.0027 0.0454
All 0.0031 0.0316 0.0016 0.0430

0.5 CC 0.0021 0.0444 0.0011 0.0564
All 0.0018 0.0333 0.0013 0.0448

0.8 CC 0.0092 0.0863 0.0054 0.0990
All 0.0007 0.0357 0.0001 0.0445

1 0.0033 0.0357 0.0013 0.0480
α = 0.8 0 0.0440 0.1170 0.0131 0.1239

0.2 CC 0.0452 0.1254 0.0151 0.1438
All 0.0436 0.1231 0.0096 0.1322

0.5 CC 0.0664 0.1520 0.0371 0.1992
All 0.0487 0.1246 0.0179 0.1450

0.8 CC 0.0863 0.1976 0.0601 0.2730
All 0.0517 0.1305 0.0174 0.1731

1 0.0488 0.1248 0.0194 0.1513

5 AR1X Model

Consider next the AR(1) model with an explanatory variable

yit = αyi,t−1 + βxit + ηi + vit.

Observations on the outcome yit may be missing, but xit is always observed.

As now yit = αpyi,t−p + β
∑p−1

q=0 α
qxi,t−q + ηi

∑p−1
r=0 α

r +
∑p−1

l=0 α
lvi,t−l, and hence yoij =

αdjyoi,j−1 + β
∑dj−1

q=0 α
qxi,t(j)−q + ηi

∑dj−1
r=0 α

r +
∑dj−1

l=0 αlvi,t(j)−l we get

A (α) yoi − x̃iβ = τ (α) ηi + ṽi (α) ,

where the (j − 1)-th element of x̃i is given by

x̃i,j−1 =

dj−1∑
q=0

αqxi,t(j)−q,
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for j = 2..., T o. The (j − 2)-th element of the transformation G (α) x̃i is then given by

dj−1∑
q=0

αqxi,t(j)−q −
1− αdj

1− αdj−1

dj−1−1∑
q=0

αqxi,t(j−1)−q,

for j = 3, ..., T o, and hence the moment conditions (9) become

E

zi,,j−2
∆yoij−αdj−1

1− αdj
1− αdj−1 ∆yoi,j−1−β

dj−1∑
q=0

αqxi,t(j)−q−
1− αdj

1− αdj−1

dj−1−1∑
q=0

αqxi,t(j−1)−q

= 0,

for j = 3, ..., T o, where zi,j−2 =
(
yoi1, ..., y

o
i,j−2, xi1, ..., xi,t(j)−e

)′
. e is determined by the en-

dogeneity properties of xit, e.g. e = 1 if xit is predetermined: E [xitvit] = E [xi,t−1vi,t−1] =

0, but E [xitvi,t−1] 6= 0; and e = 2 if xit is endogenous: E [xitvit] 6= 0. The Ahn-Schmidt

equivalent moment conditions (10) follow straightforwardly.
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