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Abstract

We consider testing for weak instruments in a model with multiple endogenous variables.
Unlike Stock and Yogo (2005), who considered a weak instruments problem where the rank
of the matrix of reduced form parameters is near zero, here we consider a weak instruments
problem of a near rank reduction of one in the matrix of reduced form parameters. For
example, in a two-variable model, we consider weak instrument asymptotics of the form
π1 = δπ2 + c/

√
n where π1 and π2 are the parameters in the two reduced-form equations,

c is a vector of constants and n is the sample size. We investigate the use of a conditional
first-stage F-statistic along the lines of the proposal by Angrist and Pischke (2009) and show
that, unless δ = 0, the variance in the denominator of their F-statistic needs to be adjusted
in order to get a correct asymptotic distribution when testing the hypothesis H0 : π1 = δπ2.
We show that a corrected conditional F-statistic is equivalent to the Cragg and Donald
(1993) minimum eigenvalue rank test statistic, and is informative about the maximum total
relative bias of the 2SLS estimator and the Wald tests size distortions. When δ = 0 in
the two-variable model, or when there are more than two endogenous variables, further
information over and above the Cragg-Donald statistic can be obtained about the nature of
the weak instrument problem by computing the conditional first-stage F-statistics.
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1 Introduction

Following the work of Staiger and Stock (1997) and Stock and Yogo (2005), testing for weak

instruments is now commonplace. For a single endogenous variable model, the standard first-

stage F-statistic can be used to test for weakness of instruments, where weakness is expressed

in terms of the size of the bias of the IV estimator relative to that of the OLS estimator, or

in terms of the magnitude of the size distortion of the Wald test for parameter hypotheses.

Stock and Yogo (2005) tabulated critical values for the standard F-statistic that have been

incorporated in software packages.

For multiple endogenous variables, inspection of the individual first-stage F-statistics is no

longer suffi cient. The Cragg-Donald (1993) statistic can be used to evaluate the overall strength

of the instruments in this case, and Stock and Yogo (2005) have tabulated critical values of the

minimum eigenvalue of the Cragg-Donald statistic for testing weakness of instruments. They

derive the limiting distributions under weak instrument asymptotics where the reduced form

parameters are local to zero in each reduced form equation, and obtain critical values that are

conservative in the sense that they are rejecting the null of weak instruments too infrequently

when the null is true.

In this paper, we are interested in analysing tests for weak instruments in a model with

multiple endogenous variables in a setting where the reduced form parameters are not local

to zero, but where the reduced form parameter matrix is local to a rank reduction of one. In

this case, the values of the F-statistics in each of the first-stage equations can be high, but the

identification of (some of) the model parameters is weak. We will focus initially on a model

with two endogenous variables. The weak instrument asymptotics we consider are local to a

rank reduction of one, of the form

π1 = δπ2 + c/
√
n,

where π1 and π2 are the parameters in the two reduced-form equations, c is a vector of constants

and n is the sample size. We call these asymptotics LRR1 weak instrument asymptotics.

We will focus solely on the properties of the 2SLS estimator. We investigate the use of a

conditional first-stage F-statistic along the lines of the proposal by Angrist and Pischke (2009)

and show that the variance formula in the denominator of their F-statistic needs to be adjusted

in order to get a correct asymptotic distribution when testing the null hypothesis, in the two-

variable model, H0 : π1 = δπ2. We further show that the resulting new conditional F-statistic
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is equivalent to the Cragg-Donald minimum eigenvalue statistic. Using our weak instrument

asymptotics we show that this conditional F-statistic cannot be used in the same way as the

Stock and Yogo (2005) procedure for a single endogenous variable to assess the magnitude of

the relative bias of the 2SLS estimator of an individual structural parameter. This is because

the OLS bias expression contains additional terms such that the expression for the bias of the

2SLS estimator relative to that of the OLS estimator does not have the the simple expression

as in the one-variable case. However, the total relative bias can be bounded as can the size

distortions of Wald tests on the structural parameters.

In a two-endogenous-variable model the conditional F-statistics for each reduced form are

equivalent to each other and to the Cragg-Donald minimum eigenvalue statistic under our LRR1

weak instrument asymptotics. This holds unless δ = 0, in which case the local rank reduction

is due to the fact that π1 is local to zero and the first-stage F-statistic for x1 will be small and

that for x2 will be large. In this case, both the Angrist-Pischke F-statistic and our conditional

F-statistic for x1 can be assessed against the Stock-Yogo critical value, and the 2SLS estimator

for the structural parameter on x2 is consistent. Additional information can also be obtained

from our conditional F-statistics when there are more than two endogenous variables, as they

will identify which variables cause the near rank reduction. For example, if in a three variable

model the near rank reduction is due to the reduced form parameters on two variables only,

the conditional F-statistic for the third variable will remain large giving the researcher valuable

information about the nature of the problem and directions for solving it. We also show that

the 2SLS estimator for the structural parameter of the third variable is consistent in that case.

The paper is organised as follows. In Section 2 we introduce the linear model with one

endogenous variable and summarise the Staiger and Stock (1997) and Stock and Yogo (2005)

results for testing for weak instruments. Section 3 considers weak instrument test statistics

for the linear model with two endogenous explanatory variables and introduces the new con-

ditional F-tests. Section 4 considers the relative bias and Wald test size distortions for the

2SLS estimator under the LRR1 weak instrument asymptotics as outlined above and presents

some Monte Carlo results for the two-variable model. Section 4 also shows the usefulness of

the conditional F-test statistics in a model with more than two endogenous variables. Finally,

Section 5 concludes.
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2 Weak Instrument Asymptotics in One-Variable Model

In this section we follow the basic Staiger and Stock (1997) and Stock and Yogo (2005) setup.

The developments of the weak instrument setup and concepts for the one-variable model play

an important role when we expand the model to multiple endogenous variables in the next

section. The simple model is

y = xβ + u, (1)

where y, x, and u are n× 1 vectors, with n the number of observations. There is endogeneity,

such that E (u|x) 6= 0. The reduced form for x is

x = Zπ + v, (2)

where Z is a n× kz matrix of instruments and v is n× 1. For individual ui and vi we assume,(
ui
vi

)
∼ (0,Σ) ; Σ =

(
σ2u σuv
σuv σ2v

)
.

The 2SLS estimator is given by

β̂2SLS =
x′PZy

x′PZx
= β0 +

x′PZu

x′PZx
,

where PZ = Z (Z ′Z)−1 Z ′.

The concentration parameter is given by

CP =
π′Z ′Zπ

σ2v

and is a measure of the strength of the instruments, see Rothenberg (1984). A small con-

centration parameter is associated with a bias of the 2SLS estimator and deviations from its

asymptotic normal distribution.

A simple test whether the instruments are related to x is of course a Wald or F-test for the

hypothesis H0 : π = 0. The Wald test is given by

Wπ =
π̂′Z ′Zπ̂

σ̂2v
=
x′Z (Z ′Z)−1 Z ′x

σ̂2v
,

where π̂ = (Z ′Z)−1 Z ′x is the first-stage OLS estimator, and σ̂2v = x′MZx/n, where MZ =

I − PZ . Under the null, Wπ
d−→ χ2kz . The F-test is given by F = Wπ/kz. Note that we refrain

from a degrees of freedom correction in the variance estimate. Also, note that the analyses here
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and further below extend to a model with additional exogenous regressors, as we can replace

y, x and Z everywhere by their residuals from regressions on those exogenous regressors.

Staiger and Stock (1997) introduce weak instrument asymptotics as a local to zero alter-

native, π = c/
√
n, which ensures that the concentration parameter does not increase with the

sample size

CP =
π′Z ′Zπ

σ2v

p−→ c′QZZc

σ2v
,

where QZZ = plim
(
n−1Z ′Z

)
.

