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Abstract

I propose a game of signed network formation, where agents make friends

to coerce payoffs from enemies with fewer friends. The model accounts for

the interplay between friendship and enmity. Nash equilibrium configurations

are such that, either everyone is friends with everyone, or agents can be parti-

tioned into sets of different size, where agents within the same set are friends

and agents in different sets are enemies. These results mirror findings of a

large body of work on signed networks in sociology, social psychology, inter-

national relations and applied physics.
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1 Introduction

In much of the current economics literature on networks, links have a positive mean-
ing and are commonly interpreted as friendship, collaboration or transmission of
information. In many contexts, however, links may also be associated with nega-
tive sentiments, such as antagonism, coercion or even outright conflict. This paper
sheds light on the interplay between these two forces by way of a game-theoretic
model of signed network formation.

The study of signed networks, consisting of positive and negative links, has a
long tradition in sociology and social psychology, dating back to Heider’s seminal
contribution on “cognitive dissonance” in 1946. The essential idea is that positively
connected individuals tend to match their attitudes relative to third agents. That is,
triads are expected to either consist of three positive, or one positive and two neg-
ative links. Cartwright and Harary (1956) proved that these local properties, which
they coined as structural balance, yield sharp predictions globally.1 In particular,
the only network configurations that are structurally balanced are such that either all
agents are friends, or there exist two distinct sets, also called cliques, where agents
in the same set are friends and agents in different sets sustain antagonistic relation-
ships.2 Davis (1967) showed that, when allowing for triads of three negative links,
“weakly balanced” graphs may consist of multiple cliques.

1For a very good introduction to the literature on structural balance see Easley and Kleinberg
(2010).

2I provide a sketch of the proof. A graph with only positive links is balanced. For a graph with
positive and negative links, pick an arbitrary agent i and divide the remaining set of agents into i′s
friends and i′s enemies. All of i′s friends must be friends, as otherwise one obtains an unbalanced
triad with two positive and one negative link. All of i′s enemies must be friends, as otherwise one
obtains an unbalanced triad with three negative links. Links between i′s friends and i′s enemies must
be negative, as otherwise one obtains an unbalanced triad with two negative and one positive link.
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The predictions of structural balance became an effective tool for the analysis
of behavior of nations, especially in times of crisis and mounting threats of war.
One of the earliest applications is Harary (1961), who examines the rapid shifts
of relationships among nations in the Middle Eastern crisis of 1956 and observes
a strong tendency towards balance. Moore (1979) also employs structural balance
when explaining the "United States’s somewhat surprising support of Pakistan..."
in the conflict over Bangladesh’s separation from Pakistan in 1972. Another in-
teresting example is provided by Antal, Krapivsky and Redner (2006). They link
the formation of alliances in the 19th century - ultimately leading up to WWI -
to structural balance. The accompanying graph is depicted above, where alliances
are denoted by straight lines and antagonistic relationships by dashed lines. Note
that the system of relationships gradually moves towards a complete, structurally
balanced network.3

3A point to be made here is that, although balance appears to be a natural outcome, its implica-
tions need not be positive. It may lead to fierce opposition between two sides, which is difficult to
resolve.
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Interaction patterns of individuals have also been examined for structural bal-
ance properties. Szell, Lambiotte and Thurner (2010) analyze a vast data-set from
a multiplayer online game (Pardus), encompassing more than 300.000 players. The
game allows for six types of interactions, of which some have a positive (friendship,
communication, trade) and others have a negative association (hostility, aggression,
punishment). The authors provide strong support for structural balance, favoring
its weak specification.4 In a recent paper Facchetti, Iacono and Altafini (2011) ana-
lyze signed relationships of three websites (Epinions, Slashdot and WikiElections).
They find evidence for structural balance in all of them. Research in sociology has
examined the evolution of signed network relations. Doreian and Mrvar (1996) and
Doreian and Krackhardt (2001) are two such empirical studies. In both cases a
movement towards balance is evident.

This paper proposes a game of strategic network formation, which allows agents
to form positive and negative links. The model clarifies the interplay between
friendship and alliances on the one hand and antagonism and enmity on the other.
My main finding is that every Nash equilibrium of the game obeys (weak) struc-
tural balance. That is, Nash equilibrium configurations are such that either all links
are positive, or agents can be divided into two or more distinct sets of different

size, where agents within the same set are friends and agents in different sets are
enemies. The asymmetry of equilibria is a salient characteristic of the model.

The setup is simple. Players can either extend a friendly (positive) or an antag-
onistic (negative) link to each of the remaining agents, at zero cost. A reciprocated
positive link constitutes a friendship or alliance. If at least one link between two
agents is negative, then we think of it as an antagonistic relationship. Two types of
antagonistic relationships are discerned. First, coercion, where one agent extends a
positive and the other a negative link. Second, conflict, in which case both agents
extend a negative link.5 Under a coercive relationship the agent with more friends
or allies extracts payoffs from the agent with fewer friends. The same holds for

4For theoretical work on structural balance in the physics and mathematics literature, see An-
tal, Krapivsky and Redner (2005), Marvel, Strogatz and Kleinberg (2009) and Marvel, Kleinberg,
Kleinberg and Strogatz (2011).

5For an analogous definition of friendship, coercion and conflict in the social psychology litera-
ture, see Willer (1999).
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conflict, but now both agents additionally incur a cost of conflict. The assumption
that conflict is costly arises naturally, but is also convenient for modeling purposes.
When using Nash equilibrium, it ensures that agents are not trapped in a situation
where they extend negative links to each other, although both prefer a reciprocated
positive link. For related reasons we do not allow for neutral or zero links. The
latter assumption guarantees that agents do not extend neutral links to each other,
although both prefer a reciprocated positive link.6

A crucial feature of the model is that the payoffs an agent with more allies (the
stronger agent) can extract from an enemy with fewer friends (the weaker agent) is
strictly increasing in the own number of allies and strictly decreasing in the num-
ber of the respective enemy’s allies. This is what drives stronger agents to match
their strategies relative to weaker agents. By coordinating on who to coerce, the
coerced agents have fewer friends. Note that the rationale of coercion is quite dif-
ferent from cognitive dissonance, as originally conceived by Heider. A model of
cognitive dissonance would presumably impose a cost on agents whose friends sus-
tain antagonistic relationships among each other. This paper, in contrast, stresses
coercion as an incentive to make friends and enemies and determines the coercive
power of an agent endogenously.

In the following the arguments underlying the main result are briefly outlined.
Notice first that open conflict is not part of any Nash equilibrium, as each agent in-
volved in conflict can profitably deviate by extending a positive link instead, thereby
not incurring the cost of conflict.7 Next, note that under a coercive link, it is always
the agent with more allies who extends the negative link. Otherwise, the weaker
agent can profitably deviate by extending a positive link, thus creating an alliance
and avoiding negative payoffs under a coercive link (while increasing payoffs on
any remaining negative links). Therefore, weaker agents extend positive links to

6This is a well known issue, which already arises in Myerson’s (1977) link-announcement game
and motivates the notion of pairwise stability (Jackson and Wolinsky, 1996). Appendix B presents
an alternative model with neutral links, no cost of conflict and bilateral equilibrium (Goyal and
Vega-Redondo, 2007) as equilibrium concept. Bilateral equilibrium admits coordinated deviations
of pairs of agents and refines pairwise stability. The equilibrium characterization is almost identical
to the one presented in the main part of the paper.

7In the economics of conflict literature this is known as “settlement in the shadow of conflict”.
For a more detailed discussion, see the related literature section at the end of the introduction.
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stronger agents in any Nash equilibrium. Stronger agents then face a trade-off be-
tween coercing a weaker agent and creating an alliance: By creating an alliance,
the stronger agent forgoes the coercion payoff from that particular relationship, but
increases payoffs on all remaining coercive links. One can easily show that agents
with the same number of friends must be friends in any Nash equilibrium. The in-
tuition is that agents with the same number of friends can not coerce payoffs from
each other, while entering an alliance increases payoff from coercive links. This
is the source of asymmetry of equilibrium configurations. Finally, cliques of pos-
itively connected agents arise due to aforementioned incentives of stronger agents
to match their strategies relative to weaker agents.

The equilibrium is characterized for a general payoff function, which maps the
respective numbers of friends and the number of common friends into an extrac-
tion payoff under an antagonistic relationship. Two frequently used functions in
the economics of conflict literature are special cases (after a normalization): The
contest success function in ratio and in difference form. I obtain simple compara-
tive static results for one of them, the difference form, where the extraction value is
a function of the difference in the respective numbers of friends. If the parameter
of the contest success function is sufficiently low, and thus coercion relatively less
profitable, then Nash equilibria are such that there can be at most two cliques. If the
parameter on the contest success function is sufficiently high, and coercion is rela-
tively more profitable, then multiple cliques may arise and relative group size is at
least geometrically increasing. The latter result holds if the general payoff function
is bounded and therefore applies to both, the contest success function in ratio and
in difference form.

