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Abstract

We consider testing for weak instruments in a model with multiple endogenous variables.
Unlike Stock and Yogo (2005), who considered a weak instruments problem where the rank
of the matrix of reduced form parameters is near zero, here we consider a weak instruments
problem of a near rank reduction of one in the matrix of reduced form parameters. For
example, in a two-variable model, we consider weak instrument asymptotics of the form
m = dme + ¢//n where 71 and 7y are the parameters in the two reduced-form equations,
c is a vector of constants and n is the sample size. We investigate the use of a conditional
first-stage F-statistic along the lines of the proposal by Angrist and Pischke (2009) and show
that, unless 6 = 0, the variance in the denominator of their F-statistic needs to be adjusted
in order to get a correct asymptotic distribution when testing the hypothesis Hy : w1 = dms.
We show that a corrected conditional F-statistic is equivalent to the Cragg and Donald
(1993) minimum eigenvalue rank test statistic, and is informative about the maximum total
relative bias of the 2SLS estimator and the Wald tests size distortions. When § = 0 in
the two-variable model, or when there are more than two endogenous variables, further
information over and above the Cragg-Donald statistic can be obtained about the nature of
the weak instrument problem by computing the conditional first-stage F-statistics.
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1 Introduction

Following the work of Staiger and Stock (1997) and Stock and Yogo (2005), testing for weak
instruments is now commonplace. For a single endogenous variable model, the standard first-
stage F-statistic can be used to test for weakness of instruments, where weakness is expressed
in terms of the size of the bias of the IV estimator relative to that of the OLS estimator, or
in terms of the magnitude of the size distortion of the Wald test for parameter hypotheses.
Stock and Yogo (2005) tabulated critical values for the standard F-statistic that have been
incorporated in software packages.

For multiple endogenous variables, inspection of the individual first-stage F-statistics is no
longer sufficient. The Cragg-Donald (1993) statistic can be used to evaluate the overall strength
of the instruments in this case, and Stock and Yogo (2005) have tabulated critical values of the
minimum eigenvalue of the Cragg-Donald statistic for testing weakness of instruments. They
derive the limiting distributions under weak instrument asymptotics where the reduced form
parameters are local to zero in each reduced form equation, and obtain critical values that are
conservative in the sense that they are rejecting the null of weak instruments too infrequently
when the null is true.

In this paper, we are interested in analysing tests for weak instruments in a model with
multiple endogenous variables in a setting where the reduced form parameters are not local
to zero, but where the reduced form parameter matrix is local to a rank reduction of one. In
this case, the values of the F-statistics in each of the first-stage equations can be high, but the
identification of (some of) the model parameters is weak. We will focus initially on a model
with two endogenous variables. The weak instrument asymptotics we consider are local to a

rank reduction of one, of the form

71 = 0me + ¢/\/n,

where 71 and 79 are the parameters in the two reduced-form equations, ¢ is a vector of constants
and n is the sample size. We call these asymptotics LRR1 weak instrument asymptotics.

We will focus solely on the properties of the 2SLS estimator. We investigate the use of a
conditional first-stage F-statistic along the lines of the proposal by Angrist and Pischke (2009)
and show that the variance formula in the denominator of their F-statistic needs to be adjusted
in order to get a correct asymptotic distribution when testing the null hypothesis, in the two-

variable model, Hy : my = dws. We further show that the resulting new conditional F-statistic



is equivalent to the Cragg-Donald minimum eigenvalue statistic. Using our weak instrument
asymptotics we show that this conditional F-statistic cannot be used in the same way as the
Stock and Yogo (2005) procedure for a single endogenous variable to assess the magnitude of
the relative bias of the 2SLS estimator of an individual structural parameter. This is because
the OLS bias expression contains additional terms such that the expression for the bias of the
2SLS estimator relative to that of the OLS estimator does not have the the simple expression
as in the one-variable case. However, the total relative bias can be bounded as can the size
distortions of Wald tests on the structural parameters.

In a two-endogenous-variable model the conditional F-statistics for each reduced form are
equivalent to each other and to the Cragg-Donald minimum eigenvalue statistic under our LRR1
weak instrument asymptotics. This holds unless 6 = 0, in which case the local rank reduction
is due to the fact that w1 is local to zero and the first-stage F-statistic for 1 will be small and
that for xo will be large. In this case, both the Angrist-Pischke F-statistic and our conditional
F-statistic for x1 can be assessed against the Stock-Yogo critical value, and the 2SLS estimator
for the structural parameter on x5 is consistent. Additional information can also be obtained
from our conditional F-statistics when there are more than two endogenous variables, as they
will identify which variables cause the near rank reduction. For example, if in a three variable
model the near rank reduction is due to the reduced form parameters on two variables only,
the conditional F-statistic for the third variable will remain large giving the researcher valuable
information about the nature of the problem and directions for solving it. We also show that
the 2SLS estimator for the structural parameter of the third variable is consistent in that case.

The paper is organised as follows. In Section 2 we introduce the linear model with one
endogenous variable and summarise the Staiger and Stock (1997) and Stock and Yogo (2005)
results for testing for weak instruments. Section 3 considers weak instrument test statistics
for the linear model with two endogenous explanatory variables and introduces the new con-
ditional F-tests. Section 4 considers the relative bias and Wald test size distortions for the
2SLS estimator under the LRR1 weak instrument asymptotics as outlined above and presents
some Monte Carlo results for the two-variable model. Section 4 also shows the usefulness of
the conditional F-test statistics in a model with more than two endogenous variables. Finally,

Section 5 concludes.



2 Weak Instrument Asymptotics in One-Variable Model

In this section we follow the basic Staiger and Stock (1997) and Stock and Yogo (2005) setup.
The developments of the weak instrument setup and concepts for the one-variable model play
an important role when we expand the model to multiple endogenous variables in the next

section. The simple model is
y =B +u, (1)

where y, z, and u are n X 1 vectors, with n the number of observations. There is endogeneity,

such that F (u|z) # 0. The reduced form for x is
=21+, (2)

where Z is a n X k, matrix of instruments and v is n x 1. For individual u; and v; we assume,

2
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The 2SLS estimator is given by
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where Py = Z(2'2)"' 7.
The concentration parameter is given by
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and is a measure of the strength of the instruments, see Rothenberg (1984). A small con-
centration parameter is associated with a bias of the 2SLS estimator and deviations from its
asymptotic normal distribution.