Assuming that conditions are fulfilled, such that(
1√
n
Z ′u

1√
n
Z ′v

)
d−→
(
ψZu
ψZv

)
∼ N (0,Σ⊗QZZ) ,

and kz ≥ 3 when assessing relative bias. Then under weak instrument asymptotics,

β̂2SLS − β =
x′Z (Z ′Z)−1 Z ′u

x′Z (Z ′Z)−1 Z ′x

d−→ σu
σv

(λ+ zv)
′ zu

(λ+ zv)
′ (λ+ zv)

.

where

λ = σ−1v Q
1/2
ZZc; zv = σ−1v Q

−1/2
ZZ ψZv; zu = σ−1u Q

−1/2
ZZ ψZu.

The bias of the OLS estimator is given by

β̂OLS − β =
x′u

x′x
=

(Zπ + v)′ u

(Zπ + v)′ (Zπ + v)
=

n−1
(
n−1/2c′Z ′u+ v′u

)
n−1

(
n−1c′Z ′Zc+ 2n−1/2c′Z ′v + v′v

)
p−→ plimn−1v′u

plimn−1v′v
=
σuv
σ2v

=
σu
σv
ρ,

where ρ = σuv
σuσv

.

As a measure of relative bias, Stock and Yogo (2005) propose

B2n =

E
[
β̂2SLS

]
− β

E
[
β̂OLS

]
− β

2 .
From the derivations above, and as E [zu|zv] = ρzv, it follows that

B2n =

(
E

[
(λ+ zv)

′ zv
(λ+ zv)

′ (λ+ zv)

])2
,

or

Bn =

∣∣∣∣E [ (λ+ zv)
′ zv

(λ+ zv)
′ (λ+ zv)

]∣∣∣∣ .
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Using weak instrument asymptotics, Stock and Yogo (2005) are therefore able to assess

the size of the relative bias in relation to the first-stage F-statistic. As zv ∼ N (0, Ikz), Bn is

determined by the values of λ and kz. Let

l = λ′λ/kz =
1

kz

c′QZZc

σ2v
,

then using Monte Carlo simulation, i.e. draws of zv ∼ N (0, Ikz), Stock and Yogo (2005)

find the values of l such that Bn is a certain value, say 0.1, for different values of kz. For

example, when kz = 4 and using 100,000 Monte Carlo draws, we obtain a relative expected bias

E
[

(λ+zv)
′zv

(λ+zv)
′(λ+zv)

]
= 0.1 for l = 4.98. When kz = 8, we find l = 7, again for Bn = 0.1.

Using weak instrument asymptotics, Staiger and Stock (1997) derive the asymptotic distri-

bution for the first-stage F-statistic, which is given by

F
d−→ χ2kz (kzl) /kz,

where χ2kz (a) is the non-central chi-squared distribution with non-centrality parameter a. The

F-test statistic can therefore be used to test the hypothesis

H0 : CP/kz ≤ lb vs H1 : CP/kz > lb,

where lb is the value for l determined above such that the Bn = b. For b = 0.1, we find from

the scaled non-central chi-squared distribution a critical values of 10.20 when kz = 4 and 11.38

when kz = 8. In comparison, Stock and Yogo (2005), henceforth SY, find very similar critical

values of 10.27 and 11.39 for these two cases respectively.

As an illustration, we performed a small simulation. The model is as in (1) and (2), with

β = 1; (
ui
vi

)
∼ N

((
0
0

)
,

(
1 0.5

0.5 1

))
;

the instruments in Z are four independent standard normally distributed random variables and

π =
(
c c c c

)′
/
√
n, with c chosen such that the relative bias Bn for n → ∞ is equal to

0.1, or 10%. We set the sample size n = 10, 000 and show the results in Table 1 for 10, 000

Monte Carlo replications. The results are clearly in line with the theory. The observed relative

bias is just over 10% and the rejection frequency of the F-test using the SY weak instrument

critical value is 5% at the 5% nominal level.
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Table 1. Estimation and relative bias results for one-variable model

mean st dev rel bias SY rej freq
β̂OLS 1.4989 0.0086
β̂2SLS 1.0529 0.2173 0.1060
F 5.97 2.36 0.0502

Notes: sample size 10,000; 10,000 MC replications; β = 1;
F is the first-stage F-statistic for x; rel bias is the relative bias of the 2SLS
estimator, relative to that of the OLS estimator; SY rej freq uses the 5%
Stock-Yogo critical value for the F-test for a 10% relative bias.

The Wald test for testing the restriction H0 : β = β0 is given by

W =

(
β̂2SLS − β0

)2
(x′PZx)

σ̂2u
,

where σ̂2u =
(
y − xβ̂2SLS

)′ (
y − xβ̂2SLS

)
/n. Staiger and Stock (1997) show that, under weak

instrument asymptotics,

W
d−→ ν22/ν1

1− 2ρν2/ν1 + (ν2/ν1)
2 ,

where

ν1 = (λ+ zv)
′ (λ+ zv) ; ν2 = (λ+ zv)

′ zu.

The Wald size distortion is maximised for ρ = 1, and SY find the critical values for the F-test

such that the maximal size of the Wald test is a certain value, say 10%, at a nominal 5% level.

For the Monte Carlo example above, we set ρ = 1 and choose c such that the maximal size

distortion of the Wald test is 10%, in which case the value of l is given by 16.415. The SY

critical value in this case is given by 24.58. The results are given in Table 2, and confirm that

the size of the Wald test is 10% and the rejection frequency of the F-test using the SY critical

values is indeed 5%.

Table 2. Estimation and Wald test results for one-variable model

mean st dev rej freq SY rej freq
β̂OLS 1.9935 0.0008
β̂2SLS 1.0318 0.1184
W 1.42 2.52 0.0994
F 17.45 4.11 0.0501

Notes: sample size 10,000; 10,000 MC replications; β = 1, ρ = 1;
W is the Wald test for testing H0: β = 1; rej freq uses 5% critical value of χ21; SY rej freq
uses the 5% Stock-Yogo critical value for the F-test, for a maximal 10% size of W .
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3 Two Variable Model

Following the exposition in Angrist and Pischke (2009), we first consider the following two-

variable model

y = x1β1 + x2β2 + u (3)

x1 = Zπ1 + v1

x2 = Zπ2 + v2

where y, x1, x2, u, v1 and v2 are n × 1 vectors, with n the number of observations. Z is an

n× kz matrix of instruments, with kz ≥ 2 (kz ≥ 4 when assessing relative bias), and π1 and π2

are kz × 1 vectors. For an individual observation i,

 ui
v1i
v2i

 ∼ (0,

(
σ2u σ′V u
σV u ΣV

))
; ΣV =

(
σ21 σ12
σ12 σ22

)
.

Equivalently, we can write

y = Xβ + u

X = ZΠ + V

where β = (β1, β2)
′; X =

(
x1 x2

)
; Π =

(
π1 π2

)
and V =

(
v1 v2

)
. Further, let

x = vec(X), π = vec (Π) and v = vec (V ).

The OLS estimates for πj are denoted π̂j = (Z ′Z)−1 Z ′xj , j = 1, 2, and the estimated

variances are given by

Σ̂V =

(
σ̂21 σ̂12
σ̂12 σ̂22

)
=

1

n
V̂ ′V̂ =

1

n

(
v̂′1v̂1 v̂′1v̂2
v̂′1v̂2 v̂′2v̂2

)
,

where V̂ = X − ZΠ̂.