In the final part of the paper we allow for heterogeneous agents, i.e., agents may
display ex-ante differences in intrinsic coercive strength. Ex-post coercive strength
is given by an agent’s intrinsic strength, plus the sum of his allies’ intrinsic strength.
The equilibrium characterization is similar to the homogenous case. Cliques also
arise. However, they are now not necessarily of different size, but of different ex-
post coercive strength. The main difference relative to the homogenous case is that
everyone being friends with everyone is not an equilibrium. This is easy to see,
as a stronger agent can then profitably deviate by extending a negative link to any
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weaker agent.
The paper relates to the economics of conflict literature, which recognizes that

property rights may not be perfectly or costlessly enforced. Conflict is modeled
in terms of a contest success function (Tullock, 1967, 1980 and Hirshleifer, 1989),
where an agent’s probability of winning is determined by the resources available
for arming. Open conflict, however, does not need to take place and may be settled
“in the shadow of conflict”. That is, in the absence of asymmetric information
and dynamic considerations, the weaker agent hands over resources to the stronger
agent in order to avoid the cost of conflict. Part of this research focuses on coalition
formation. See, for example, Wärneryd (1998) and Esteban and Sákovics (2003).
Based on Chwe’s (1994) notion of farsighted stability, group structures are shown
to be symmetric. These findings stand in contrast to the results obtained here.8,9

The model also contributes to the literature on networks in economics. See, for
example, Myerson (1977), Aumann and Myerson (1988), Bala and Goyal (2000)
and Jackson and Wolinsky (1996). Two recent papers, which feature contest success
functions in a network setting are Goyal and Vigier (2010) and Franke and Öztürk
(2009), both with a different focus from mine. Goyal and Vigier (2010) study a
design problem and ask how to optimally structure networks, so that they are robust
to attacks in the face of an adversary. Franke and Öztürk (2009), in turn, model a
setting where agents are embedded in a network of bilateral conflicts. The authors
are concerned with conflict intensity on a fixed network and do not consider the
possibility of alliances. To the best of my knowledge, this paper presents the first
attempt to incorporate friendship or alliance on the one hand and enmity on the
other in a network formation context.

The remaining part of the paper is organized as follows: Section 2 introduces
the model, Section 3 provides the equilibrium characterization, comparative statics

8Jordan (1996) considers coalitional games, where more powerful coalitions can pillage all
wealth of weaker coalitions at no cost. The farsighted core allocations, where no coalitions are
formed and no acts of pillage occur, depend on a power function. If power is determined by wealth
only, then farsighted core allocations may be asymmetric. Interestingly, when extraction values are
bounded and coercion is highly effective, then there exists a stable allocation of wealth that is, for
corresponding parameter values, reminiscent of the distribution of clique size in my model.

9See Rietzke and Roberson (2012) for a setting in which two potential allies face a fixed, common
enemy.
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and a setting with heterogeneous agents, Section 4 concludes. The proof for the
equilibrium characterization is relegated to Appendix A. Appendix B introduces a
variant of the model, which allows for neutral links, no cost of conflict and uses
bilateral equilibrium as equilibrium concept.

2 Model

Let N = {1,2, ...,n} be the set of ex-ante identical agents, with n ≥ 3. A strategy
for i ∈ N is defined as a row vector gi = (gi,1,gi,2, ...,gi,i−1,gi,i+1, ...,gi,n), where
gi, j ∈ {−1,1} for each j ∈ N\{i} . Agent i is said to extend a positive link to j if
gi, j = 1 and a negative link if gi, j = −1. The set of strategies of i is defined by Gi

and the strategy space by G = G1× ...×Gn. The resulting network of relationships
is written as g = (g1,g2, ...,gn). Define the undirected network ḡ in the following
way. The link between agents i and j is positive in the undirected network ḡ, if
both directed links are positive, so that ḡi, j = 1 if gi, j = g j,i = 1. The link in the
undirected network is negative, if one of the two undirected links is negative and
the other one is positive, so that ḡi, j = −1 if gi, j ∗ g j,i = −1. We will call a link in
the undirected network ḡ a double negative link, if both agents involved extend a
negative link, so that gi, j = g j,i =−1 and write ḡi, j =−2. Given a network g, g+g+i, j
and g+g−i j have the following interpretation. If gi, j =−1 in g, then g+g+i, j changes
the directed link gi, j = −1 into gi, j = 1, while if gi, j = 1 in g, then g+ g+i, j = g.
Similarly, if gi, j = 1 in g, g+g−i, j changes the directed link gi, j = 1 into gi, j = −1,
while if gi, j =−1 in g, then g+g−i, j = g.

Define the following sets: N+
i (g) =

{
j ∈ N | ḡi, j = 1

}
is the set of agents to

which agent i reciprocates a positive link and therefore ḡi, j = 1 in the undirected
network ḡ. Denote the set of common friends of agents i and j with N+

i, j(g) =
N+

i (g)∩N+
j (g). N−1

i (g) =
{

j ∈ N | ḡi, j =−1
}

is the set of agents to which i does
not reciprocate the sign of a directed link and therefore ḡi, j =−1, while N−2

i (g) ={
j ∈ N | ḡi, j =−2

}
is the set of agents to which agent i reciprocates a negative

link and ḡi, j = −2. Define N−i (g) = N−1
i (g)∪N−2

i (g) and denote the following
cardinalities with ηi(g) =| N+

i (g) |, ηi, j(g) =| N+
i, j(g) | and γi(g) =| N−2

i (g) |. For
ease of notation we sometimes write ηi for ηi(g) and ηi, j for ηi, j(g).
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Links are interpreted in the following way: A reciprocated positive link, i.e.,
a positive link in the undirected network ḡ, establishes a friendship or alliance be-
tween i and j. ḡi, j =−1 stems from one positive and one negative link and denotes
a coercive relationship, whereas a reciprocated negative link, ḡi, j = −2, indicates
conflict. The coercive power of agent i relative to agent j is determined by the
respective number of friends, ηi and η j, and the number of common friends, ηi, j.
Under a coercive link, the agent with more friends coerces payoffs from agents
with fewer friends. The same holds for a reciprocated negative link, but now agents
additionally incur a cost of conflict, κ.

The payoffs to player i under strategy profile g are given by

Πi(g) = ∑
j∈N−i (g)

f (ηi(g),η j(g),ηi, j(g))− γi(g)κ,

with κ > 0. Note first that we only sum over all agents to which antagonistic
relationships are sustained. That is, direct payoffs from a reciprocated positive link
are zero and the sole purpose of an alliance is to increase payoffs on antagonistic
links. This brings out the tension between friendship/alliance and antagonism in
the starkest manner. Under a coercive link, an agent’s gain is assumed to be another
agent’s loss and therefore f (ηi,η j,ηi, j)+ f (η j,ηi,ηi, j) = 0 for all ηi, η j, ηi, j. If
two agents have the same number of friends, ηi = η j, then they are not able to
coerce payoffs form each other and f (ηi,η j,ηi, j) = 0 for all ηi, j. The function
f strictly increasing in ηi and strictly decreasing in η j. Therefore, if ηi > η j, then
f (ηi,η j,ηi, j)> 0 and if ηi <η j, then f (ηi,η j,ηi, j)< 0. We also allow for common
friends to enter the payoff function. Here we need that f (ηi + 1,η j,ηi, j + 1) >
f (ηi,η j,ηi, j). That is, the combined effect of an increase in own number of friends
and an increase in common friends on payoffs from a coercive link is positive.10

This assumption ensures, first, that positively connected agents coordinate their
actions relative to third agents and, second, that payoffs from remaining negative

10Write the forward difference for ηi as Mηi f (ηi,η j,ηi, j) = f (ηi + 1,η j,ηi, j)− f (ηi,η j,ηi, j)
and for ηi, j as Mηi, j f (ηi,η j,ηi, j) = f (ηi,η j,ηi, j + 1)− f (ηi,η j,ηi, j). If f is such that the effect
of an increase in ηi and an increase in ηi, j are additively separable, then the latter condition can be
written as Mηi f (ηi,η j,ηi, j)>− Mηi, j f (ηi,η j,ηi, j).
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links are strictly increasing when creating a new positive link.
The two most commonly used contest success functions (ratio and difference

from) fit the model after a normalization. Both functions assume that an agent’s
share of a prize is a function of the respective resources available for arming.11 In
the ratio form, relative shares are a function of the ratio of resources, while in the
difference form contest success depends on the difference in resources. Denote with
ci and c j the contest inputs for agent i and j, respectively. In the ratio form i′s share
of the prize is given by

pi, j =
ci

φ

ciφ + c jφ
,

with φ > 0. This function is a special case of our payoff function f , when defin-
ing ci = η

+
i + 1 to avoid dividing by zero and subtracting 1

2 , so that the coercion
payoff is zero for agents with equal strength. The payoff that agent i obtains from
agent j under an antagonistic link can then be written as

pi, j =
(η+

i +1)φ

(η+
i +1)φ +(η+

j +1)φ
− 1

2
.

Payoffs for agent j are given by p j,i =−pi, j. Note that in this specification the
number of common friends does not enter the payoff function. Similarly, for the
contest success function in difference form we can write

pi, j =
1

1+ eφ(η+
j −η

+
i )
− 1

2
.

In both cases the function is parametrized by φ , where a higher value of φ is
favorable for the agent with more friends. Both functions are bounded by −1

2 and
1
2 .

11In the case of a discrete either-or competition, shares may be interpreted as winning probabili-
ties.
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The equilibrium concept used is Nash Equilibrium. A strategy profile g∗ is a
Nash Equilibrium (NE) i f f

Πi(g∗i ,g
∗
−i)≥Πi(gi,g∗−i),∀gi ∈ Gi,∀i ∈ N.