A simple test whether the instruments are related to x is of course a Wald or F-test for the

hypothesis Hg : m = 0. The Wald test is given by

AN A YA VAV A R AL
War = 6_\2 = 82 ’
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where 7 = (2'Z)"' Z'z is the first-stage OLS estimator, and 52 = #'Mzz/n, where My =
I — Py. Under the null, W 4, X%z‘ The F-test is given by F' = W, /k,. Note that we refrain

from a degrees of freedom correction in the variance estimate. Also, note that the analyses here



and further below extend to a model with additional exogenous regressors, as we can replace
y,  and Z everywhere by their residuals from regressions on those exogenous regressors.
Staiger and Stock (1997) introduce weak instrument asymptotics as a local to zero alter-
native, m = ¢/+/n, which ensures that the concentration parameter does not increase with the
sample size
op — ' 7' 7w o, c’QZZc7

2 2
T 0%

where Qzz = plim (nilZ’Z).
Assuming that conditions are fulfilled, such that
1
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and k, > 3 when assessing relative bias. Then under weak instrument asymptotics,
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The bias of the OLS estimator is given by
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where p = Ju.
As a measure of relative bias, Stock and Yogo (2005) propose
2
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From the derivations above, and as F [z,|2,] = pzy, it follows that

B = <E {u 95)'21(]1?%)})2’

or

e



Using weak instrument asymptotics, Stock and Yogo (2005) are therefore able to assess
the size of the relative bias in relation to the first-stage F-statistic. As z, ~ N (0,Ix.), By is
determined by the values of A and k.. Let

1 C’szc
I=XN\k, = ——=2=,

k., o2

then using Monte Carlo simulation, i.e. draws of z, ~ N (0,1, ), Stock and Yogo (2005)
find the values of [such that B, is a certain value, say 0.1, for different values of k.. For
example, when k, = 4 and using 100,000 Monte Carlo draws, we obtain a relative expected bias
E [%} — 0.1 for | = 4.98. When k., = 8, we find [ = 7, again for B, = 0.1.

Using weak instrument asymptotics, Staiger and Stock (1997) derive the asymptotic distri-

bution for the first-stage F-statistic, which is given by
d
F— X%z (k:0) /=,

where xiz (a) is the non-central chi-squared distribution with non-centrality parameter a. The

F-test statistic can therefore be used to test the hypothesis
Hy:CP/k, <l, vs Hy:CP/k,>1,

where [, is the value for | determined above such that the B, = b. For b = 0.1, we find from
the scaled non-central chi-squared distribution a critical values of 10.20 when k, = 4 and 11.38
when k, = 8. In comparison, Stock and Yogo (2005), henceforth SY, find very similar critical
values of 10.27 and 11.39 for these two cases respectively.

As an illustration, we performed a small simulation. The model is as in (1) and (2), with

1= ) (905 %))

the instruments in Z are four independent standard normally distributed random variables and
T = ( c cc c ),/\/ﬁ, with ¢ chosen such that the relative bias B,, for n — oo is equal to
0.1, or 10%. We set the sample size n = 10,000 and show the results in Table 1 for 10,000
Monte Carlo replications. The results are clearly in line with the theory. The observed relative
bias is just over 10% and the rejection frequency of the F-test using the SY weak instrument

critical value is 5% at the 5% nominal level.



Table 1. Estimation and relative bias results for one-variable model

mean st dev rel bias SY rej freq
Bors 14989 0.0086
Bosrs 1.0529 0.2173  0.1060
F 5.97 2.36 0.0502
Notes: sample size 10,000; 10,000 MC replications; 5 = 1;
F' is the first-stage F-statistic for x; rel bias is the relative bias of the 2SLS
estimator, relative to that of the OLS estimator; SY rej freq uses the 5%
Stock-Yogo critical value for the F-test for a 10% relative bias.

The Wald test for testing the restriction Hy : 8 = 3 is given by

(BZSLS - 50) i (z'Pzx)

P) ’
Ou

~ / ~
where 62 = (y - :EB2SLS) (y - 3352SLS> /mn. Staiger and Stock (1997) show that, under weak

instrument asymptotics,
2
, £ lie! -
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where

vi=(A+ zv)/ A+2y); va=(A+ zv)/ Zu-

The Wald size distortion is maximised for p = 1, and SY find the critical values for the F-test
such that the maximal size of the Wald test is a certain value, say 10%, at a nominal 5% level.
For the Monte Carlo example above, we set p = 1 and choose ¢ such that the maximal size
distortion of the Wald test is 10%, in which case the value of [ is given by 16.415. The SY
critical value in this case is given by 24.58. The results are given in Table 2, and confirm that
the size of the Wald test is 10% and the rejection frequency of the F-test using the SY critical

values is indeed 5%.

Table 2. Estimation and Wald test results for one-variable model

mean st dev rej freq SY rej freq
Bors 1.9935 0.0008
Bosrs 1.0318 0.1184
w 1.42 2.52  0.0994
F 17.45 4.11 0.0501
Notes: sample size 10,000; 10,000 MC replications; 5§ = 1,p = 1;
W is the Wald test for testing Hy: 8 = 1; rej freq uses 5% critical value of X%% SY rej freq
uses the 5% Stock-Yogo critical value for the F-test, for a maximal 10% size of W.




3 Two Variable Model

Following the exposition in Angrist and Pischke (2009), we first consider the following two-

variable model

y = z18) + 2265+ u (3)
TG = Jm+wn
To = JLmg+ vy

where vy, x1, T2, u, v1 and vy are n X 1 vectors, with n the number of observations. Z is an
n X k, matrix of instruments, with k, > 2 (k, > 4 when assessing relative bias), and 7 and 75

are k, x 1 vectors. For an individual observation i,
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Equivalently, we can write

y = Xf+u

X = ZII+V

where 8 = (81,85); X = (:cl T ); II = ( T T ) and V = (vl V9 ) Further, let
x = vec(X), m = vec (II) and v = vec (V).
The OLS estimates for m; are denoted 7; = (z'z)7! Z'r;, 5 = 1,2, and the estimated

variances are given by

AT
Wiy oy )

S

where V = X — ZII.
The first-stage F-statistics are given by
Ay

-1
o _$;-Z(Z’Z) Z'zj
! k.53 k.53

7j:1727

and k. F); converges in distribution to a X%Z distribution under the null Hy : 7; = 0. Significant
first-stage F-statistics are clearly necessary, but not sufficient, for identification of §. For
example, if w1 = dmwy # 0, both first-stage F-statistics will reject their null in large samples, but

the model is clearly underidentified.