The first-stage F-statistics are given by

Fj =
π̂′jZ

′Zπ̂j

kzσ̂
2
j

=
x′jZ (Z ′Z)−1 Z ′xj

kzσ̂
2
j

; j = 1, 2,

and kzFj converges in distribution to a χ2kz distribution under the null H0 : πj = 0. Significant

first-stage F-statistics are clearly necessary, but not suffi cient, for identification of β. For

example, if π1 = δπ2 6= 0, both first-stage F-statistics will reject their null in large samples, but

the model is clearly underidentified.
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Staiger and Stock (1997) and Stock and Yogo (2005) consider weak instrument asymptotics

where all reduced form parameters are local to zero, i.e. Π = C/
√
n. The Wald test for

H0 : π = 0 is given by

Wπ = π̂′
(

Σ̂−1V ⊗ Z
′Z
)
π̂,

which is identical to the trace of the Cragg-Donald (1993) statistic

CD = Σ̂
−1/2
V Π̂′Z ′ZΠ̂Σ̂

−1/2
V .

However, this Wald test statistic on the reduced form cannot be used in an equivalent way

to assess relative bias and 2SLS Wald test size distortions as in the one-variable model above,

because these are determined largely by the minimum eigenvalue of CD, τmin. In other words,

relative bias and Wald size distortions can be large if tr (CD) is large but τmin is small. In

a general setting with g endogenous explanatory variables, Wπ = tr (CD) is a test for H0 :

rank (Π) = 0, whereas τmin is a test for H0 : rank (Π) = g − 1. SY derive critical values for

τmin/kz under the local to zero weak instrument asymptotics for maximal total relative bias

and Wald test distortions, where the total relative bias is given by

B2 =

(
E
[
β̂2SLS

]
− β

)′
ΣX

(
E
[
β̂2SLS

]
− β

)
(
E
[
β̂OLS

]
− β

)′
ΣX

(
E
[
β̂OLS

]
− β

) , (4)

with ΣX = plim
(
n−1X ′X

)
. In this case, as τmin is not the test statistic for H0 : π = 0, unlike in

the case of one endogenous variable, the correspondence is not exact and use of the SY critical

values results in a conservative test in the sense that the null of weak instruments is rejected

too infrequently when the null is true. This is not altogether an undesirable feature of the test,

as a researcher can be quite confident that instruments are not weak when τmin/kz is larger

than the SY critical value.

The Staiger and Stock (1997) and Stock and Yogo (2005) results for the F-test and Cragg-

Donald statistic in the one-variable and multiple-variable model respectively in relation to the

relative bias and Wald test size distortions hold under the stated assumptions of the model

and the reduced form equations for the endogenous variables. When the variances in the

reduced forms are conditionally heteroskedastic, then one can compute robust F-statistics and

the Kleibergen-Paap (2006) robust version of the Cragg-Donald statistic. These test statistics

are then valid tests for underidentification as they have correct size under the null that the

instruments are not informative, i.e. for testing that rank (Π) = 0. But the documented
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relationship of the weak-instrument critical values and the sizes of the relative bias and Wald-

test size distortion no longer holds, see for example Bun and De Haan (2010). This limits the

exact use of the weak-instrument tests, as for example binary endogenous explanatory variables

automatically produce a conditionally heteroskedastic reduced form. Also, this relationship

brakes down in simple panel data models, when there is serial correlation in the reduced form

errors, or indeed in simple time-series models with serial correlation. In our development of

the conditional F-statistics for models with multiple endogenous variables, we maintain the

same assumptions as Staiger and Stock (1007) and Stock and Yogo (2005), and hence the same

limitations. Olea and Pflueger (2013) have recently proposed an alternative robust F-test type

procedure for weak instruments, but thus far it can only be applied to the one-endogenous

variable model.

3.1 Conditional F-test

Angrist and Pischke (2009) propose an alternative conditional first-stage F-statistic for the case

of multiple endogenous variables by reformulating the estimation problem to a one-variable

model after replacing the other endogenous variables with their reduced form predictions. For

instance, for the two-variable model, the 2SLS estimator for β1 is obtained by 2SLS in the

model

y = x1β1 + x̂2β2 + u∗, (5)

where x̂2 = Zπ̂2 = PZx2, using Z as the instruments, and hence

β̂1 =
(
x′1Mx̂2PZMx̂2x1

)−1
x′1Mx̂2PZy.

Therefore, β̂1 can be seen as the 2SLS estimator in the one-variable model

y = Mx̂2x1β1 + ξ, (6)

where the residual Mx̂2x1 = x1 − x̂2δ̃, with δ̃ = (x̂′2x̂2)
−1 x̂′2x1, is instrumented by Z. The

reduced form is then

Mx̂2x1 = Zκ+ ε (7)

and the Angrist-Pischke F-statistic is testing the hypothesis H0 : κ = 0, given by

FAP =
κ̂′Z ′Zκ̂

(kz − 1) σ̂2ε
=
x′1Mx̂2PZMx̂2x1

(kz − 1) σ̂2ε
, (8)
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where κ̂ is the OLS estimator of κ,

κ̂ =
(
Z ′Z

)−1
Z ′Mx̂2x1 =

(
Z ′Z

)−1
Z ′
(
x1 − x̂2δ̃

)
= π̂1 − π̂2δ̃;

and σ̂2ε = ε̂′ε̂/n, with ε̂ = Mx̂2x1 − Zκ̂. The degrees of freedom correction follows because x̂2

has been predicted using the same instruments Z. If we partition Z =
[
z1 Z2

]
with Z2 a

(kz − 1)×n matrix, then the instrument set for (5) could equivalently be written as
[
x̂2 Z2

]
.

As the problem seems to have been reduced to a one-endogenous variable model, FAP

has been proposed to determine instrument strength for identification of individual structural

parameters, like β1 in the above derivation, and Stock and Yogo (2005) weak instrument critical

values used to determine maximum relative bias of the IV estimator, relative to the OLS

estimator for the single parameter. There are some issues with this, however, that seem to

invalidate such an approach. Under the null that κ = 0, (kz − 1)FAP does not follow an

asymptotic χ2kz−1 distribution, unless π1 = 0. An alternative F-statistic is easily derived that

corrects for this, but the relative bias results as described in the previous section for the one-

variable model do not carry over to the individual parameters in this multiple endogenous

variables model.

To consider the asymptotic distribution, for any given value of δ we have that

x1 − x̂2δ = x1 − x2δ + (x2 − x̂2) δ = Z (π1 − δπ2) + v1 − δv2 + δMZv2

= Z (π1 − δπ2) + v1 − δPZv2.

Clearly, the OLS estimator for κδ in the model

x1 − x̂2δ = Zκδ + ε∗ (9)

is given by

κ̂δ =
(
Z ′Z

)−1
Z ′ (x1 − x̂2δ) =

(
Z ′Z

)−1
Z ′ (x1 − x2δ)

= π̂1 − δπ̂2 = π1 − δπ2 +
(
Z ′Z

)−1
Z ′ (v1 − δv2)

and hence the variance of the OLS estimator is given by

V ar (κ̂δ) =
(
σ21 − 2δσ12 + δ2σ22

) (
Z ′Z

)−1
. (10)

The F-statistic for testing H0 : κδ = 0 in (9) is

Fδ =
κ̂′Z ′Zκ̂

kz
(
σ̂21 − 2δσ̂12 + δ2σ̂22

) ,
11



and kzFδ converges in distribution to a χ2kz distribution under the null that κδ = 0, or π1 = δπ2.

However, computing the standard F-test statistic in (9) as

Fs =
κ̂′Z ′Zκ̂

kzσ̂
2
ε∗

does not result in Fδ as

ε̂∗′ε̂∗ = (x1 − x̂2δ)′MZ (x1 − x̂2δ) = x′1MZx1 = v̂′1v̂1

and hence

Fs =
κ̂′Z ′Zκ̂

kzσ̂
2
1

.