The network resulting from a proposed deviation is denoted with g′.

3 Analysis

This section shows that Nash equilibria are such that either all agents are friends,
or agents can be partitioned into sets of different size, where agents within the
same set are friends and agents in different sets are enemies. Agents in larger
sets coerce payoffs from agents in smaller sets. Lemma 1 rewrites the condition
f (ηi + 1,η j,ηi, j + 1) > f (ηi,η j,ηi, j). Lemma 2 shows that, when creating a new
undirected positive link, payoffs from remaining negative links are strictly increas-
ing. Lemma 3 and 4 are devoted to equilibrium properties of bilateral relations.
Lemma 3 states that outright conflict is not part of any Nash equilibrium, while
Lemma 4 shows that in a coercive relationship, it must be the agent with more
friends extending the negative link. Proposition 1 presents the equilibrium charac-
terization, while Proposition 2 and Proposition 3 provide existence results.

Lemma 1: f (ηi + 1,η j,ηi, j + 1) > f (ηi,η j,ηi, j)⇒ f (ηi,η j − 1,ηi, j − 1) >
f (ηi,η j,ηi, j).

Proof. From f (ηi,η j,ηi, j) + f (η j,ηi,ηi, j) = 0 and f (ηi + 1,η j,ηi, j + 1) >
f (ηi,η j,ηi, j) we know that f (η j,ηi + 1,ηi, j + 1) < f (η j,ηi,ηi, j) must hold. The
latter condition can be rewritten as f (η j,ηi− 1,ηi, j− 1) > f (η j,ηi,ηi, j). As this
is true for arbitrary i and j, we can relabel and write f (ηi,η j − 1,ηi, j − 1) >
f (ηi,η j,ηi, j). Q.E.D.

Lemma 2 shows that when an undirected positive link is created, then payoffs
on remaining negative links are strictly increasing. This is due to the assumption
that f (ηi +1,η j,ηi, j +1)> f (ηi,η j,ηi, j).
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Lemma 2: If ḡi,k 6= 1 and ĝ = g+ g+i,k + g+k,i, then f (ηi(ĝ),η j(ĝ),ηi, j(ĝ)) >
f (ηi(g),η j(g),ηi, j(g)) holds for all j ∈ N−i (ĝ).

Proof. Note that the only difference between networks g and ĝ is that ḡi,k 6= 1,
while ˆ̄gi,k = 1. We discern two cases. First, ḡi, j = −1, ḡi,k = −1 and ḡ j,k = −1.
From ḡ j,k =−1 we know that ηi, j(g)=ηi, j(ĝ). That is, because j and k are enemies,
the number of common friends between i and j remains the same when ˆ̄gi,k = 1 is
created. Agent i then accrues higher payoffs from j in ĝ than in g, which follows
from f (ηi +1,η j,ηi, j)> f (ηi,η j,ηi, j). Second, ḡi, j =−1, ḡi,k =−1 and ḡ j,k = 1.
From ḡ j,k = 1 we know that ηi, j(ĝ) = ηi, j(g) + 1. That is, because j and k are
friends, the number of common friends between i and j increases by one when
ˆ̄gi,k = 1 is created. Agent i then accrues higher payoffs from j in ĝ than in g, which
follows from f (ηi +1,η j,ηi, j +1)> f (ηi,η j,ηi, j). Q.E.D.

Lemma 3: In any NE g∗, ḡ∗i, j 6=−2 for all i, j ∈ N.

Proof. Assume there exists a pair of agents, i and j, with a reciprocated negative
link. This can not be part of any Nash equilibrium g∗, as a deviation in the form
of extending a positive link to the respective other agent is profitable for either one
of the two agents. Assume agent i deviates by extending a positive link to j. The
sets of i′s friends and enemies are not altered by the deviation and payoffs accruing
from any third party k remain the same. However, payoffs from the relationship
with j strictly increase by κ . Q.E.D.

In Lemma 4 we show that in any Nash equilibrium, for all negative links in place
in the undirected network ḡ∗, it must be the agent with more friends who extends
the directed negative link. This is easy to see, as otherwise the agent with fewer
friends can profitably deviate by reciprocating the friendly link, thereby increasing
his payoff from this specific link. Moreover, payoffs on any remaining negative
links increase by Lemma 2.

Lemma 4: In any NE g∗, i f ḡ∗i, j =−1 with ηi(g∗)< η j(g∗), then g∗i, j = 1.

Proof. Assume to the contrary that the link between agents i and j is nega-
tive in the undirected network ḡ∗, and it is the agent with fewer friends extending
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the directed negative link. More formally, assume that ḡ∗i, j = −1 with g∗i, j = −1,
g∗j,i = 1 and ηi(g∗) < η j(g∗). Then i can profitably deviate by extending a pos-
itive link to j with deviation strategy g∗i + g+i, j, yielding ḡi, j = 1. This strictly
increases payoffs for i from his link with j, as under a negative undirected link
f (ηi(g∗),η j(g∗),ηi, j(g∗)) < 0 for ηi(g∗) < η j(g∗). Furthermore, from Lemma 2
we know that, by reciprocating a positive link from j, agent i increases payoffs on
any remaining negative links. Q.E.D.

Before presenting the equilibrium characterization, we define the set of agents
with k friends, Pk(g) =

{
j ∈ N | η j(g) = k

}
. Denote the set with the highest num-

ber of friends with Pm(g), the one with the second highest subscript Pm−1(g) and
proceed in this way until the set of agents with the fewest number of friends, P1(g).
Proposition 1 shows that in any Nash equilibrium, agents with the same number of
friends are friends and agents with different numbers of friends are enemies. That
is, either all agents are positively connected, or the sets Pk(g∗) constitute maxi-
mal cliques of different size, with agents in cliques of larger size coercing payoffs
from agents in cliques of smaller size.12 Proposition 2 shows, as part of the exis-
tence results, that there always exists a Nash equilibrium where everyone is friends
with everyone else, so that ḡ∗i, j = 1 and ηi(g∗) = η j(g∗) ∀i, j ∈ N. In Proposition
1 we therefore focus on the case where a pair of agents i and j exists, such that
ηi(g∗) 6= η j(g∗).

Proposition 1: In any NE g∗, if ηi(g∗) = η j(g∗), then ḡ∗i, j = 1 and if ηi(g∗) 6=
η j(g∗), then ḡ∗i, j =−1.

Proof. See the Appendix.

We provide a brief, informal outline of the proof. The proof is by induction.
The base case shows in four steps that agents in Pm(g∗) are positively connected to
agents in Pm(g∗) and negatively to agents not in Pm(g∗).

Step 1 proves that agents in Pm(g∗) must be positively connected. Note first, that
in any Nash equilibrium, an agent i∈ Pm(g∗) must be negatively connected to some

12Formally, a clique is a set of agents C(g)⊆N, such that ḡi, j = 1 ∀i, j∈C(g). A clique is maximal
and denoted with Cm(g), if for any l /∈Cm(g), Cm(g)∪{l} is not a clique.
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agent k /∈ Pm(g∗). Otherwise, i can profitably deviate by extending a negative link
to k /∈ Pm(g∗). To see that agents in Pm(g∗) must be positively connected, note that
agents within Pm(g∗) have the same number of friends and cannot extract payoffs
from each other, while creating a positive link increases payoffs on all remaining
negative links.

Step 2 shows that agents in Pm(g∗) play the same strategies relative to agents
not in Pm(g∗). Take agent i ∈ Pm(g∗) with (weakly) highest payoffs in Pm(g∗) and
an agent j ∈ Pm(g∗), such that i and j’s sets of friends and enemies differ. Using
Lemma 1 we show that by imitating i′s strategy, and thereby obtaining the same
sets of friends and enemies as i, agent j accrues payoffs that are strictly higher than
i′s payoffs prior to the deviation. Proposed deviation is therefore profitable.

Step 3 demonstrates that undirected links between all agents in Pm(g∗) and all
agents in Pm−1(g∗) are negative. Assume to the contrary, and in accordance with
Step 2, that links between all agents in Pm(g∗) and some agent k ∈ Pm−1(g∗) are
positive. If agents in Pm(g∗) and k play the same strategies relative to third agents,
then they must have the same number of friends. This yields an immediate contra-
diction. If i and k play different strategies relative to third agents, then a profitable
deviation exists analogous to the one proposed in Step 2.

Finally, Step 4 proves that undirected links between agents in Pm(g∗) and any
agent not in Pm(g∗) are negative. We start by showing that links between agents in
Pm(g∗) and an agent in Pm−2(g∗) are negative. The reasoning is similar to the one
of Step 3. Note that in Step 4, however, an agent in Pm−2(g∗) can not simply imitate
the strategy of an agent in Pm(g∗) to obtain the same sets of friends and enemies, as
deviation strategies of agents in Pm−2(g∗) must take into account the possibility that
agents in Pm−1(g∗) extend negative links to agents in Pm−2(g∗). With appropriately
adapted deviation strategies we then use the argument of Step 3 iteratively to show
that agents in Pm(g∗) extend positive links to all agents in Pm(g∗) and negative links
to all agents not in Pm(g∗).