Staiger and Stock (1997) and Stock and Yogo (2005) consider weak instrument asymptotics
where all reduced form parameters are local to zero, i.e. II = C/y/n. The Wald test for
Hy : 7w =0 is given by

W=7 (57 e 2'2) 7
which is identical to the trace of the Cragg-Donald (1993) statistic

I D RS TUAVATHN

However, this Wald test statistic on the reduced form cannot be used in an equivalent way
to assess relative bias and 2SLS Wald test size distortions as in the one-variable model above,
because these are determined largely by the minimum eigenvalue of CD, Tyin. In other words,
relative bias and Wald size distortions can be large if tr (CD) is large but 7Ty, is small. In
a general setting with ¢ endogenous explanatory variables, W, = tr (CD) is a test for Hy :
rank (IT) = 0, whereas Tmiy is a test for Hp : rank (II) = g — 1. SY derive critical values for
Tmin/ k> under the local to zero weak instrument asymptotics for maximal total relative bias
and Wald test distortions, where the total relative bias is given by
(E {BzSLS} - 5),2)( <E {EQSLS} - /3)
B? = - . — , (4)
(2 [Bons| =) =x (£ [Fors] - 5)

with X x = plim (nle'X). In this case, as 7min is not the test statistic for Hy : 7 = 0, unlike in
the case of one endogenous variable, the correspondence is not exact and use of the SY critical
values results in a conservative test in the sense that the null of weak instruments is rejected
too infrequently when the null is true. This is not altogether an undesirable feature of the test,
as a researcher can be quite confident that instruments are not weak when 7y, /k, is larger
than the SY critical value.

The Staiger and Stock (1997) and Stock and Yogo (2005) results for the F-test and Cragg-
Donald statistic in the one-variable and multiple-variable model respectively in relation to the
relative bias and Wald test size distortions hold under the stated assumptions of the model
and the reduced form equations for the endogenous variables. When the variances in the
reduced forms are conditionally heteroskedastic, then one can compute robust F-statistics and
the Kleibergen-Paap (2006) robust version of the Cragg-Donald statistic. These test statistics
are then valid tests for underidentification as they have correct size under the null that the

instruments are not informative, i.e. for testing that rank (II) = 0. But the documented



relationship of the weak-instrument critical values and the sizes of the relative bias and Wald-
test size distortion no longer holds, see for example Bun and De Haan (2010). This limits the
exact use of the weak-instrument tests, as for example binary endogenous explanatory variables
automatically produce a conditionally heteroskedastic reduced form. Also, this relationship
brakes down in simple panel data models, when there is serial correlation in the reduced form
errors, or indeed in simple time-series models with serial correlation. In our development of
the conditional F-statistics for models with multiple endogenous variables, we maintain the
same assumptions as Staiger and Stock (1007) and Stock and Yogo (2005), and hence the same
limitations. Olea and Pflueger (2013) have recently proposed an alternative robust F-test type
procedure for weak instruments, but thus far it can only be applied to the one-endogenous

variable model.

3.1 Conditional F-test

Angrist and Pischke (2009) propose an alternative conditional first-stage F-statistic for the case
of multiple endogenous variables by reformulating the estimation problem to a one-variable
model after replacing the other endogenous variables with their reduced form predictions. For
instance, for the two-variable model, the 2SLS estimator for /3; is obtained by 2SLS in the

model

y = 2101 + 228, +u’, (5)
where Ty = Z7T9 = Pyxo, using Z as the instruments, and hence
By = () My, Py Mz,x1) ™ 2, My, Pyy.
Therefore, Bl can be seen as the 2SLS estimator in the one-variable model
y = Mz,x16; +&, (6)

where the residual Mz,x1 = x1 — ﬁgg, with & = (55’2552)71 Thry, is instrumented by Z. The
reduced form is then

Mz, x1 =Zk+¢€ (7)
and the Angrist-Pischke F-statistic is testing the hypothesis Hg : £ = 0, given by

Fap = AN _ xllM@PZM@afl (8)
(k. —1)52 (k. —1)52
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where & is the OLS estimator of &,
R=(22)" 2 Mayw1 = (2/2) 71 7' (w1 — 828) =71 — by

and 3? =€'€/n, with € = Mz,x1 — ZK. The degrees of freedom correction follows because T
has been predicted using the same instruments Z. If we partition Z = [ 21 2o ] with Z5 a
(k» — 1) xn matrix, then the instrument set for (5) could equivalently be written as [ Tz Z2 |.

As the problem seems to have been reduced to a one-endogenous variable model, Fap
has been proposed to determine instrument strength for identification of individual structural
parameters, like 5, in the above derivation, and Stock and Yogo (2005) weak instrument critical
values used to determine maximum relative bias of the IV estimator, relative to the OLS
estimator for the single parameter. There are some issues with this, however, that seem to
invalidate such an approach. Under the null that kK = 0, (k. — 1) F4p does not follow an
asymptotic X%z_l distribution, unless m; = 0. An alternative F-statistic is easily derived that
corrects for this, but the relative bias results as described in the previous section for the one-
variable model do not carry over to the individual parameters in this multiple endogenous
variables model.