Therefore the denominator of Fs does not estimate the variance as in (10) correctly and kzFs

does not converge to a χ2kz distribution under the null, unless δ = 0. The correct F-statistic

would be obtained by the standard F-test if the dependent variable in (9) was x1− δx2 instead

of x1 − δx̂2.

The Angrist-Pischke approach does replace δ by an estimate δ̃. By developing a formal

testing framework we show that the same issues arise and that (kz − 1)FAP does not have an

asymptotic χ2kz−1 distribution under the null that π1 = δπ2, unless δ = 0.

Partition Z =
[
z1 Z2

]
. We can write the reduced from for x1 as

x1 = Zπ1 + v1 = Zπ2 + Z (π1 − π2) + v1 (11)

= Zπ2δ + Z2 (π12 − π22δ) + v1 = x2δ + Z2 (π12 − π22δ) + v1 − δv2

where π1 and π2 are partitioned as
[
π11 π′12

]′
and

[
π21 π′22

]′
respectively; δ = π11/π21,

implicitly assuming that π21 6= 0. Hence a test for underidentification is a test for H0 : γ = 0,

in the model

x1 = x2δ + Z2γ + v∗, (12)

where v∗ = v1 − δv2. Clearly, x2 is an endogenous variable in (12), but we can estimate the

parameters δ and γ by IV, using Z as instruments. The 2SLS estimators for δ and γ are given

by

δ̂ =
(
x̂′2MZ2 x̂2

)−1
x̂′2MZ2x1; γ̂ =

(
Z ′2Mx̂2Z2

)−1
Z ′2Mx̂2x1

and

V ar (γ̂) = σ2v∗
(
Z ′2Mx̂2Z2

)−1
,
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with σ2v∗ = σ21 − 2δσ12 + δ2σ22. The F-test statistic for testing H0 : γ = 0 is therefore given by

Fγ =
x′1Mx̂2Z2 (Z ′2Mx̂2Z2)

−1 Z ′2Mx̂2x1
(kz − 1) (v̂∗′v̂∗/n)

with

v̂∗ = x1 − x2δ̂ − Z2γ̂ = Zπ̂1 + v̂1 − Zπ̂2δ̂ − δ̂v̂2 − Z2γ̂ = v̂1 − δ̂v̂2,

as the IV estimates are given by

δ̂ =
π̂11
π̂21

; γ̂ = π̂12 − π̂22δ̂.

Hence,

σ̂2v∗ =
1

n
v̂∗′v̂∗ = σ̂21 − 2δ̂σ̂12 + δ̂

2
σ̂22

is a consistent estimator of σ2v∗ .

The Angrist and Pischke (2009) F-statistic as described above is related to Fγ , as

FAP =
x′1Mx̂2Z (Z ′Z)−1 Z ′Mx̂2x1

(kz − 1)
(
ε̂′ε̂/n

) =
x′1Mx̂2Z2 (Z ′2Mx̂2Z2)

−1 Z ′2Mx̂2x1

(kz − 1) σ̂21
,

because

x′1Mx̂2PZMx̂2x1 = x′1PZMx̂2PZx1 = x̂′1Mx̂2 x̂1

= γ̂Z ′2Mx̂2Z2γ̂ = x′1Mx̂2Z2
(
Z ′2Mx̂2Z2

)−1
Z ′2Mx̂2x1,

and the sum of squared residuals is given by

ε̂′ε̂ = x′1Mx̂2MZMx̂2x1 = x′1MZx1 = v̂′1v̂1

and hence ε̂′ε̂/n = σ̂21. Therefore, whilst the numerators are the same in FAP and Fγ , the

denominators are different. (kz − 1)FAP is therefore not asymptotically χ2kz−1 distributed under

the null, H0 : π1 = δπ2, unless δ = 0 and hence π1 = 0.

Clearly, δ̃ = (x̂′2x̂2)
−1 x̂′2x1 is an estimate of δ under the null that π1 = δπ2 and hence γ = 0.

Let ṽ∗ = x1 − x2δ̃ be the residual under the null, then the LM test for the null H0 : γ = 0 is

given by

LM =
ṽ∗′Z (Z ′Z)−1 Z ′ṽ∗

ṽ∗′ṽ∗/n

which converges to a χ2kz−1 distribution under the null. LM is equal to nR2 in the model

x1 − x2δ̃ = Zκ+ ξ. (13)
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The F-test in (13), with appropriate degrees of freedom correction, is given by

F1|2 =
κ̂′Z ′Zκ̂

(kz − 1)
(
ξ̂
′
ξ̂/n

) =

(
π̂1 − δ̃π̂2

)′
Z ′Z

(
π̂1 − δ̃π̂2

)
(kz − 1)

(
σ̂21 + δ̃

2
σ̂22 − 2δ̃σ̂12

) (14)

=
x′1Mx̂2Z2 (Z ′2Mx̂2Z2)

−1 Z ′2Mx̂2x1

(kz − 1)
(
σ̂21 + δ̃

2
σ̂22 − 2δ̃σ̂12

) ,

which is only different from Fγ through the estimate of δ in the denominator. In F1|2 this is

invariant to which instrument has been excluded from Z in forming Z2, making it therefore

preferable to Fγ . Clearly, F1|2 differs from FAP by using the IV residual x1−x2δ̃ in (13) instead

of the second stage residual x1 − x̂2δ̃ for FAP in (7).

Analogous to (11), we can write for x2

x2 = x1δ
∗ + Z2 (π22 − π21δ∗) + v2 − δ∗v1 = x1δ

∗ + Z2γ
∗ + v∗∗

where δ∗ = π12/π22 = δ−1, γ∗ = −γ/δ and v∗∗ = v∗/δ. Clearly

F2|1 =

(
π̂2 − δ̃

∗
π̂1

)′
Z ′Z

(
π̂2 − δ̃

∗
π̂1

)
(kz − 1)

(
σ̂22 + δ̃

∗2
σ̂21 − 2δ̃

∗
σ̂12

) ,
where δ̃

∗
= (x̂′1x̂1)

−1 x̂′1x2, has the same asymptotic properties as F1|2 under H0 : π1 = δπ2,

but it is not identical to F1|2 as δ̃
∗ 6= δ̃

−1
.

3.2 Relationship with Cragg-Donald Statistic

With g endogenous variables, the minimum eigenvalue of the Cragg-Donald statistic, τmin, is a

test for H0 : rank (Π) = g − 1 against the alternative H1 : rank (Π) = g. For the two-variable

model, this null is of course equivalent to H0 : π1 = δπ2. The Cragg-Donald test is based on

the restricted estimates under the null, using the minimum-distance criterion,

(
δ, π2

)
= arg min

δ,π2

H (δ, π2) ,

with

H (δ, π2) =

((
π̂1
π̂2

)
−
(
δπ2
π2

))′ (
Σ̂−1 ⊗ Z ′Z

)(( π̂1
π̂2

)
−
(
δπ2
π2

))
.

The Cragg-Donald test statistic is then

τmin = H
(
δ, π2

) d−→ χ2kz−1
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under the null. We show in the Appendix that

H
(
δ, π2

)
=

(
π̂1 − δπ̂2

)′
Z ′Z

(
π̂1 − δπ̂2

)
σ̂21 + δ

2
σ̂22 − 2δσ̂12

and hence the only difference between F1|2, F2|1 and τmin/ (kz − 1) is the estimate for δ. Clearly,

unlike the F-statistics, τmin is invariant to normalisation, as H
(
δ
∗
, π1

)
= H

(
δ, π2

)
. Because

of this, computation of both F1|2 and F2|1 can provide further information about the nature

of the weakness of the instruments, as their values can indicate whether the rank reduction is

due to e.g. π1 = 0 (δ = 0), which τmin cannot distinguish, as we will show below. We will

also present a three-endogenous variables example in Section 4.3 which further highlights the

additional information about instrument strength revealed by the three conditional F-statistics

relative to that of the Cragg-Donald statistic.