For the inductive step we define the super set P̃r(g∗) = Pm(g∗)∪Pm−1(g∗)∪
...∪ Pm−r−1(g∗)∪ Pm−r(g∗). Note that P̃0(g∗) = Pm(g∗). In Step 4 we showed
that all agents in Pm(g∗) are positively connected with all agents in Pm(g∗) and
negatively with all agents not in Pm(g∗). Assume that the statement holds for all
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sets in P̃r(g∗). We can then repeat steps 1 through 4 from the base case, relabeling
Pm(g∗) with Pm−(r+1)(g∗), Pm−1(g∗) with Pm−(r+2)(g∗) and so forth, to show that
the statement holds for agents in Pm−(r+1)(g∗).

The following two propositions provide existence results. Proposition 2 proves
that there always exists an equilibrium where everyone extends positive links to
everyone else. To see this, note that no agent can unilaterally deviate and obtain
more friends than some other agent. Proposition 3 shows that there always exists
an equilibrium where n−1 agents are friends of each other and one agent is coerced
by everyone else. The argument is similar to the one in Proposition 2, but now we
need to also account for deviations where one of the n−1 agents enters an alliance
with the agent that is coerced by everyone else, while extending negative links to
some of the remaining agents.

Proposition 2: There always exists a NE g∗, such that all agents are friends.

Proof . A deviation for agent i consists of extending negative links to some
subset of N\{i}. If the deviation strategy of i consists of extending a negative link
to one other agent j, then payoffs remain zero, as ηi(g′) = η j(g′) = N− 2. If the
deviation strategy of i consists of extending two or more negative links, then i′s

payoffs will be strictly lower in g′, as ηi(g′)< η j(g′) for all j ∈ N−i (g′). Q.E.D.

Proposition 3: There always exists a NE g∗, such that n−1 agents are friends

of each other and one agent is an enemy of everyone else.

Proof. Denote with k the agent that is an enemy of everyone else. First we
check for deviations by k. From Lemma 4 we know that under a negative link
ḡ∗i,k =−1, it must be the agent with fewer friends extending the positive link. From
ηk(g∗)< ηi(g∗) ∀i∈N\{k} it then follows that g∗k,i = 1 ∀i∈N\{k}, and a deviation
for agent k therefore consists of extending negative links to some subset of N\{k}.
For each agent, to which k extends a negative link in a deviation, payoffs decrease
by κ and no such deviation is profitable. Next, agent i. There are three types of
deviations to consider. First, i extends a positive link to k. This decreases i’s payoffs
strictly, as ηk(g∗) < ηi(g∗), while payoffs from all other agents remain zero in g′.
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Second, i extends negative links to some subset of N\{k, i}. From Lemma 2 we
know that i’s payoffs will decrease from his link with k. Furthermore, extending
negative links to some subset N\{i,k} will at most leave payoffs constant from
those links, by an argument identical to the one used in Proposition 2. Proposed
deviation is therefore not profitable. Third, a combination of the two deviations
above. Assume first i extends a positive link to k and one negative link to some
j ∈ N\{k, i}. i′s payoffs will remain constant if n = 3, as then η j(g′) = ηk(g∗) = 0
and ηi, j(g′) = ηi,k(g∗) = 0. For n ≥ 4, i will strictly decrease payoffs. To see this,
note that ηi(g′) = ηi(g∗) = n− 2, but η j(g′) = ηi, j(g′) = n− 3 while ηk(g∗) =
ηi,k(g∗) = 0. The deviation considered is again not profitable, which follows from
f (ηi,η j−1,ηi, j−1)> f (ηi,η j,ηi, j). More precisely, f (n−2,0,0)> f (n−2,n−
3,n−3) for n ≥ 4. Extending more than one negative link to N\{k, i} yields even
lower payoffs, again by the argument used in Proposition 2. Q.E.D.

3.1 Comparative Statics

Next, we present a simple comparative statics analysis for the contest success func-
tion in difference form. The decisiveness parameter φ determines the coercion or
conflict technology. A higher value of φ is favorable for the agent with more friends,
while a lower value of φ is favorable for the agent with fewer friends.

Proposition 4: For φ sufficiently low, there are at most two maximal cliques in

any NE g∗.

Proof. We first show that for φ sufficiently low, there exists a profitable devia-
tion for any network configuration that is in accordance with Proposition 1 and dis-
plays three sets of different size: | P1

x−1(g
∗) |= x, | P2

y−1(g
∗) |= y and | P3

z−1(g
∗) |= z

with 1≤ x < y < z. More specifically, we check for a deviation of agent i ∈ P2(g∗),
consisting of extending positive links to all agents j ∈ P1(g∗). Marginal payoffs are
given by

Πi(g′)−Πi(g∗) = z
(

eφ(x+y−1)

eφ(x+y−1)+eφ(z−1)

)
− x

(
eφ(y−1)

eφ(y−1)+eφ(x−1)

)
− z

(
eφ(y−1)

eφ(y−1)+eφ(z−1)

)
.

Taking the derivative and setting φ = 0 yields
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1
4(x− y+ z)> 0.

The first derivative is continuous in φ and therefore, for φ > 0 and φ sufficiently
close to zero, proposed deviation is profitable. Next, note that for any additional
clique(s) with | Pl−1(g∗) |= l > z, proposed deviation yields even higher marginal
payoffs, as i now also increases his payoffs from any k ∈ Pl−1(g∗). Q.E.D.

Proposition 5: For φ sufficiently high, g∗ is a NE i f f

•
j−1
∑

i=1
| Pi(g∗) |<| P j(g∗) |,

• ḡ∗i, j 6=−2 for all i, j ∈ N,

• i f ḡ∗i, j =−1 with ηi(g∗)< η j(g∗), then g∗i, j = 1 and

• ∀i, j with ηi(g∗) = η j(g∗), then ḡ∗i, j = 1 and ∀i, j with ηi(g∗) 6= η j(g∗), then

ḡ∗i, j =−1.

Proof. For η j(g∗) > ηi(g∗) and φ sufficiently high, the payoffs that j coerces
from i are bounded by and arbitrarily close to 1

2 . Assume now that Lemma 3,
Lemma 4 and Proposition 1 hold, but contrary to the claim in Proposition 5, that

there exists a Nash equilibrium g∗, with
j−1
∑

i=1
| Pi(g∗) |≥| P j(g∗) | for some P j(g∗).

Consider a deviation where k ∈ P j−1(g∗) extends positive links to a subset of agents
in P1(g∗)∪P2(g∗)∪ ...∪P j−2(g∗), such that ηk(g′) = η j(g∗) for j ∈ P j(g∗). This is

feasible, as
j−1
∑

i=1
| Pi(g∗) |≥| P j(g∗) | . Denote with x the number of agents, to which

k needs to extend positive links to, such that ηk(g′) = η j(g∗). To see that proposed
deviation is profitable, note that | P j−1(g∗) |+x =| P j(g∗) | with x <| P j(g∗) |. For
φ sufficiently high, k forgoes coercion payoffs of arbitrarily close to 1

2 from each of
the x agents to which he extends positive links to. However, he will increase payoffs
of arbitrarily close to 1

2 from the | P j(g∗) | agents in P j(g∗). From | P j(g∗) |> x

it then follows that proposed deviation is profitable. For sufficiency, note that if
j−1
∑

i=1
| Pi(g∗) |<| P j(g∗) | holds, then there is no agent who, by extending positive

links to agents in smaller maximal cliques, can obtain at least as many friends as
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agents in any of the larger sets. Payoffs from a deviation of agent i are negative for
φ sufficiently high, as the deviating agent will loose out on payoffs of arbitrarily
close to 1

2 for each agent he extends a positive link to, while increasing his payoffs
by arbitrarily close to zero from any of his remaining negative links. Q.E.D.

Note that in Proposition 5 we only need the coercion payoff to be bounded
and the result therefore also goes through for the contest success function in ratio

form. The condition
j−1
∑

i=1
| Pi(g∗) |<| P j(g∗) | implies that group size is at least

geometrically increasing with common ratio 2.

3.2 Heterogeneous Agents

In this section we allow for differences in intrinsic strength, which is denoted by λ .

An agent i’s coercive power in network g is the sum of his own intrinsic strength λi

and the intrinsic strength of his friends. That is, ηi(g) = λi + ∑

j∈N+
i (g)

λ j. We adapt

the assumption f (ηi + 1,η j,ηi, j + 1) > f (ηi,η j,ηi, j) to f (ηi + λ ,η j,ηi, j + λ ) >

f (ηi,η j,ηi, j). The proofs for Lemma 1, 2 and 3 are identical to the case with
homogenous agents and are omitted here.

Proposition 6: If there exists a pair of agents i and j such that λi 6= λ j, then

there does not exist a NE g∗, such that everyone is friends with everyone.

Proof. Assume that λi > λ j and to the contrary to above statement that ḡ∗i, j = 1
∀i, j ∈ N. Then i can profitably deviate by extending a negative link to j. Q.E.D.

Proposition 7: In any NE g∗, if ηi(g∗) = η j(g∗), then ḡ∗i, j = 1 and if ηi(g∗) 6=
ηk(g∗), then ḡ∗i, j =−1.

Proof. The proof is identical to the one in Proposition 1 when redefining ηi(g)=
λi + ∑

j∈N+
i (g)

λ j and Pk(g) = {i ∈ N | ηi(g) = k}. Q.E.D.