To consider the asymptotic distribution, for any given value of § we have that

T1 —To0 = I —a:25+(372—32)5:Z(771 —57T2)+7)1 — vy + O Mzus

= Z(?Tl — (57‘(’2) + vy — 0 Pgus.
Clearly, the OLS estimator for ks in the model
x1 — To0 = Zks +€* 9)

is given by

1

//%5 = (Z/Z)_l ZI (331 — 22(5) = (ZIZ)_ ZI (a;l — 332(5)

= T —0mg=m1 — Oy + (Z,Z)_l 7z (’Ul — 5212)
and hence the variance of the OLS estimator is given by
Var (75) = (07 — 20012+ 6%03) (2'2) " (10)

The F-statistic for testing Hp : kg = 0 in (9) is
®Z'Zk

Fs = —— > —5v s
k. (0’% — 20012 + 5203)
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and k. F5 converges in distribution to a Xzz distribution under the null that ks = 0, or 71 = dms.
However, computing the standard F-test statistic in (9) as

KZ'Zk
Fy=——"1~
k.o

does not result in Fjy as
/E\*/g* = (.%'1 — /1'\2(5)/ MZ (.1‘1 — /.%'\2(5) = IlfllMle = 5}\/1?]\1

and hence )
k.01

Therefore the denominator of Fy does not estimate the variance as in (10) correctly and k,F}s
does not converge to a X%z distribution under the null, unless 6 = 0. The correct F-statistic
would be obtained by the standard F-test if the dependent variable in (9) was x1 — dx2 instead
of 1 — 672».

The Angrist-Pischke approach does replace d by an estimate 5. By developing a formal
testing framework we show that the same issues arise and that (k, — 1) Fiup does not have an
asymptotic X%z—l distribution under the null that 71 = dmg, unless § = 0.

Partition Z = [ 21 o ] We can write the reduced from for x; as

T, = Z7T1+U1:Z7T2+Z(7T1*7T2)+’01 (11)

= Zm9d + Zs (7(’12 —7T22(5) + v = 290 + Zo (7T12 —7T22(5) + v1 — dvg

where 71 and 79 are partitioned as [ T T ]/ and [ Tl Thy ]/ respectively; 6 = w11 /mo1,
implicitly assuming that mo; # 0. Hence a test for underidentification is a test for Hg : v = 0,
in the model

1 = x20 + Zoy + 07, (12)

where v* = v; — dvg. Clearly, x5 is an endogenous variable in (12), but we can estimate the
parameters ¢ and v by IV, using Z as instruments. The 2SLS estimators for § and + are given
by

5 = (ByMy, ) ByMgyw1; 3= (ZMz,Z5) " ZhMzyan

and

- 1
Var (7) = aﬁ* (ZéMgng) ,

12



with 02, = 0% — 20019 + 6203. The F-test statistic for testing Hy : v = 0 is therefore given by

j - ‘Tllj\JfQZ2 (ZéMEQZQ)il ZéMfgxl
! (k. — 1) (vv*/n)

with

vt =2 —£B25—Z2:}7: Z7T + 01 — Z790 — 00s —Zgﬁ:fq —(%}\2,

as the IV estimates are given by

~ Tl o~ A ~
0= =—; 7 =T12—T226
21
Hence,
~ Torse o ~. ~2_
a%*:—v*'v*:a%—%alg—i—é o%
n

is a consistent estimator of o2..

The Angrist and Pischke (2009) F-statistic as described above is related to F,, as

Fap = M3, Z(Z'2)"" 7' Myye1 _ @ My, 25 (25 My, Z5) " Z3 My,
(k. — 1) (F'8/n) (k, —1)5% ’

because

/ / ~/ ~
1Mz, Py Mz, v1 = x7PzMgz, Pzo1 = 27 Mz, 71

~ ~ -1
= ’)/ZéM:’U‘2Z2’)/ = Q?&M@ZQ (ZéM§2ZQ) ZéM{gle,
and the sum of squared residuals is given by
g2 = 2\ Mz, Mz Mz,x1 = 2y Mzz1 = 0)0;

and hence £2/n = &7. Therefore, whilst the numerators are the same in Fap and F, the
denominators are different. (k, — 1) Fl4p is therefore not asymptotically Xiz—l distributed under
the null, Hy : 71 = dm2, unless § = 0 and hence 71 = 0.

Clearly, 5= (5:\’2%\2)71 Thxy is an estimate of 0 under the null that 71 = 072 and hence v = 0.
Let v* = 21 — :cgg be the residual under the null, then the LM test for the null Hy : v = 0 is

given by
CRIAVAA R A

LM = —
DRONED)

which converges to a X%z—l distribution under the null. LM is equal to nR? in the model
xl—ng:ZF&-l-f. (13)

13



The F-test in (13), with appropriate degrees of freedom correction, is given by

~ !/ ~
EIZ/ZE (?r\l — 5%2) Z/Z (7/1\'1 — 5%2)
Pl = = SRS SPR—— (14)
(b =1) (€€/m) (= 1) (33 + 73753 — 2061,
& Mz, Zo (Z5 Mz, 7o)~ Z4 My, x1
(k. —1) (52 1352 - 25515 )

Y

which is only different from F, through the estimate of 4 in the denominator. In Fy this is
invariant to which instrument has been excluded from Z in forming Z,, making it therefore
preferable to F,. Clearly, F|p differs from Fyp by using the IV residual ;1 — 20 in (13) instead
of the second stage residual z; — 26 for Fap in (7).

Analogous to (11), we can write for xg

To =x10" + 25 (7T22 — 7T215*) 4+ vy — 0*v; = 210" + ZQ’)/* + v**

*

where 0% = my/m2 = o 4 = —v/§ and v** = v*/§. Clearly

e / s
(%2 =3 %1) 7'7 (%2 =3 %1)

Fyp =

)

(k. — 1) (73 +875% - 25"312)

where 5 = (z171)" " Zjx2, has the same asymptotic properties as Fyjp under Ho : w1 = 672,

but it is not identical to Fij; as 5 #* ’571.
3.2 Relationship with Cragg-Donald Statistic

With g endogenous variables, the minimum eigenvalue of the Cragg-Donald statistic, Tmin, is &
test for Hy : rank (II) = g — 1 against the alternative H; : rank (IT) = g. For the two-variable
model, this null is of course equivalent to Hy : m; = dmg. The Cragg-Donald test is based on
the restricted estimates under the null, using the minimum-distance criterion,

(5, ﬁg) = argminH (0, m2),

6771-2

wom=((2)-(72)) oz ((2)-(72)),

The Cragg-Donald test statistic is then

with



under the null. We show in the Appendix that
(71— 072) 2'Z (71 — 972)

~ <2~ =~
U% +(5 O'% —25012

H(3,7) =

and hence the only difference between Fjg, Fyjy and Tmin/ (k. — 1) is the estimate for 6. Clearly,
unlike the F-statistics, i, is invariant to normalisation, as H (g*,ﬁ1> =H (5, ﬁg). Because
of this, computation of both Fj5 and Fj; can provide further information about the nature
of the weakness of the instruments, as their values can indicate whether the rank reduction is
due to e.g. ™ = 0 (6 = 0), which 7T, cannot distinguish, as we will show below. We will
also present a three-endogenous variables example in Section 4.3 which further highlights the
additional information about instrument strength revealed by the three conditional F-statistics

relative to that of the Cragg-Donald statistic.