4 Local to Rank One Weak Instrument Asymptotics in the
Two-Variable Model

In the previous section, we have shown that (kz − 1)Fγ has a limiting χ2kz−1 distribution under

the null that γ = 0 in (12). We next investigate whether Fγ can be used to assess whether

instruments are weak for individual parameters as described in Section 2. We focus in the

derivation below on Fγ as the setup for this test is easier to use with our weak instruments

asymptotics, but results of course carry over directly to F1|2, F2|1 and τmin.

We are interested in the case that the instruments are not weak for each equation, but

where the rank of Π approaches a rank reduction of one. We specify LRR1 weak instrument

asymptotics as γ = c/
√
n, or

π12 = δπ22 + c/
√
n.

We can then write the reduced form of x1 as

x1 = Zπ2δ + Z2 (π12 − δπ22) + v1 = x̂2δ + Z2c/
√
n+ (v1 − δPZv2) .

The IV estimator for β1 is given by

β̂1,2SLS =
x′1Mx̂2Z2 (Z ′2Mx̂2Z2)

−1 Z ′2Mx̂2y

x′1Mx̂2Z2 (Z ′2Mx̂2Z2)
−1 Z ′2Mx̂2x1

and it follows that

β̂1,2SLS − β1 =
x′1Mx̂2Z2 (Z ′2Mx̂2Z2)

−1 Z ′2Mx̂2u

x′1Mx̂2Z2 (Z ′2Mx̂2Z2)
−1 Z ′2Mx̂2x1
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as Mx̂2 x̂2 = 0, Mx̂2MZ =
(
I − PZx2 (x′2PZx2)

−1 x′2PZ
)
MZ = MZ , and hence Z ′2Mx̂2MZv2 =

Z ′2MZv2 = 0.

We assume that(
1√
n
Z ′2Mx̂2u

1√
n
Z ′2Mx̂2 (v1 − δv2)

)
d−→
(

ψZ∗2u
ψZ∗2 (v1−δv2)

)
= N (0,Ω⊗Q) ,

where

Ω =

(
σ2u σu1 − δσu2

σu1 − δσu2 σ21 + δ2σ22 − 2δσ12

)
; Z∗2 = Mx̂2Z2; Q = plim

(
n−1Z∗′2 Z

∗
2

)
.

It is then easily shown that

x′1Mx̂2Z2
(
Z ′2Mx̂2Z2

)−1
Z ′2Mx̂2x1

d−→ σ2v1−δv2

(
λ̃+ z̃v

)′ (
λ̃+ z̃v

)
and

x′1Mx̂2Z2
(
Z ′2Mx̂2Z2

)−1
Z ′2Mx̂2u

d−→ σuσv1−δv2

(
λ̃+ z̃v

)′
z̃u

where

σv1−δv2 =
√
σ21 + δ2σ22 − 2δσ12;

λ̃ = σ−1v1−δv2Q
1/2c; z̃v = σ−1v1−δv2Q

−1/2ψZ∗2 (v1−δv2); z̃u = σ−1u Q−1/2ψZ∗2u.

We are therefore in the same setup as Staiger and Stock (1997) and Stock and Yogo (2005),

and the distribution of the bias of β̂1,2SLS is given by

β̂1,2SLS − β1 =
x′1Mx̂2Z2 (Z ′2Mx̂2Z2)

−1 Z ′2Mx̂2u

x′1Mx̂2Z2 (Z ′2Mx̂2Z2)
−1 Z ′2Mx̂2x1

d−→ σu
σv1−δv2

(
λ̃+ z̃v

)′
z̃u(

λ̃+ z̃v

)′ (
λ̃+ z̃v

) ,
and

E
(
β̂1,2SLS

)
− β1 −→

σu1 − δσu2
σ21 + δ2σ22 − 2δσ12

E


(
λ̃+ z̃v

)′
z̃v(

λ̃+ z̃v

)′ (
λ̃+ z̃v

)
 .

One would therefore think that one could proceed as in the one-variable model as specified

above, with

l̃ = λ̃
′
λ̃/ (kz − 1) =

1

kz − 1

c′Qc

σ21 + δ2σ22 − 2δσ12

and the critical values from the non-central chi-squared distribution applied to

Fγ =
x′1Mx̂2Z2 (Z ′2Mx̂2Z2)

−1 Z ′2Mx̂2x1

(kz − 1)
(
σ̂21 + δ̂

2
σ̂22 − 2δ̂σ̂12

) .
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However, in this case the bias of the OLS estimator of β1 in the model

y = x1β1 + x2β2 + u

is given by

β̂1,OLS − β1 =
x′1Mx2u

x′1Mx2x1
.

As

x1 = x2δ + Z2c/
√
n+ (v1 − δv2) ,

we get that

plim
(
n−1

(
x′1Mx2u

))
= plim

(
n−1

(
c√
n
Z ′2Mx2u+ (v1 − δv2)′Mx2u

))
.

Further,

plim
(
n−1

(
x′1Mx2x1

))
= plim

(
n−1

(
c√
n
Z ′2Mx2Z2

c√
n

+ 2
c′√
n
Z ′2Mx2(v1 − δv2) + (v1 − δv2)′Mx2(v1 − δv2)

))
.

From these results we find that the bias of the OLS estimator converges to

plim
(
β̂1,OLS − β1

)
=

plim
(
n−1(v1 − δv2)′Mx2u

)
plim (n−1(v1 − δv2)′Mx2(v1 − δv2))

=
σu1 − δσu2 − (σ12−δσ22)σu2

π′2QZZπ2+σ
2
2

σ21 + δ2σ22 − 2δσ12 − (σ12−δσ22)2
π′2QZZπ2+σ

2
2

and therefore, we now have that

Bn,1 =

∣∣∣E [β̂1,2SLS]− β1∣∣∣∣∣∣E [β̂1,OLS]− β1∣∣∣ 6=
∣∣∣∣∣∣∣E


(
λ̃+ z̃v

)′
z̃v(

λ̃+ z̃v

)′ (
λ̃+ z̃v

)

∣∣∣∣∣∣∣

and so the direct relationship between the relative bias of the individual parameter and the

value of the concentration parameter does not hold in this setting.1

1The one-variable model as described above was y =Mx̂2x1β1+ ξ.and so one could ask the question whether
the weak instrument relative bias could apply to the OLS estimator in this model instead. The OLS estimator
is given by

β̃1,OLS =
x′1Mx̂2y

x′1Mx̂2x1
= β1 +

β2x
′
1Mx̂2x2 + x′1Mx̂2u

x′1Mx̂2x1

and therefore

plim β̃1,OLS − β1 =
β2σ12 + σu1

σ21
and hence, again

B̃n,1 =

∣∣∣E [β̂1,2SLS]− β1∣∣∣∣∣∣E [β̃1,OLS]− β1∣∣∣ 6=
∣∣∣∣∣∣∣E


(
λ̃+ z̃v

)′
z̃v(

λ̃+ z̃v
)′ (

λ̃+ z̃v
)

∣∣∣∣∣∣∣ .
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However, we can get a result for the total relative bias. First of all, we show in the Appendix

that for the 2SLS estimator for β2 the following holds,

β̂2,2SLS − β2
d−→ −δ σu

σv1−δv2

(
λ̃+ z̃v

)′
z̃u(

λ̃+ z̃v

)′ (
λ̃+ z̃v

) ,
and hence, asymptotically,

E
[
β̂2,2SLS

]
− β2 = −δ

(
E
[
β̂1,2SLS

]
− β1

)
.