Note that in the heterogeneous case the sets Pk(g∗) need not be of different size,
but of different ex-post coercive strength. Furthermore, existence is not always
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guaranteed, as now an agent in Pk(g∗) may find it profitable to extend a negative
link to another agent in Pk(g∗) with lower intrinsic strength.

4 Conclusion

This paper presents a simple model of signed network formation, where agents en-
ter positive (friendship or alliance) and negative (coercion or conflict) relationships.
Agents with more friends coerce payoffs from enemies with fewer friends. The
coercive power of an agent is determined endogenously.

There are three main insights to be drawn. First, the model shows how in this
context self-interested behavior yields the following sharp structural predictions un-
der Nash equilibrium. Either everyone is friends with everyone, or agents can be
partitioned into distinct sets, also called cliques, such that agents within the same
set are friends and agents in different sets are enemies. This mirrors results on
signed networks obtained in sociology, social psychology, international relations
and applied physics. Second, cliques are of different size. This constitutes a depar-
ture from the notion of structural balance, as balanced outcomes allow for cliques
of equal size. It also stands in contrast to models of coalition formation in the eco-
nomics of conflict literature, where stable group structures are typically shown to
be symmetric. Third, the game-theoretic approach allows us to address questions
concerning the relative size and number of cliques, which could previously not be
answered. For the contest success function in difference form we show that, if co-
ercion is relatively less profitable, then there can be at most two cliques in any Nash
equilibrium. If, on the other hand, coercion is sufficiently profitable, then multiple
cliques may arise and relative group size is at least geometrically increasing.

To the best of my knowledge, this is the first game-theoretic model of signed

network formation and there are various directions for future research. It appears
promising to allow for investment in arming and production. This may provide new
insights regarding the so-called trade-off between guns vs. butter. Introducing dy-
namic considerations and/or incomplete information may yield a model that allows
us to study open conflict in the present context.
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Appendix A

Recall that in Proposition 1 we focus on the case where a pair of agents i and
j exists, such that ηi(g∗) 6= η j(g∗), while the case where ηi(g∗) = η j(g∗) for all
i, j ∈ N is covered in Proposition 2 as part of the existence results.

Proposition 1: In any NE g∗, if ηi(g∗) = η j(g∗), then ḡ∗i, j = 1 and if ηi(g∗) 6=
η j(g∗), then ḡ∗i, j =−1.

Proof. The proof uses an induction argument and we start by proving the base
case in four steps.

Base Case: In any NE g∗, ḡ∗i, j = 1 ∀i, j ∈ Pm(g∗) and ḡ∗i,k = −1 ∀i ∈ Pm(g∗)
and ∀k /∈ Pm(g∗).

Step 1: In any NE g∗, ḡ∗i, j = 1 ∀i, j ∈ Pm(g∗).

Assume to the contrary that ḡ∗i, j =−1 for some pair of agents i, j ∈ Pm(g∗) and,
without loss of generality, that g∗i, j = −1. If there exists an agent k, such that k /∈
Pm(g∗) and k ∈ N−i (g∗), then g∗i +g+i, j is a profitable deviation, as payoffs from i′s

link with j remain zero, while payoffs from all of i′s negative links strictly increase
by Lemma 2. If there does not exist an agent k, such that k /∈ Pm(g∗) and k ∈
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N−i (g∗), then i can profitably deviate with g∗i +g+i, j +g−i,k. Agent i obtains a strictly
positive payoff after proposed deviation because ηk(g′) < ηi(g′), compared with a
payoff of zero prior to it.

Step 2: In any NE g∗, N+
i (g∗)\{ j} = N+

j (g
∗)\{i}∧N−i (g∗) = N−j (g

∗) ∀i, j ∈
Pm(g∗).

The statement holds trivially for | Pm(g∗) |= 1. Assume | Pm(g∗) |≥ 2 and,
contrary to the above, that ∃i, j ∈ Pm(g∗) : N+

i (g∗)\{ j} 6= N+
j (g
∗)\{i}∨N−i (g∗) 6=

N−j (g
∗). That is, there exists a pair of agents i and j, such that their respective sets

of friends and enemies are different. From Step 1 and Lemma 4 we know that
gk,i = 1 ∀k ∈ N\{i}. Therefore, for i, j ∈ Pm(g∗) : N+

i (g∗)\{ j} 6= N+
j (g
∗)\{i} ∨

N−i (g∗) 6= N−j (g
∗) to hold, it must be that i and j play different strategies rela-

tive to third agents, which we denote with g∗i\ j 6= g∗j\i. Without loss of generality,
assume Π j(g∗) ≥ Πi(g∗). We show that i can strictly increase his payoffs by imi-
tating j′s strategy (while keeping his positive link to j), so that g′i\ j = g∗j\i. More
specifically, Πi(g′) > Π j(g∗) ≥ Πi(g∗). There are two types of agents to consider
when comparing the payoffs of i after proposed deviation, Πi(g′), with payoffs of j

prior to it, Π j(g∗). First, the agents that are i and j′s enemies prior to the deviation,
k∈N−j (g

∗)∩N−i (g∗). Second, the agents that are j′s enemies, but i′s friends prior to
the deviation, l ∈ N−j (g

∗)∩N+
i (g∗). We start by showing that i’s payoffs from links

to agents k∈N−j (g
∗)∩N−i (g∗) in g′ are equal to the payoffs that j obtains from these

agents in g∗. Note first that, as i is imitating j′s strategy, ηi(g′) = η j(g∗). Because
i does not change his strategy relative to k ∈ N−j (g

∗)∩N−i (g∗), ηk(g∗) = ηk(g′)
also holds. Finally, the number of i′s common friends with k, ηi,k(g′), is the same
for i in g′ as the number of j′s common friends with k, η j,k(g∗), in g∗. To see
this, note that k’s sets of friends and enemies are the same in g′ and g∗. There-
fore, from ηi(g′) = η j(g∗), ηk(g′) = ηk(g∗) and ηi,k(g′) = η j,k(g∗) we know that
i’s payoffs from all links with agents k ∈ N−j (g

∗)∩N−i (g∗) are the same for i in
g′ as for j in g∗. Next, payoffs from agents that are j′s enemies, but i′s friends
prior to the deviation, i.e., l ∈ N−j (g

∗)∩N+
i (g∗). From g∗i\ j 6= g∗j\i and i, j ∈ Pm(g∗)

we know that at least one such agent l exists. Again, as i imitates j’s strategy,
ηi(g′) = η j(g∗). Since i extends a negative link to l in g′ and a positive one in g∗,
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ηl(g′) = ηl(g∗)− 1. Next, notice that while i is a common friend of j and l in g∗,
j is not a common friend of i and l in g′ and therefore ηi,l(g′) = η j,l(g∗)−1. From
f (ηi,η j−1,ηi, j−1) > f (ηi,η j,ηi, j) (Lemma 1) we then know that i’s payoffs in
g′ from all l ∈ N−j (g

∗)∩N+
i (g∗) are higher than j’s payoffs from these agents in

g∗. We can now conclude that Πi(g′) > Π j(g∗) ≥ Πi(g∗). Proposed deviation is
profitable.

Step 3: In any NE g∗, ḡ∗i,k =−1 ∀i ∈ Pm(g∗) and ∀k ∈ Pm−1(g∗).

Assume to the contrary that there exists an agent k ∈ Pm−1(g∗) such that ḡ∗i,k = 1
∀i ∈ Pm(g∗). From k ∈ Pm−1(g∗) it follows that N−k (g∗) 6= /0 and, by an argument
analogous to the one used in Step 1, ḡ∗j,k = 1 ∀ j,k ∈ Pm−1(g∗). By Lemma 4 we
know that gh,k = 1 ∀h ∈ Pm−x(g∗) for x ≥ 2. Therefore, g∗l,k = 1 ∀l ∈ N\{k}. We
can now discern two cases. If g∗k\i 6= g∗i\k, then we can use the same argument as in
Step 2 to show that either k or i (or both) can strictly increase payoffs by imitating
the respective other agent’s strategy. If, on the other hand, g∗k\i = g∗i\k, then we
reach an immediate contradiction, as ηk(g∗) = ηi(g∗) for some k ∈ Pm−1(g∗) and
i ∈ Pm(g∗).

Step 4: In any NE g∗, ḡ∗i,k =−1 ∀i ∈ Pm(g∗) and ∀k /∈ Pm(g∗).