4 Local to Rank One Weak Instrument Asymptotics in the
Two-Variable Model

In the previous section, we have shown that (k. — 1) F), has a limiting Xz%l distribution under
the null that v = 0 in (12). We next investigate whether F, can be used to assess whether
instruments are weak for individual parameters as described in Section 2. We focus in the
derivation below on F, as the setup for this test is easier to use with our weak instruments
asymptotics, but results of course carry over directly to Fyjp, Fp; and Tmin.

We are interested in the case that the instruments are not weak for each equation, but
where the rank of II approaches a rank reduction of one. We specify LRR1 weak instrument
asymptotics as v = ¢/+/n, or

T1g = 0maz + ¢/\/n.

We can then write the reduced form of x; as
r1 = Zmwed + Zoy (7T12 — (571'22) 4+ v = T20 + ZQC/\/E—I— (Ul — 5P2’U2) .

The IV estimator for £ is given by

xllME2Z2 (ZéM5222)_1 ZéMEQy
©l Mz, Zo (Z4 Mz, 7o)~ Zh Mz, a1

BiasLs =

and it follows that

ah Mz, Zo (Z5 Mz, Z2) " Z5 Mz, u
& M, Zo (Z Mz, 7o)~ Z5 Mz, 21

Biasrs — B1 =
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as Mz, T2 =0, Mz, Mz = (I — Pyx9 ($’2PZ:1:2)_1 3:’2PZ) Mz = My, and hence ZjMz, Mzvy =
Zészg =0.

We assume that

L 7 M "
ST <, Z3u —N(0,Q%
( ﬁZéM’m\z (v — dvg) ) ( ¢Z;(v1—5v2) (0, Q),

where

oul — 00u2 0% +0%03 — 26012 )7 T2 e o

It is then easily shown that
-1 d T o<\ (v~
WM, 7 (Z3Ma, 25) " ZsMayar = 02, (N4 2) (34 5)

and

-1 d R
T\ Mz, Zo (Z5Mz, Z2) ™ ZyMaz,u —— 040y, —su, ()\ + zv> Zu

where

_ 2 2 2 .
Op—bvy = \/ 07 + 0705 — 20012;
Ny —1 1/2 .. ~ _ -1 —1/2 . ~ _ _—1~n—1/2
A=0,15,0% 2 =0, QP s —beayi Fu= 03 Q g,

We are therefore in the same setup as Staiger and Stock (1997) and Stock and Yogo (2005),

and the distribution of the bias of gm sLg 1s given by

~ /
M, 2 (Z3Ms, 20) " ZiMzyu 0 o (+2) %
) My, Z (Zy Mz, Zo) ™" Zs My, T vy —§vs (X N Ev), (X N Ev) ;

Biasrs — B =

and A |
Oul — 0042 <)\ i Ev) -
02 + 6202 — 200712 (A + Ev)/ (A+2)

One would therefore think that one could proceed as in the one-variable model as specified

E (ELQSLS) - B —

above, with
~ e 1 dQc
=AM (k,—1)=
/( ) kz_10%+(520'§—250'12

and the critical values from the non-central chi-squared distribution applied to

F o= 1‘/1M5;2Z2 (ZQMEQZQ)_l Zéva\le
v ~2 -, ’
(k. — 1) (5% + 0 63 — 20615
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However, in this case the bias of the OLS estimator of 3; in the model

y=1z181 + 2265+ u

is given by
/
~ B oy Myu
Biors — B1 = o Myyz1
As
T1 = 126 + Zac/\/n + (v1 — bvg)
we get that

plim (n_l (x'leu)) = plim <n_1 (\/CEZQMMU + (v1 — 51}2),sz“>) :

Further,

plim (n_1 (x'lexl))

/
= plim <n1 <\/CEZ§MMZQ\/CE + Z%ZQMM (v1 — dva) + (v1 — dva) My, (v1 — 5112))) .

From these results we find that the bias of the OLS estimator converges to

. (012—602)0u2

i ~ phm (nil('l)l - 5’1)2)/M$2U) Oul — 5O-U‘2 ! szﬂ'2+0'2
plim (51,015~ 51) = lim (n~L(v1 — 0va) M dva)) 2 P
plim (n=1(vy — dva) My, (v1 — dv2)) 02 + 6202 — 2601y — ~ 207
mQzzT2+0s

and therefore, we now have that

B ‘E [Bmsw} - 51} (X + Ev)lzv

B,1= — — =
B [Brows| - 5 (+z) (A+3)

and so the direct relationship between the relative bias of the individual parameter and the

value of the concentration parameter does not hold in this setting.!

!The one-variable model as described above was y = Mz, 21, + &.and so one could ask the question whether
the weak instrument relative bias could apply to the OLS estimator in this model instead. The OLS estimator
is given by
B2t Mz, z2 + 1 Mz, u

i Mz, 1

xllMﬂ?Qy

ﬁl,OLS = = 51 +

!
i Mz, 1

and therefore
Boo12 4+ Out

plimpB; ors — B = 3
01

and hence, again

(X+zv)/zv

(X + Ev)/ (X+ Eu)

~ ‘E [Bl,2SLS] - B
Bn,l = >0
|E [Brows] - 8]

#|E
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However, we can get a result for the total relative bias. First of all, we show in the Appendix

that for the 2SLS estimator for 3, the following holds,

. (r2)a
vy —v; (X + ZU)/ (X + EU> ’

~ d
Baoasrs — By — —0

and hence, asymptotically,
E {ﬁz,zsLs} —By=-4 (E [/3172515} - 51) ‘

From this it follows that 32,25 15 is consistent when § = 0, that is in the situation where the
instruments are strong for zo, but weak for x; in the sense that 71 is local to zero.