From this it follows that β̂2,2SLS is consistent when δ = 0, that is in the situation where the

instruments are strong for x2, but weak for x1 in the sense that π1 is local to zero.

We then show in the Appendix that

B2 =

(
E
[
β̂2SLS

]
− β

)′
ΣX

(
E
[
β̂2SLS

]
− β

)
(
E
[
β̂OLS

]
− β

)′
ΣX

(
E
[
β̂OLS

]
− β

) ≤ b2,
where

b = E


(
λ̃+ z̃v

)′
z̃v(

λ̃+ z̃v

)′ (
λ̃+ z̃v

)
 .

From this it follows that we can use the SY critical values for τmin/ (kz − 1), F1|2 and F2|1

to assess LRR1 weak instrument maximal total relative bias. These are the critical values

tabulated for the one-endogenous variable case with kz − 1 instruments.

We can also use the equivalent SY critical values for assessing the maximal size of the

individual 2SLS Wald tests. We get for the Wald test for the simple null H0 : β1 = β01

W1 =

(
β̂1,2SLS − β01

)2 (
x′1Mx̂2Z2 (Z ′2Mx̂2Z2)

−1 Z ′2Mx̂2x1

)
σ̂2u

=
σ2u
σ̂2u

((
λ̃+ z̃v

)′
z̃u

)2
(
λ̃+ z̃v

)′ (
λ̃+ z̃v

)
where

σ̂2u =
(
y − x1β̂1,2SLS − x2β̂2,2SLS

)′ (
y − x1β̂1,2SLS − x2β̂2,2SLS

)
/n.

We find that

σ̂2u
d−→ σ2u

(
1− 2

σu1 − δσu2
σuσv1−δv2

ν̃2
ν̃1

+

(
ν̃2
ṽ1

)2)
,

where

ν̃1 =
(
λ̃+ z̃v

)′ (
λ̃+ z̃v

)
; ν̃2 =

(
λ̃+ z̃v

)′
z̃u.
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The Wald test is then, as in Staiger and Stock (1997) and Stock and Yogo (2005), equal to

W1 =
ṽ22/ṽ1

1− 2ρ̃ν̃2/ν̃1 + (ν̃2/ν̃1)
2

where ρ̃ = σu1−δσu2
σuσv1−δv2

, and so we can again use the SY critical values for the F-statistic for

maximal size of the Wald-test, achieved when ρ̃ = 1. Clearly, we get the same results for W2,

the Wald test for H0 : β2 = β02.

4.1 Monte Carlo Illustration

To illustrate, we generate data from the model as specified above, with ui
v1i
v2i

 ∼ N
 0

0
0

 ,

 σ2u σu1 σu2
σu1 σ21 σ12
σu2 σ12 σ22

 .

The instruments are drawn independently from the standard normal distribution, with kz = 4,

and hence QZZ = I4. We set π2 = (−0.5, 0.5,−0.5, 0.5)′ and π1 = δπ2 + (0, c, c, c)′ /
√
n. We

have

Q = plim
1

n
Z ′2Mx̂2Z2 = Ikz−1 −

π22π
′
22

π′2π2
,

where π2 =
[
π21 π22

]′
is partitioned commensurate with Z =

[
z1 Z2

]
.

The limit of the concentration parameter for this specific configuration is given by

CPl =
c′Qc

σ21 + δ2σ22 − 2δσ12
=

3c2 − c2

4

σ21 + δ2σ22 − 2δσ12
.

We choose c such that the concentration parameter has the value for which the IV estimator

for β has a maximal total relative bias of 10%. We have further set the parameters as follows:

β1 = 0.5; β2 = −0.3; σ2u = σ21 = σ22 = 1; σu1 = 0.1; σu2 = −0.7; σ12 = −0.7 and δ = 0.7. This

design is such that the additional terms in the OLS bias are important, with

σu1 − δσu2
σ21 + δ2σ22 − 2δσ12

σ21 + δ2σ22 − 2δσ12 − (σ12−δσ22)2
π′2QZZπ2+σ

2
2

σu1 − δσu2 − (σ12−δσ22)σu2
π′2QZZπ2+σ

2
2

= 3.5591.

i.e. the OLS bias for β1 is much smaller than
σu1−δσu2

σ21+δ
2σ22−2δσ12

. The results are given in Table 3

for a sample size of 10, 000 observations. The individual standard F-statistics are very large.

As expected, the IV estimator of β1 has a large relative bias of 0.3441, approximately equal

to 3.56 ∗ 0.1, but the relative bias of β2 is much smaller at 0.0498. The distributions of F1|2,

F2|1 and τmin/ (kz − 1) are virtually identical, each with a mean of 4.7 and rejection frequency

19



of 4.6% at the 5% nominal level using the weak instrument critical value. In comparison, the

AP F-statistics are much larger in this case with the mean of FAP,1 equal to 11.82, and that of

FAP,2 equal to 22.93.

Table 3. Estimation results and relative bias for two-variable model

mean st dev rel bias SY rej freq
β̂1,OLS 0.5695 0.0070
β̂2,OLS -0.6506 0.0062
β̂1,2SLS 0.5239 0.1979 0.3441
β̂2,2SLS -0.3174 0.1419 0.0498
F1 1290 44
F2 2503 71
FAP,1 11.82 5.91 0.6256
FAP,2 22.93 11.46 0.9082
F1|2 4.70 2.35 0.0460
F2|1 4.71 2.36 0.0464
τmin/ (kz − 1) 4.70 2.35 0.0457
τmin/kz 3.52 1.76 0.0267

Notes: sample size 10,000; 10,000 MC replications; β1= 0.5; β2= −0.3;
Fj is the first-stage F-statistic for xj , j =1, 2;
FAP,j is the Angrist-Pischke F-statistic and F1|2 and F2|1 are the
conditional F-statistics as in (14); τmin is the Cragg-Donald minimum
eigenvalue statistic; rel bias is the relative bias of the 2SLS estimator, relative
to that of the OLS estimator; SY rej freq uses the 5% Stock-Yogo critical
values for a maximum 10% total relative bias

The total relative bias in this design is found to be equal to 7.6%, which is less than 10%, as

predicted by the theory above. The SY test for weak instruments for Π local to 0 is conservative

and has a rejection frequency of 2.6%. This test is given by τmin/kz and the weak instrument

critical value is derived for two endogenous variables with kz instruments. In contrast, the

weak instrument critical values for F1|2, F2|1 and τmin/ (kz − 1) are those for one endogenous

variable with kz−1 instruments. From Table 1 in SY, it is easily established that when τmin/kz

is larger than its associated tabulated critical value, then τmin/ (kz − 1) is also larger than its

weak instrument critical value, so we would always reject LRR1 weak instrument problems

whenever we reject rank zero weak instrument problems.

In Table 4 we present results for the Wald test statistics in a design with ρ̃ = 1, by changing

the variance parameters to σu1 = 0.755, σu2 = 0.35 and σ12 = −0.35, again choosing c such that

the size of the Wald tests is 10% at the 5% level. The simulations confirm the analytical results.
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The rejection frequencies of the Wald tests are just over 10% and the rejection frequencies of

F1|2, F2|1 and τmin/ (kz − 1) just over 5%. In this case, the SY weak instrument test τmin/kz

using the tabulated critical value for two endogenous variables and four instruments is also just

over 5%.