If there are only two sets of agents with different numbers of friends, Pm(g∗)
and Pm−1(g∗), then we are done by Step 3. Assume that there are at least three
such sets. We first show that ḡ∗i,k = −1 ∀i ∈ Pm(g∗) and ∀k ∈ Pm−2(g∗). Assume
to the contrary that there exists a pair of agents i ∈ Pm(g∗) and k ∈ Pm−2(g∗) such
that ḡ∗i,k = 1. From Step 2 we know that then ḡ∗i,k = 1 ∀i ∈ Pm(g∗) must hold.
The argument used here is similar to Step 2. Recall from Step 2 that an agent i in
Pm(g∗) is able to obtain the same sets of friends and enemies as another agent j in
Pm(g∗), simply by imitating j’s strategy. For an agent k in Pm−2(g∗), however, it
may be the case that some agents in Pm−1(g∗) extend negative links to k. That is,
when k is to obtain the same sets of friends and enemies in g′ as agent i ∈ Pm(g∗)
in g∗, then the deviation strategy will depend on the linking behavior of agents in
Pm−1(g∗). As before we discern two cases. Assume first that Πi(g∗) > Πk(g∗).
Agent k can profitably deviate with the following strategy. For all agents with no
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more friends than k, that is, for all l ∈ Pm−x(g∗) with x ≥ 2 (and therefore g∗l,k = 1
by Lemma 4 and the argument used in Step 1), imitate the sign of the directed
link played by agent i ∈ Pm(g∗). If g∗i,l = −1, then g′k,l = −1 and if g∗i,l = 1, then
g′k,l = 1 . For l ∈ Pm−1(g∗) it may be the case that g∗l,k = −1. Recall from Step 3
that ḡ∗i,l =−1 ∀i ∈ Pm(g∗) and ∀l ∈ Pm−1(g∗). Therefore, relative to l ∈ Pm−1(g∗),
the deviation strategy is as follows. If g∗l,k = −1, then g′k,l = 1 and if g∗l,k = 1 then
g′l,k =−1. We have constructed a deviation such that i′s friends in g∗ are k′s friends
in g′ and i′s enemies in g∗ are k′s enemies in g′. Next, we use the underlying
argument of Step 2 to show that proposed deviation is, in fact, profitable. Note,
however, since k has strictly less friends than i in g∗ (and therefore strictly more
enemies), it may be that N−i (g∗) ( N−k (g∗) and there then does not exist an agent
l ∈ N−i (g∗)∩N+

k (g∗). In this case Πk(g′) = Πi(g∗) holds, because payoffs from
all agents in N−i (g∗)∩N−k (g∗) are the same for k in g′ as for i in g∗, as shown in
Step 2. If an agent l ∈ N−i (g∗)∩N+

k (g∗) does exist, then Πk(g′)> Πi(g∗), again as
shown in Step 2. Therefore, Πk(g′) ≥ Πi(g∗) > Πk(g∗) and proposed deviation is
profitable. Assume next that Πk(g∗)≥ Πi(g∗). Agent i can profitably deviate with
the following strategy. If ḡ∗k,l = −1, then g′i,l = −1 and if ḡ∗k,l = 1, then g′i,l = 1
∀l ∈ N\{i}. From i ∈ Pm(g∗) we know that all remaining agents extend positive
links to i and proposed deviation yields i the same sets of friends and enemies in
g′ as agent k in g∗. From the argument in Step 2 it follows that Πi(g′)> Πk(g∗)≥
Πi(g∗). Therefore, in any Nash equilibrium g∗, ḡ∗i,k = −1 ∀i ∈ Pm(g∗) and ∀k ∈
Pm−1(g∗)∪Pm−2(g∗). We can repeat the above argument ∀k ∈ Pm−3(g∗). Doing so
iteratively yields ḡ∗i,k =−1 ∀i ∈ Pm(g∗) and ∀k /∈ Pm(g∗).

Define the super set P̃r(g∗) = Pm(g∗)∪Pm−1(g∗)∪ ...∪Pm−r−1(g∗)∪Pm−r(g∗).
Note that P̃0(g∗) = Pm(g∗).

Inductive Step: In any NE g∗, if ḡ∗i, j = 1 ∀i, j ∈ Pm−x(g∗) and ḡ∗i,k = −1
∀i ∈ Pm−x(g∗) and ∀k /∈ Pm−x(g∗) holds ∀x ∈ N : 0 ≤ x ≤ r, then ḡ∗i, j = 1 ∀i, j ∈
Pm−(r+1)(g∗) and ḡ∗i,k =−1 ∀i ∈ Pm−(r+1)(g∗) and ∀k /∈ Pm−(r+1)(g∗).

In Step 4 we show that ḡ∗i, j = 1 ∀i, j ∈ Pm(g∗) ∧ ḡ∗i,k = −1 ∀i ∈ Pm(g∗) and
∀k /∈ Pm(g∗). Assume the statement holds for all sets Pm−x(g∗) with x ∈ N : 0 ≤
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x ≤ r. From Lemma 4 we know that g∗i,k = −1 and g∗k,i = 1 ∀i ∈ P̃r(g∗) and ∀k /∈
P̃r(g∗), while from Lemma 3 we know that @ḡ∗i,k =−2. We can now repeat steps 1
through 4 from the base case, relabeling Pm(g∗) with Pm−(r+1)(g∗) and Pm−1(g∗)
with Pm−(r+2)(g∗) to establish the above result. Q.E.D.

Appendix B - For Online Publication

This section presents a variation of the model, which allows for neutral (or zero)
links and assumes no cost of conflict. Let N = {1,2, ...,n} be the set of ex-ante
identical agents, with n ≥ 3. A strategy for i ∈ N is defined as a row vector
gi = (gi,1,gi,2, ...,gi,i−1,gi,i+1, ...,gi,n), but now instead of gi, j ∈ {−1,1}, we as-
sume gi, j ∈ {−1,0,1} for each j ∈ N\{i} . Agent i is said to extend a positive link
to j, if gi, j = 1, a negative link, if gi, j = −1, and to extend a neutral (or zero) link,
if gi, j = 0. Define the undirected network ḡ in the following way. The link between
agent i and j is positive in the undirected network ḡ, if both directed links are posi-
tive, so that ḡi, j = 1, if gi, j = g j,i = 1. The link in the undirected network is negative,
if at least one of the two directed links is negative, so that ḡi, j = −1, if gi, j = −1
or g j,i = −1. No link is created in the undirected network ḡ, if either both agents
involved extend a zero link or one agent extends a zero link and the other extends a
positive link. That is, ḡi, j = 0, if either gi, j = g j,i = 0 or, without loss of generality,
gi, j = 0 and g j,i = 1.

The sets of friends, enemies and neutral agents are defined accordingly: N+
i (g)={

j ∈ N | ḡi, j = 1
}

, N−i (g) =
{

j ∈ N | ḡi, j =−1
}

and N0
i (g) =

{
j ∈ N | ḡi, j = 0

}
.

Denote the following cardinality with ηi(g) =| N+
i (g) |. For ease of notation we

will sometimes write ηi for ηi(g).
The payoffs to player i under strategy profile g are given by

Πi(g) = ∑
j∈N−i (g)

f (ηi(g),η j(g)).

Again assume that f is such that f (ηi,η j) + f (η j,ηi) = 0 for all ηi, η j. If
ηi = η j, then f (ηi,η j) = 0. f (ηi,η j) is increasing in ηi and decreasing in η j. Write
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the forward difference as Mηi f (ηi,η j) = f (ηi + 1,η j)− f (ηi,η j). We now make
the additional assumption that Mηi f (ηi,η j) is decreasing in ηi for given η j. Note
also that the number of common friends, ηi, j, does not enter the payoff function.
Before commenting on the latter two assumptions, we define bilateral equilibrium
(Goyal and Vega-Redondo, 2007), which allows for coordinated deviations of pairs
of agents and refines Nash equilibrium.

Definition 1: A strategy profile g̃∗ is a bilateral equilibrium (BE) if

• for any i ∈ N and every gi ∈ Gi, Πi(g̃∗)≥Πi(gi, g̃∗−i);

• for any pair of players i, j ∈ N and every strategy pair gi, g j,

Πi(gi,g j, g̃∗−i− j)> Πi(g̃∗i , g̃
∗
j , g̃
∗
−i− j)⇒Π j(gi,g j, g̃∗−i− j)< Π j(g̃∗i , g̃

∗
j , g̃
∗
−i− j).

A strategy profile is a BE if no player can deviate unilaterally and no pair of players
can deviate bilaterally and benefit from the deviation (in the case of bilateral devia-
tions, at least one of them strictly). Bilateral equilibrium also refines the notion of
pairwise stability (Jackson and Wolinsky, 1996), as it allows pairs of agents to form
and delete (positive) links simultaneously.

Next, we describe why the assumption that Mηi f (ηi,η j) is decreasing in ηi is
needed, and why the number of common friends, ηi, j, does not enter the payoff
function in the current specification. Note first, that without cost of conflict, con-
figurations may arise, where pairs of agents extend negative links to each other,
i.e., gi, j = −1 and g j,i = −1. In this case both agents involved in the undirected
negative link need to deviate (bilaterally) in order to create an alliance/friendship.
This implies that an agent, even if he has more friends than any other agent, may
only be able to switch one undirected negative link from a negative into a posi-
tive one (through a bilateral deviation). We may therefore not be able to rely on
the argument, used extensively in the main part of the paper, that certain agents can
profitably deviate by playing strategies, which yield the same sets of friends and en-
emies as some other agent with weakly higher payoffs. The additional assumption
that Mηi f (ηi,η j) is decreasing in ηi for given η j is needed to show that changing
the sign of only one negative undirected link into a positive one is sufficient for the
deviation in question to be profitable.
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For similar reasons the number of common friends, ηi, j, does not enter the pay-
off function. Recall that in the main part of the paper we showed that an agent
i ∈ Pm(g∗) could profitably deviate by imitating the strategy of an agent j ∈ Pm(g∗)
with weakly higher payoffs. However, an analogous deviation where only one neg-
ative undirected link is switched into a positive one, and one positive undirected
link is switched into a negative one, say to agent k, may not be profitable. This will
be the case, if after the deviation the difference between ηi,k and η j,k is sufficiently
large.