We then show in the Appendix that
(E [BZSLS] - 5), X (E [EQSLS} - 5)

5 Fows] =) o (# [ons] ~ )

< b2,

where

(X+2v)'zv

(X + z,)' (X + zv)

From this it follows that we can use the SY critical values for Tmin/ (k, — 1), Fyj2 and Fy);

b=FE

to assess LRR1 weak instrument maximal total relative bias. These are the critical values
tabulated for the one-endogenous variable case with k, — 1 instruments.
We can also use the equivalent SY critical values for assessing the maximal size of the

individual 2SLS Wald tests. We get for the Wald test for the simple null Hy : 8 = 8%

2
~ 2 ~ . ~\ ~
(51,2SLS - 5?) <$/1M£2 Zy (ZhMz, Z5) " Z§M£2$1> o ((A + z”) Z")

2
Wy = 2 = Ag —~ I~
2 A ()
where
~ ~ / ~ ~
~2
oy = (y — 2184 9515 — 37252,2SL5) <Z/ — 21812518 — 37252,2SLS> /n.
We find that )
~ — o2 v v
52 L g2 (1T 00u b2, (?) ,
Ou0y;—bvy V1 U1
where

n=(+2) (G+z): B=(+2) 5
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The Wald test is then, as in Staiger and Stock (1997) and Stock and Yogo (2005), equal to
U3 /01

1= 200 /U1 + (U2/71)*

Wi

Ou1—004y2

" and so we can again use the SY critical values for the F-statistic for
u ’Ul* ’U2

where p =
maximal size of the Wald-test, achieved when p = 1. Clearly, we get the same results for W,

the Wald test for Hy : S5 = /39.

4.1 Monte Carlo Illustration

To illustrate, we generate data from the model as specified above, with

2

Uq 0 0w Oul Oyu2
2

v | ~N 0 |, cur 07 o012

2

V24 0 Ou2 012 0%

The instruments are drawn independently from the standard normal distribution, with &k, = 4,
and hence Q77 = I;. We set w3 = (—0.5,0.5,—0.5,0.5)" and 71 = dma + (0,¢,¢,¢)" /v/n. We
have

/
22799

1
@ = plim *ZéMQ'gng =Ip,1——
n ToT2

)

where my = [ To1 799 ], is partitioned commensurate with Z = [ z1 2oy ]

The limit of the concentration parameter for this specific configuration is given by

/ 32_é
CPl=— 20226 -2 22 : '
o] +0%05 — 20012 o]+ 0%05 — 20012

We choose ¢ such that the concentration parameter has the value for which the IV estimator
for 8 has a maximal total relative bias of 10%. We have further set the parameters as follows:
By =0.5; By =-03;02=02=02=1;0, =0.1; 042 = —0.7; 012 = —0.7 and § = 0.7. This
design is such that the additional terms in the OLS bias are important, with

(012—003)*
Q22725 g 55g1

2 2 2 —302)
05+ 6%05 — 20019 _ _ (012—603)0u2
1 2 Oyl (5Ju2 TF'Qszﬂz-Hf%

2, 522 _
Oyl — 00yy 01T 0%05 — 20012

i.e. the OLS bias for 8, is much smaller than U%’;ﬁ;—%. The results are given in Table 3
for a sample size of 10,000 observations. The individual standard F-statistics are very large.
As expected, the IV estimator of 3, has a large relative bias of 0.3441, approximately equal
to 3.56 x 0.1, but the relative bias of 3, is much smaller at 0.0498. The distributions of Fjs,

Fyp and Tpin/ (k. — 1) are virtually identical, each with a mean of 4.7 and rejection frequency
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of 4.6% at the 5% nominal level using the weak instrument critical value. In comparison, the
AP F-statistics are much larger in this case with the mean of F4p; equal to 11.82, and that of

Fp2 equal to 22.93.

Table 3. Estimation results and relative bias for two-variable model

mean st dev rel bias SY rej freq

B1oLs 0.5695 0.0070

BaoLs ~0.6506  0.0062

B12sLs 0.5239 0.1979  0.3441

Ba2sLs 20.3174  0.1419  0.0498

i} 1290 44

B 2503 71

Fapi 11.82 591 0.6256
Faps 92.93  11.46 0.9082
Fijy 470 235 0.0460
Fap 471 2.36 0.0464
Tmin/ (ks — 1) 470 2.35 0.0457
Tnin/ K 352 1.76 0.0267

Notes: sample size 10,000; 10,000 MC replications; 5;= 0.5; By= —0.3;

Fj is the first-stage F-statistic for z;, 7 =1,2;

F4p,j is the Angrist-Pischke F-statistic and Fyjo and Fy); are the
conditional F-statistics as in (14); Tmyin is the Cragg-Donald minimum
eigenvalue statistic; rel bias is the relative bias of the 2SLS estimator, relative
to that of the OLS estimator; SY rej freq uses the 5% Stock-Yogo critical
values for a maximum 10% total relative bias

The total relative bias in this design is found to be equal to 7.6%, which is less than 10%, as
predicted by the theory above. The SY test for weak instruments for II local to 0 is conservative
and has a rejection frequency of 2.6%. This test is given by Tmin/k, and the weak instrument
critical value is derived for two endogenous variables with k., instruments. In contrast, the
weak instrument critical values for Fyj, Fo; and Tmin/ (k. — 1) are those for one endogenous
variable with k, — 1 instruments. From Table 1 in SY, it is easily established that when 7, /k.
is larger than its associated tabulated critical value, then 7,/ (k, — 1) is also larger than its
weak instrument critical value, so we would always reject LRR1 weak instrument problems
whenever we reject rank zero weak instrument problems.

In Table 4 we present results for the Wald test statistics in a design with p = 1, by changing
the variance parameters to 0,1 = 0.755, 042 = 0.35 and 015 = —0.35, again choosing ¢ such that

the size of the Wald tests is 10% at the 5% level. The simulations confirm the analytical results.
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The rejection frequencies of the Wald tests are just over 10% and the rejection frequencies of
Fyjp, Fyp and Tmin/ (k2 — 1) just over 5%. In this case, the SY weak instrument test 7min/k.
using the tabulated critical value for two endogenous variables and four instruments is also just

over 5%.