Table 4. Estimation and Wald tests results for two-variable model

mean st dev rej freq SY rej freq
β̂1,OLS 1.4990 0.0007
β̂2,OLS 0.3899 0.0006
β̂1,2SLS 0.5257 0.1565
β̂2,2SLS -0.2827 0.1071
W1 1.47 2.86 0.1016
W2 1.46 2.87 0.1017
W12 2.61 3.58 0.1080
F1|2 14.85 4.40 0.0548
F2|1 14.93 4.45 0.0585
τmin/ (kz − 1) 14.84 4.40 0.0517
τmin/kz 11.13 3.30 0.0545

Notes: sample size 10,000; 10,000 MC replications; β1= 0.5; β2= −0.3
Wj is the Wald test for H0: βj= β0j ; W12 is joint Wald test;
F1|2 and F2|1 are the conditional F-statistics as in (14); τmin is the
Cragg-Donald minimum eigenvalue statistic; rej freq for Wald tests uses 5%
critical value of χ2 distribution; SY rej freq uses the 5% Stock-Yogo critical
values for a maximal 10% size of Wald tests.

4.2 The case δ = 0

When δ = 0 , we have in the process above that π1 is local to zero, and hence the instruments

for x1 are weak, but not for x2. As shown above, β̂2,2SLS is in this case consistent for β2, but

β̂1,2SLS will suffer from a weak instrument bias. This situation may actually be of interest if

the main research focus is on the effect of x2 on y. If the instruments used are then strong

for x2 but weakly or not informative for x1, the IV estimator for β2 will be well behaved. In

Table 5, we show the results for the bias of the 2SLS estimates, for when δ = 0 and where we

have further set σu1 = 0.8. All other parameters remain the same as for the results presented

in Table 3, and we have set the value of c again such that the maximum total relative bias is

10%. As can be seen from the table, the results are as expected. The value of the first-stage

F-statistic for x1, F1 is now small, whilst that of F2 is large. The behaviour of FAP,1 is now

the same as that of F1|2, both rejecting the null of weak instruments 5% of the time using the
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SY critical values for kz − 1 instruments. β̂2,2SLS is consistent, but the total relative bias is at

9.7% only just below 10%.

Table 5. Estimation results and relative bias for two-variable model, δ = 0

mean st dev rel bias SY rej freq
β̂1,OLS 1.2317 0.0067
β̂2,OLS -0.3976 0.0047
β̂1,2SLS 0.5776 0.3001 0.0776
β̂2,2SLS -0.3010 0.0103 -0.0010
F1 4.08 1.88 0.0044
F2 2503 70 1.0000
FAP,1 4.79 2.39 0.0515
FAP,2 2922 502 1.0000
F1|2 4.72 2.36 0.0474
F2|1 462 1184 0.8811
τmin/ (kz − 1) 4.72 2.36 0.0470
τmin/kz 3.54 1.77 0.0259

Notes: sample size 10,000; 10,000 MC replications; β1= 0.5; β2= −0.3
Fj is the first-stage reduced form F-statistic for xj , j =1, 2;
FAP,j is the Angrist-Pischke F-statistic and F1|2 and F2|1 are the
conditional F-statistics as in (14); τmin is the Cragg-Donald minimum
eigenvalue statistic; rel bias is the relative bias of the 2SLS estimator, relative
to that of the OLS estimator; SY rej freq uses the 5% Stock-Yogo critical
values for a maximum 10% total relative bias

4.3 More than Two Endogenous Variables

As is clear from the analyses above for the two-variable model, the use of F1|2 and F2|1 under

our LRR1 weak instrument asymptotics do not reveal more information than the Cragg-Donald

statistic τmin/ (kz − 1), unless δ = 0 and hence π1 is local to zero. The derivations for the

two-variable model easily extend to the general case of several endogenous variables. The com-

putation of the individual conditional F-statistics could then reveal further interesting patterns

that the Cragg-Donald statistic will not be able to. For example, consider a three-variable

model, which has a local rank reduction of one, of the form

π1 = δ2π2 + δ3π3 + c/
√
n

but with δ3 = 0. The conditional F-statistics are in this case computed from

xj −X−j δ̃ = Zκ+ ξ,
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whereX−j is the matrix of endogenous variables with xj excluded and δ̃ =
(
X̂ ′−jX̂−j

)−1
X̂ ′−jxj .

The conditional F-statistics are then

Fxj |X−j =
κ̂′Z ′Zκ̂

(kz − 2)
(
ξ̂
′
ξ̂/n

) , (15)

see the Appendix for simple Stata code to calculate Fxj |X−j .

Table 6 presents some simulation results for this particular case for the following design
ui
v1i
v2i
v3i

 ∼ N



0
0
0
0

 ,


1 0.8 0.3 0.6

0.8 1 0.3 0.5
0.3 0.3 1 0.4
0.6 0.5 0.4 1


 ,

δ2 = 0.5; δ3 = 0; β1 = 0.5; β2 = −0.3; β3 = 0.7. The instruments are again drawn indepen-

dently form the standard normal distribution, with kz = 5, and c is again chosen such that the

total relative bias is less than 10%.

Table 6. Estimation results and relative bias for three-variable model

mean st dev rel bias SY rej freq
β̂1,OLS 1.1337 0.0068
β̂2,OLS -0.4581 0.0050
β̂3,OLS 0.9526 0.0055
β̂1,2SLS 0.5709 0.3086 0.1120
β̂2,2SLS -0.3361 0.1575 0.2285
β̂3,2SLS 0.6990 0.0161 -0.0040
F1 650 26
F2 2504 67
F3 902 32
F1|2,3 4.82 2.38 0.0514
F2|1,3 4.84 2.41 0.0531
F3|1,2 198.21 329.06 0.8779
τmin/ (kz − 2) 4.82 2.38 0.0513
τmin/kz 2.89 1.43 0.0156

Notes: sample size 10,000; 10,000 MC replications; β1= 0.5; β2= −0.3; β3= 0.7
Fj is the first-stage reduced form F-statistic for xj , j =1, 2, 3;
F1|2,3, F2|1,3 and F3|1,2 are the conditional F-statistics as in (15);
τmin is the Cragg-Donald minimum eigenvalue statistic; rel bias is the relative bias
of the 2SLS estimator, relative to that of the OLS estimator; SY rej freq uses the
5% Stock-Yogo critical values for a maximum 10% total relative bias

It is clear from the conditional F-statistics that the near rank reduction is due to parameters

in the reduced form equations for x1 and x2. From a straightforward extension of the analytical
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results for the two-variable case in the Appendix we get that β̂3,2SLS is consistent as δ3 = 0.

This is confirmed by the simulation results. The total relative bias in this case is equal to 8.8%,

which is less than 10%. It is clear that the conditional F-statistics now provide important

additional information to that provided by the Cragg-Donald statistic.

5 Conclusions

We have shown that a conditional first-stage F-test statistic can be informative about the

information that instruments provide for models with multiple endogenous variables. The con-

ditional F-test is similar to the one proposed by Angrist and Pischke (2009), but takes the

variance of the multiple equations into account for testing a rank reduction of one of the matrix

of reduced from parameters. Our weak instrument asymptotics is defined as local to a rank

reduction of one of this matrix. We find that the conditional F-statistics in a two-endogenous

variables model provide the same information as the Cragg-Donald test statistic for testing a

rank reduction of one, unless the rank reduction is due to the fact that the instruments are

uninformative for one of the endogenous variables. The conditional F-statistics are informa-

tive for total relative bias and Wald test size distortions for individual structural parameters.