Lemma 1 shows that there are no undirected neutral links in a bilateral equilib-
rium. The intuition is that, in the absence of linking cost, a pair of agents either
finds it profitable to create a positive undirected link to increase payoffs from their
negative links, or one of the agents wants to create a negative link and extract pay-
offs from the respective other agent. If extending positive and negative links was
costly, then undirected neutral links may be part of a bilateral equilibrium. Intro-
ducing linking cost is, however, out of the scope of this paper and left for future
research.

Lemma 1: In any BE, ˜̄g∗i, j 6= 0 ∀i, j ∈ N.

Proof. Assume to the contrary that a link ˜̄g∗i, j = 0 exists in a BE for some
i, j ∈ N. We discern two cases. First, without loss of generality, ηi(g̃∗) > η j(g̃∗).
Then i can profitably deviate by extending a negative link to j, thereby extracting
payoffs from j. Second, ηi(g̃∗) = η j(g̃∗). If i and j sustain negative links, then i

and j can profitably deviate by creating the positive link ˜̄g∗i, j = 1, thereby increasing
payoffs on all remaining negative links, while the payoff from the link ˜̄g∗i, j remains
zero. If i and j do not sustain negative links and there exists a third agent k, such that
ηi(g̃∗) = η j(g̃∗) ≥ ηk(g̃∗), then a profitable deviation consists of i and j creating
the link ˜̄g∗i, j = 1 and extending a negative link to agent k. Deviation strategies are
given by g̃∗i +g+i, j+g−i,k and g̃∗j +g+j,i+g−j,k . Agents i and j then extract payoffs from
k under g′, while payoffs prior to the deviation are zero. If only one of the agents
has a negative link, say agent i, then a profitable deviation consists of g̃∗i + g+i, j
and g̃∗j + g+j,i + g−j,k, by an analogous argument as above. Next, the case where i

and j do not have any negative links and there does not exist a third agent k such
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that ηi(g̃∗) = η j(g̃∗) ≥ ηk(g̃∗). That is, ηi(g̃∗) = η j(g̃∗) < ηk(g̃∗) ∀k ∈ N\{i, j}.
Take agent m with the weakly highest number of friends in g̃∗. If all links of m are
positive, then a profitable deviation consists of g̃∗m+g−m, j. Agent m obtains a strictly
positive payoff after proposed deviation, as opposed to a payoff of zero prior to it. If
m has a negative link to some agent k (other than i and j), then a profitable deviation
consists of creating a positive link with k and extending, without loss of generality, a
negative link to agent j. Deviation strategies are given by g̃∗m+g+m,k +g−m, j and g̃∗k +

g+k,m +g−k, j. This is profitable for agent m as ηm(g′)≥ ηm(g̃∗) and η j(g′)< ηk(g̃∗).
For agent k the deviation is profitable from ηk(g′)≥ ηk(g̃∗) and η j(g′)< ηm(g̃∗). If
only one of the agents i and j has a negative link, say agent i, then g̃∗m +g+m,k +g−m, j

and g̃∗k +g+k,m +g−k, j is profitable by the above argument. Q.E.D.

For the equilibrium characterization, define again the set of agents with k friends,
Pk(g) =

{
j ∈ N | η j(g) = k

}
. Denote the set with the highest number of friends

with Pm(g), the one with the second highest subscript Pm−1(g) and proceed in this
way until the set of agents with the fewest number of friends, P1(g). We again fo-
cus first on the case where there are at least two agents such that ηi(g̃∗) 6= η j(g∗).
Note that the statement of Proposition 1 in Appendix B is identical to the one of
Proposition 1 in the main part of the paper.

Proposition 1: In any BE g̃∗, if ηi(g̃∗) = η j(g̃∗) then ˜̄g∗i, j = 1, and if ηi(g̃∗) 6=
η j(g∗) then ˜̄g∗i, j =−1.

Proof. The proof uses an induction argument and we start by proving the base
case in five steps.

Base Case: In any BE g̃∗, ˜̄g∗i, j = 1 ∀i, j ∈ Pm(g̃∗) and ˜̄g∗i,k = −1 ∀i ∈ Pm(g̃∗)
and ∀k /∈ Pm(g̃∗)

Step 1: In any BE g̃∗, ˜̄g∗i, j = 1 ∀i, j ∈ Pm(g̃∗).

Assume to the contrary that ˜̄g∗i, j 6= 1 for some pair of agents i, j∈Pm(g̃∗). If i and
j sustain negative links to a third agent, i.e., if the sets N−i (g̃∗)\{ j} and N−j (g̃

∗)\{i}
are non-empty, then creating the link ˜̄g′i, j = 1 (with deviation strategies ˜̄g∗i +g+i, j and
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˜̄g∗j +g+j,i) is profitable. Payoffs from the link between i and j remain zero, while they
strictly increase on all remaining negative links. If one of the two agents, say i, does
not sustain any negative links, then a profitable deviation consists of ˜̄g∗i +g+i, j +g−i,k
with k ∈ N\{i, j}. Payoffs prior to the deviation are zero, while they are strictly
positive after it, since ηk(g̃∗)< ηi(g′) . If j also does not sustain any negative links
in g̃∗, then j can profitably deviate with an analogous strategy, ˜̄g∗j +g+i, j +g−i,k.

Step 2: In any BE g̃∗, N+
i (g̃∗)\{ j}=N+

j (g̃
∗)\{i} and N−i (g̃∗) =N−j (g̃

∗) ∀i, j ∈
Pm(g̃∗).

From Step 1 we know that ˜̄g∗i, j = 1 ∀i, j ∈ Pm(g̃∗). Next, assume | Pm(g̃∗) |≥ 2
(the second part of above statement holds trivially for | Pm(g̃∗) |= 1) and, contrary
to the above, that ∃i, j ∈ Pm(g̃∗) : N+

i (g̃∗)\{ j} 6= N+
j (g̃
∗)\{i}∨N−i (g̃∗) 6= N−j (g̃

∗).

Note that there then must exists a pair of agents k, l /∈ Pm(g̃∗), such that agent k

is an enemy of i, but a friend of j and agent l is a friend of i, but an enemy of j.

That is, k ∈ N−i (g̃∗)∩N+
j (g̃
∗) and l ∈ N+

i (g̃∗)∩N−j (g̃
∗). Assume without loss of

generality that ηl(g̃∗) ≤ ηk(g̃∗). Agents i and k can profitably deviate by creating
the undirected positive link ḡ′i,k = 1 and i extending a negative link to agent l. The
corresponding deviation strategies are given by g̃∗i +g+i,k +g−i,l and g̃∗k +g+k,i. Agent
i′s number of friends remains the same, ηi(g′) = ηi(g̃∗), and therefore payoffs from
agents other than k and l remain unchanged. However, ηl(g̃∗) ≤ ηk(g̃∗) implies
that ηl(g′) < ηk(g̃∗) holds. Therefore, i obtains higher payoffs from l under g′

than what he obtains from k under g̃∗. Proposed deviation is also profitable for k,

as k′s payoffs from his link with i are negative in g̃∗, while they are zero in g′.
Furthermore, payoffs from any negative links increase because ηk(g′)> ηk(g̃∗).

Step 3: Any BE g̃∗ must be such that either i) ˜̄g∗i,k = −1 ∀i ∈ Pm(g̃∗) and ∀k ∈
Pm−1(g̃∗) or ii) ˜̄g∗i,k = 1 ∀i ∈ Pm(g̃∗) and ∀k ∈ Pm−1(g̃∗).

Assume to the contrary, and in accordance with Step 2, that there exists an agent
k ∈ Pm−1(g̃∗) such that ˜̄g∗i,k = 1 ∀i ∈ Pm(g̃∗) and another agent l ∈ Pm−1(g̃∗) such
that ˜̄g∗i,l =−1 ∀i∈ Pm(g̃∗). Then agents i and l can deviate profitably by creating the
undirected positive link ḡ′i,l = 1 and agent i extending a negative link to agent k. The
corresponding deviation strategies are given by g̃∗i + g+i,l + g−i,k and g̃∗l + g+l,i. Agent
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i′s number of friends remains the same after proposed deviation, while ηk(g′) <
ηl(g̃∗). For agent l proposed deviation is profitable, as payoffs from his link with
i are zero after proposed deviation, while they are negative under g̃∗. Furthermore,
payoffs from any negative links increase because ηl(g′)> ηl(g̃∗).

Step 4: In any BE g̃∗, ˜̄g∗i,k =−1 ∀i ∈ Pm(g̃∗) and ∀k ∈ Pm−1(g̃∗).