Table 4. Estimation and Wald tests results for two-variable model

mean st dev rej freq SY rej freq

B1oLs 1.4990  0.0007

BaoLs 0.3899  0.0006

B asLs 0.5257  0.1565

Baasis -0.2827  0.1071

Wy 1.47 2.86  0.1016

Wy 1.46 2.87 0.1017

Wig 2.61 3.58  0.1080

Fip 14.85  4.40 0.0548
Fop 14.93 445 0.0585
Twin/ (kz —1)  14.84  4.40 0.0517
Tomin/ ks 1113 3.30 0.0545

Notes: sample size 10,000; 10,000 MC replications; 8;= 0.5; fo= —0.3
W; is the Wald test for Hy: ﬁj: /80j3 Wi is joint Wald test;

Fij3 and Fy); are the conditional F-statistics as in (14); Tmin is the
Cragg-Donald minimum eigenvalue statistic; rej freq for Wald tests uses 5%
critical value of x2 distribution; SY rej freq uses the 5% Stock-Yogo critical
values for a maximal 10% size of Wald tests.

4.2 The case § =0

When § = 0, we have in the process above that 7 is local to zero, and hence the instruments
for x; are weak, but not for z2. As shown above, 3272 srs is in this case consistent for 5, but
31’2 srs Will suffer from a weak instrument bias. This situation may actually be of interest if
the main research focus is on the effect of z2 on y. If the instruments used are then strong
for x9 but weakly or not informative for x1, the IV estimator for 3, will be well behaved. In
Table 5, we show the results for the bias of the 2SLS estimates, for when 6 = 0 and where we
have further set 0,1 = 0.8. All other parameters remain the same as for the results presented
in Table 3, and we have set the value of ¢ again such that the maximum total relative bias is
10%. As can be seen from the table, the results are as expected. The value of the first-stage
F-statistic for x1, F7 is now small, whilst that of F, is large. The behaviour of Fyp; is now

the same as that of Fj5, both rejecting the null of weak instruments 5% of the time using the
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SY critical values for k, — 1 instruments. EZQS g 1s consistent, but the total relative bias is at

9.7% only just below 10%.

Table 5. Estimation results and relative bias for two-variable model, 6 = 0

mean st dev rel bias SY rej freq

Brows 1.2317  0.0067

Byors -0.3976  0.0047

B1asLs 0.5776  0.3001  0.0776

BaasLs -0.3010 0.0103 -0.0010

Fy 4.08 1.88 0.0044
Fy 2503 70 1.0000
Fapy 479 2.39 0.0515
Fapy 2922 502 1.0000
Fyj 4.72 2.36 0.0474
Fy 462 1184 0.8811
Tmin/ (k2 — 1) 4.72 2.36 0.0470
Trnin/ k- 354 177 0.0259

Notes: sample size 10,000; 10,000 MC replications; 8;= 0.5; S9= —0.3

Fj is the first-stage reduced form F-statistic for z;, 7 =1,2;

Fap,j is the Angrist-Pischke F-statistic and Fyjp and Fj); are the
conditional F-statistics as in (14); Tmin is the Cragg-Donald minimum
eigenvalue statistic; rel bias is the relative bias of the 2SLS estimator, relative
to that of the OLS estimator; SY rej freq uses the 5% Stock-Yogo critical
values for a maximum 10% total relative bias

4.3 More than Two Endogenous Variables

As is clear from the analyses above for the two-variable model, the use of Fy; and Fj; under
our LRR1 weak instrument asymptotics do not reveal more information than the Cragg-Donald
statistic Tmin/ (ky — 1), unless 6 = 0 and hence m; is local to zero. The derivations for the
two-variable model easily extend to the general case of several endogenous variables. The com-
putation of the individual conditional F-statistics could then reveal further interesting patterns
that the Cragg-Donald statistic will not be able to. For example, consider a three-variable

model, which has a local rank reduction of one, of the form
m1 = 0gm + 033 + ¢/\/n
but with d3 = 0. The conditional F-statistics are in this case computed from

Tj *X,jg: ZKk+ &,
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-1

where X_; is the matrix of endogenous variables with x; excluded and 5= ()? 4 j)A( _ j) X ;T

The conditional F-statistics are then
RZ'ZR
I~ )
(k. —2) (£€/n)

see the Appendix for simple Stata code to calculate sz| X_;-

F(Ele_]' = (]‘5)

Table 6 presents some simulation results for this particular case for the following design

U; 0 1 08 03 0.6
v | LN 0 08 1 03 05
v2; 0]’ 03 03 1 04 ’
U3; 0 06 05 04 1

09 = 0.5; 03 = 0; B; = 0.5; By = —0.3; B3 = 0.7. The instruments are again drawn indepen-
dently form the standard normal distribution, with k, = 5, and c¢ is again chosen such that the

total relative bias is less than 10%.

Table 6. Estimation results and relative bias for three-variable model

mean st dev rel bias SY rej freq

B1oLs 11337 0.0068

BaoLs -0.4581  0.0050

BsoLs 0.9526  0.0055

B 2518 0.5709 0.3086  0.1120

Ba2sLs 203361 0.1575  0.2285

BsasLs 0.6990 0.0161 -0.0040

F 650 26

Fy 2504 67

F3 902 32

Fija3 4.82 2.38 0.0514
Fops 4.84 2.41 0.0531
F3j12 198.21  329.06 0.8779
Tmin/ (k2 — 2) 482 238 0.0513
Tmin/ ks 289  1.43 0.0156

Notes: sample size 10,000; 10,000 MC replications; 1= 0.5; Bo= —0.3; 3= 0.7
Fj is the first-stage reduced form F-statistic for ;, 7 =1, 2, 3;

Fij2,3, Foj1,3 and F3); o are the conditional F-statistics as in (15);

Tmin 18 the Cragg-Donald minimum eigenvalue statistic; rel bias is the relative bias
of the 2SLS estimator, relative to that of the OLS estimator; SY rej freq uses the
5% Stock-Yogo critical values for a maximum 10% total relative bias

It is clear from the conditional F-statistics that the near rank reduction is due to parameters

in the reduced form equations for 1 and x5. From a straightforward extension of the analytical
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results for the two-variable case in the Appendix we get that 33725 g is consistent as d3 = 0.
This is confirmed by the simulation results. The total relative bias in this case is equal to 8.8%,
which is less than 10%. It is clear that the conditional F-statistics now provide important

additional information to that provided by the Cragg-Donald statistic.