With more than two endogenous variables, the conditional F-statistics can provide additional

information regarding the strength of the instruments for the different reduced forms. We

therefore recommend in applied work that researchers report standard first-stage F-statistics,

the Cragg-Donald statistic and the conditional F-statistics in order to gauge the nature of the

weak instrument problem, if any. The Stock and Yogo (2005) weak instrument critical values

can be used for the Cragg-Donald and conditional F-statistics. When reduced form errors are

conditionally heteroskedastic and/or serially correlated, robust conditional F-statistics can be

computed and used as tests for underidentification. However, the exact link of the Stock and

Yogo (2005) critical values with the magnitude of the relative bias and Wald-test size distor-

tions no longer holds for the robust statistics and is therefore an important avenue for future

research.
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6 Appendix

6.1 Cragg-Donald Statistic

The Cragg-Donald statistic in the two-variable model is obtained as

τmin = minH (δ, π2) =

((
π̂1
π̂2

)
−
(
δπ2
π2

))′ (
Σ̂−1 ⊗ Z ′Z

)(( π̂1
π̂2

)
−
(
δπ2
π2

))
.

The first-order condition is given by, writing Σ̂−1 =

(
σ̂11 σ̂12

σ̂12 σ̂22

)
,

−1

2

∂H (δ, π2)

∂π2
=
((

δσ̂11 + σ̂12 δσ̂12 + σ̂22
)
⊗ Z ′Z

)(( π̂1
π̂2

)
−
(
δπ2
π2

))
= 0,
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resulting in(
δσ̂11 + σ̂12

)
Z ′Zπ̂1 +

(
δσ̂12 + σ̂22

)
Z ′Zπ̂2 = δ

(
δσ̂11 + σ̂12

)
Z ′Zπ2 +

(
δσ̂12 + σ̂22

)
Z ′Zπ2.

Hence,

π2 =

(
δσ̂11 + σ̂12

)
π̂1 +

(
δσ̂12 + σ̂22

)
π̂2

δ
(
δσ̂11 + σ̂12

)
+
(
δσ̂12 + σ̂22

) =

(
δσ̂22 − σ̂12

)
π̂1 +

(
σ̂21 − δσ̂12

)
π̂2

σ̂21 + δ
2
σ̂22 − 2δσ̂12

,

and

π̂2 − π2 = −
(
δσ̂22 − σ̂12

)
σ̂21 + δ

2
σ̂22 − 2δσ̂12

(
π̂1 − δπ̂2

)
;

π̂1 − δπ2 =

(
σ̂21 − δσ̂12

)
σ̂21 + δ

2
σ̂22 − 2δσ̂12

(
π̂1 − δπ̂2

)
.

As( (
σ̂21 − δσ̂12

)
−
(
δσ̂22 − σ̂12

) )′ Σ̂−1( (
σ̂21 − δσ̂12

)
−
(
δσ̂22 − σ̂12

) ) =
(

1 −δ
)

Σ̂

(
1

−δ

)
= σ̂21 + δ

2
σ̂22 − 2δσ̂12,

it follows that

H
(
δ, π2

)
=

(
π̂1 − δπ̂2

)′
Z ′Z

(
π̂1 − δπ̂2

)
σ̂21 + δ

2
σ̂22 − 2δσ̂12

.

6.2 Total Relative Bias

Equivalently to (11) we can write

x2 = x1δ
∗ + Z2 (π22 − π12δ∗) + v2 − δ∗v1

where δ∗ = π21/π11 = δ−1. Hence, under LRR1 weak instrument asymptotics, we have

x2 = x1δ
∗ − Z2cδ∗/

√
n+ v2 − δ∗v1.

As (
1√
n
Z ′2Mx̂1u

1√
n
Z ′2Mx̂1 (v2 − δ∗v1)

)
d−→
(

ψZ∗∗2 u

ψZ∗∗2 (v2−δ∗v1)

)
= N (0,Ω∗ ⊗Q∗) ,

Ω∗ =

(
σ2u σu2 − δ∗σu1

σu2 − δ∗σu1 σ22 + δ∗2σ21 − 2δ∗σ12

)
; Z∗∗2 = Mx̂1Z2; Q∗ = plim

(
n−1Z∗∗′2 Z∗∗2

)
Q∗ = plim

1

n
Z ′2Mx̂1Z2 = plim

(
1

n

(
Z ′2Z2 − Z ′2δx2

(
δx′2Z

(
Z ′Z

)
Z ′δx2

)
δx′2Z2

))
= Q

It follows that ψZ∗∗2 u = ψZ∗2u and ψZ∗∗2 (v2−δ∗v1) = ψZ∗2 (v2−δ
∗v1) = −1δψZ∗2 (v1−δv2), as e.g.

Z ′2Mx̂1u = Z ′2u−Z ′2x1
(
x′1PZx1

)−1
x′1PZu = Z ′2u−Z ′2x1

(
x′1Z

(
Z ′Z

)−1
Z ′x1

)
x′1Z

(
Z ′Z

)−1
Z ′u.
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Further,

plim
(
n−1Z ′x1

)
= δ plim

(
Z ′x2

)
,

λ̃
∗

= σ−1v2−δ∗v1Qcδ
∗ = (δ∗σv1−δv2)

−1Qcδ∗ = λ̃,

so we get that

β̂2,SLS − β2
d−→ −δ σu

σv1−δv2

(
λ̃+ z̃v

)′
z̃u(

λ̃+ z̃v

)′ (
λ̃+ z̃v

)
and hence, asymptotically,

E
[
β̂2,SLS

]
− β2 = −δE

[
β̂1,2SLS

]
− β1.

Using this, we can express the total relative bias (4) as

B2 = b2
Σ′XuΣ

−1/2
X Σ

1/2
X DΣXDΣ

1/2
X Σ

−1/2
X ΣXu

Σ′XuΣ−1X ΣXu

where

b = E


(
λ̃+ z̃v

)′
z̃v(

λ̃+ z̃v

)′ (
λ̃+ z̃v

)
 ; ΣXu =

(
σu1
σu2

)
; D =

1

σ21 + δ2σ22 − 2δσ12

(
1 −δ
−δ δ2

)
.

Hence

B2 ≤ b2 max eval
(

Σ
1/2
X DΣXDΣ

1/2
X

)
.

As Σ
1/2
X DΣXDΣ

1/2
X is a symmetric idempotent matrix, we get that B2 ≤ b2. To show this, note

that

ΣX = plim
1

n

(
x′1x1 x′1x2
x′1x2 x′2x2

)
= π′2QZZπ2

(
δ2 δ
δ 1

)
+ ΣV

and hence ΣXD = ΣVD. Let

d =
1√

σ21 + δ2σ22 − 2δσ12

(
1
−δ

)

so that D = dd′, then d′ΣV d = 1 and hence

ΣXDΣXD = ΣVDΣVD = ΣV dd
′ΣV dd

′ = ΣV dd
′ = ΣVD = ΣXD

and therefore

Σ
1/2
X DΣXDΣ

1/2
X Σ

1/2
X DΣXDΣ

1/2
X = Σ

1/2
X DΣXDΣXDΣXDΣ

1/2
X = Σ

1/2
X DΣXDΣ

1/2
X .
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6.3 Stata Code

Simple Stata code to calculate the conditional F-statistic F
1|2,3 for the case of 3 endogenous

variables, x1, x2 and x3, with 5 instruments z1,...,z5 and 2 other exogenous variables w1 and

w2 is as follows:

ivregress 2sls x1 (x2 x3 = z1 z2 z3 z4 z5) w1 w2

predict res123, r

reg res123 z1 z2 z3 z4 z5 w1 w2

test z1 z2 z3 z4 z5

scalar Fsw = r(F)*r(df)/(r(df)-2)

di Fsw
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