5 Conclusions

We have shown that a conditional first-stage F-test statistic can be informative about the
information that instruments provide for models with multiple endogenous variables. The con-
ditional F-test is similar to the one proposed by Angrist and Pischke (2009), but takes the
variance of the multiple equations into account for testing a rank reduction of one of the matrix
of reduced from parameters. Our weak instrument asymptotics is defined as local to a rank
reduction of one of this matrix. We find that the conditional F-statistics in a two-endogenous
variables model provide the same information as the Cragg-Donald test statistic for testing a
rank reduction of one, unless the rank reduction is due to the fact that the instruments are
uninformative for one of the endogenous variables. The conditional F-statistics are informa-
tive for total relative bias and Wald test size distortions for individual structural parameters.
With more than two endogenous variables, the conditional F-statistics can provide additional
information regarding the strength of the instruments for the different reduced forms. We
therefore recommend in applied work that researchers report standard first-stage F-statistics,
the Cragg-Donald statistic and the conditional F-statistics in order to gauge the nature of the
weak instrument problem, if any. The Stock and Yogo (2005) weak instrument critical values
can be used for the Cragg-Donald and conditional F-statistics. When reduced form errors are
conditionally heteroskedastic and/or serially correlated, robust conditional F-statistics can be
computed and used as tests for underidentification. However, the exact link of the Stock and
Yogo (2005) critical values with the magnitude of the relative bias and Wald-test size distor-
tions no longer holds for the robust statistics and is therefore an important avenue for future

research.
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6 Appendix

6.1 Cragg-Donald Statistic

The Cragg-Donald statistic in the two-variable model is obtained as

Tmin = min H (8, 75) = (( 72 ) - < ‘Z‘; >>,(§_1®Z’Z> << % > - ( 57;2 ))

N 11 512
The first-order condition is given by, writing X! = ( 12 ~29 ),
o o
10H (6 T
4 (0,72) _ (( o1 + 512 5512 4522 )®Z’Z) ZT\I . 0o —0,
2 37‘(‘2 ) )
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resulting in

(66" +56'%) Z2' 271 + (66" + 6%) Z' Z7y = 6 (06" +G'%) Z'Z7s + (66'% + 5%2) Z' Z .

Hence,
Ty — (7?117+ 812) 7+ (5?12 + 322) T2 _ (333 - 812) T+ (3% — 5812) T
5 (6 +5'%) + (5% +57) 52405763 — 2061, ’
and
5525 )
Ty—Ty = ——; ( 3-22,\2 0122A (T1 — 072) ;
o1+ 6 05 — 26012
~ 62 — 06 _
T1— 0Ty = (0;12 0'122 (%1 — 5%2) .
o1+0 3% — 200719
As

( (3%‘5312)) )il( (@1 - 9512) )=(1 _5)§< 1):a%+5233—25312,

— (662 — 12 — (652 — 512) -5

it follows that

(71— 072) Z'Z (71 — 072)

H (6,7) = - —
(3.7) 52 +5°62 — 28513

6.2 Total Relative Bias

Equivalently to (11) we can write
xg = 210" + Za (w2 — m120™) +v2 — ¥y
where 6" = o1 /711 = 5L Hence, under LRR1 weak instrument asymptotics, we have

To = :1:1(5* — ZQC(S*/\/ﬁ‘i‘ Vg — (5*111.

As 75 M u ] e
( \/IﬁZé\/J\Z@ (vg — 6*v1) > —> < @DZ;*(U;Z*M) ) =N (0,9 ®Q*),
v ( Tu2 f%*aul o3 +Ug52;%5i05§*012 ) s 23" = Mg, Zy;  QF = plim (n~' 237 Z5%)
Q" =plm %ZQM@ Z2 = plim (i (252 — Zyds (5a4 2 (Z'Z) Z'623) 2 ZQ)> _0
It follows that 9z« = 7z, and Y zre(y—50) = V23 (v—5"01) = _%¢Zg(v1—6v2)’ as e.g.

ZyMisu = Ziyu— Zhwy (2 Pymr) " @) Pyu = Zhu— Zyay (m’lZ (2/2)”" Z’m1> 27 (2'2)7" 7',
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Further,
plim (n_lZ’xl) = ) plim (Z’xg) ,

~%

N =0l e, Qodt = (8700, _s0,) " Qed” = X,
so we get that
~ !/
O ()\ + zv) Zu
~ ! s/~
Tv1—6v2 ()\ + Zv> ()\ + Ev)

> d
Ba.sns — Ba — —0
and hence, asymptotically,

E {/BQ,SLS} — By =—0FE {51,2&5} - B
Using this, we can express the total relative bias (4) as

DI Y SIS 5) 30 7) Dy Dl 1

32 = b2 / —1
YuXx XXu

(A+z) % . 1 -5
o (X—%Zv),(x—&—%) | EXuZ(Zu;>; D:a%+520§—25012<_15 52>'

Hence

B? < maxeval (3 DrxDEY?).

As Ei(/zDZ XDE;/Q is a symmetric idempotent matrix, we get that B2 < b?. To show this, note
that

N R A R ) / )
D m =1hQuym + 3y
x =pli n ( Tixe xhxe 222272\ 5 1

and hence X xD = Xy D. Let

)
\/0’% + 5203 — 20012 —0
so that D = dd’, then d’Yyd = 1 and hence
SxDExD = Sy DSy D = Sydd Sydd = Sydd = Sy D = Sx D
and therefore

SV2Dyx DYV s Dy DeY? = £ Dy Dy DYy DRY? = £V Dy Dy,
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6.3 Stata Code

Simple Stata code to calculate the conditional F-statistic F)|,, for the case of 3 endogenous
variables, x1, x2 and x3, with 5 instruments z1,...,z5 and 2 other exogenous variables w1l and

w2 is as follows:

ivregress 2sls x1 (x2 x3 = z1 22 23 z4 z5) wl w2
predict res123, r

reg resl123 zl z2 z3 z4 z5 wl w2

test zl z2 z3 z4 z5

scalar Fsw = r(F)*r(df)/(r(df)-2)

di Fsw
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