Assume to the contrary, but in accordance with Step 3, that ˜̄g∗i,k = 1 ∀i ∈ Pm(g̃∗)
and ∀k ∈ Pm−1(g̃∗). If there are only two sets, Pm(g̃∗) and Pm−1(g̃∗), then all links
of i ∈ Pm(g̃∗) are positive. Agent i can then profitably deviate with g̃∗i +g−i,k. Agent
i’s payoffs are positive under g′ from ηk(g′) < ηi(g′), while they are zero under
g̃∗. Assume next that there are more than two sets and the set Pm−2(g̃∗) there-
fore exists. We first show that i’s enemies must be a strict subset of k’s enemies,
N−i (g̃∗) ( N−k (g̃∗). Assume the contrary. Then there exists a pair of agents l and
m such that agent l is a friend of i, but an enemy of k and agent m is an enemy of
i, but a friend of k. That is, l ∈ N+

i (g̃∗)∩N−k (g̃∗) and m ∈ N−i (g̃∗)∩N+
k (g̃∗). For

ηl(g̃∗)≤ ηm(g̃∗) the following deviation is profitable: g̃∗i +g+i,m+g−i,l and g̃∗m+g+m,i.
Agent i increases payoffs as ηi(g′) = ηi(g̃∗) while ηl(g′) < ηi(g̃∗). The proposed
deviation is profitable for m, as payoffs from his link with i are negative prior to
the deviation and zero after it. Moreover, payoffs on any negative links increase.
For ηm(g̃∗)≤ ηl(g̃∗), g̃∗k +g+k,l +g−k,m and g̃∗l +g+l,k is profitable by an analogous ar-
gument. We have so far established that in any bilateral equilibrium g̃∗, N−i (g̃∗) (
N−k (g̃∗) for i ∈ Pm(g̃∗) and k ∈ Pm−1(g̃∗). To show that ˜̄g∗i,k = −1 ∀i ∈ Pm(g̃∗)
and ∀k ∈ Pm−1(g̃∗) we discern two cases. First, Πk(g̃∗) ≥ Πi(g̃∗). Agent i can
profitably deviate with the following strategy. If ˜̄g∗k,l = −1 then g′i,l = −1 and if
˜̄g∗k,l = 1 then g′i,l = 1 ∀l ∈ N\{i}. Note that after proposed deviation i has the
same sets of friends and enemies in g′ as agent k in g̃∗. To see this, recall that
N−i (g̃∗)( N−k (g̃∗) and proposed deviation therefore only consists changing ˜̄g∗i,l = 1
to ḡ′i,l = −1 by extending negative links to agents l ∈ N+

i (g̃∗)∩N−k (g̃∗). Next, we
show that proposed deviation is profitable. Note first that i’s payoffs from agents
l ∈N−i (g̃∗)∩N−k (g̃∗) are the same in g′ as k’s payoffs in g̃∗, because ηl(g′) = ηl(g̃∗)
and ηi(g′) =ηk(g̃∗). However, payoffs from agents l ∈N+

i (g̃∗)∩N−k (g̃∗) are strictly
higher for i in g′ than for k in g̃∗, because ηl(g′) < ηl(g̃∗) and ηi(g′) = ηk(g̃∗).
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At least one such agent l exists, which follows from N−i (g̃∗) ( N−k (g̃∗). There-
fore, Πi(g′)> Πk(g̃∗)≥Πi(g̃∗) holds and proposed deviation is profitable. Second,
Πi(g̃∗) > Πk(g̃∗). Recall that N−i (g̃∗) ( N−k (g̃∗). If there exists only one agent
l ∈ N+

i (g̃∗)∩N−k (g̃∗), then k and l can deviate with g̃∗k + g+k,l and g̃∗l + g+l,k such
that N−k (g̃∗) = N−i (g′) and N+

k (g̃∗)\{i} = N+
i (g′)\{k}. The deviation is profitable

for k, as Πi(g̃∗) = Πk(g′) > Πk(g̃∗). For l the deviation is profitable, because pay-
offs from his link with k are negative under g̃∗ and zero under g′, while payoffs
from any negative links increase due to ηl(g′) > ηl(g̃∗). If there are two or more
agents l,m ∈ N+

i (g̃∗)∩N−k (g̃∗) such that a negative link is reciprocated with a neg-
ative link, i.e., g̃∗k,l = g̃∗l,k = −1 and g̃∗k,m = g̃∗m,k = −1, then there is no bilateral
deviation such that N−k (g̃∗) = N−i (g′) and N+

k (g̃∗)\{i} = N+
i (g′)\{k}. However,

in the following we show that, if it is profitable for i ∈ Pm(g̃∗) to sustain positive
links to the agents in N+

i (g̃∗)∩N−k (g̃∗), then a profitable bilateral deviation exists
nonetheless. Take an agent l ∈ N+

i (g̃∗)∩N−k (g̃∗) and compare i′s marginal payoffs
from the positive link to l in g̃∗ with k′s marginal payoffs when creating a posi-
tive link with l in a bilateral deviation. Other than the payoffs that i and k forgo
by linking positively to l, there are two sets of agents to consider. Marginal pay-
offs from agents in N−i (g̃∗)∩N−k (g′) and from agents in N+

i (g̃∗)∩N−k (g′). First,
agents j ∈ N−i (g̃∗)∩N−k (g′). Marginal payoffs from agents j are larger for k than
for i, which follows from η j(g̃∗) = η j(g′), ηi(g̃∗)> ηk(g′) and the assumption that
Mηi f (ηi,η j) is decreasing in ηi for given η j. Second, marginal payoffs from agents
such that j ∈N+

i (g̃∗)∩N−k (g′). These are positive for k, while they are zero for i. Fi-
nally, payoffs that i and k forgo by linking positively to l. For agent i these are given
by f (ηi(g̃∗)−1,ηl(g̃∗)−1) while for k they are f (ηk(g̃∗),ηl(g̃∗)). Payoffs forgone
are higher for i than for k, as ηi(g̃∗)> ηk(g′) and ηl(g̃∗)−1 < ηl(g′). Therefore, if
the positive link to l is profitable for agent i, then a bilateral deviation of k and l is
profitable for k. Proposed deviation is profitable for l, as ηl(g̃∗)< ηk(g̃∗). If, on the
other hand, the positive link to l is not profitable for agent i, then i can profitably
deviate by extending a negative link instead.
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Step 5: In any BE g̃∗, ˜̄g∗i,k =−1 ∀i ∈ Pm(g̃∗) and ∀k /∈ Pm(g̃∗).

From Step 4 we know that ˜̄g∗i,k = −1 ∀i ∈ Pm(g̃∗) and ∀k ∈ Pm−1(g̃∗). Assume
to the contrary that there exists a positive link ˜̄g∗i,l = 1 to some agent l ∈ Pm−x(g̃∗)
with x≥ 2. Then agents i and k can deviate with the following deviation strategies:
g̃∗i + g+i,k + g−i,l and g̃∗k + g+k,i. This is profitable for i, as ηl(g′) < ηk(g̃∗) and it is
profitable for k, as ηk(g̃∗)< ηi(g̃∗).

Define the super set P̃r(g̃∗) = Pm(g̃∗)∪Pm−1(g̃∗)∪ ...∪Pm−r−1(g̃∗)∪Pm−r(g̃∗).
Note that P̃0(g̃∗) = Pm(g̃∗).

Inductive Step: In any BE g̃∗, if ˜̄g∗i, j = 1 ∀i, j ∈ Pm−x(g̃∗) and ˜̄g∗i,k = −1
∀i ∈ Pm−x(g̃∗) and ∀k /∈ Pm−x(g̃∗) holds ∀x ∈ N : 0 ≤ x ≤ r, then ˜̄g∗i, j = 1 ∀i, j ∈
Pm−(r+1)(g̃∗) and ˜̄g∗i,k =−1 ∀i ∈ Pm−(r+1)(g̃∗) and ∀k /∈ Pm−(r+1)(g̃∗).

In the Step 5 we showed that ˜̄g∗i, j = 1 ∀i, j ∈Pm(g̃∗) ∧ ˜̄g∗i,k =−1 ∀i∈Pm(g̃∗) and
∀k /∈ Pm(g̃∗). Assume the statement holds for all sets Pm−x(g̃∗) ∀x ∈ N : 0≤ x≤ r.

Note that for a link ˜̄g∗i,k =−1 with ηi(g̃∗)> ηk(g̃∗), g̃∗i,k =−1 holds. Otherwise, for
the undirected link ˜̄g∗i,k = −1 to be negative, it must be that k extends the directed
negative link g̃∗i,k =−1. But then k can profitably deviate unilaterally by extending
g̃∗i,k 6=−1. We therefore know that g̃∗i,k =−1 ∀i ∈ P̃r(g̃∗) and ∀k /∈ P̃r(g̃∗). (This, of
course, still allows for g̃∗k,i = −1). We can now repeat steps 1 through 5 from the
base case, relabeling Pm(g̃∗) with Pm−(r+1)(g̃∗) and Pm−1(g̃∗) with Pm−(r+2)(g̃∗) to
establish the above result. Note that in Step 4, when comparing marginal payoffs of
agents i∈Pm−(r+1)(g̃∗) and k∈Pm−(r+2)(g̃∗) we have to take into account marginal
payoffs from agents in Pm−x(g̃∗)∀x ∈ N : 0 ≤ x ≤ r. Marginal payoffs are again
higher for k than for i, which follows from η j(g̃∗) = η j(g′) ∀ j ∈ P̃r(g̃∗), ηi(g̃∗) >
ηk(g′) and the assumption that Mηi f (ηi,η j) is decreasing in ηi for given η j. Q.E.D.

Lemma 2 shows that there is no bilateral equilibrium such that either all undi-
rected links are positive or all undirected links are negative. This is easy to see. If
all links are positive, then two agents have an incentive to extend negative links to
a third agent in a coordinated deviation. If all links are negative, then two agents
can create a positive undirected link instead, thereby extracting payoffs from all
remaining agents.
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Lemma 2: There does not exist a BE such that either ḡi, j = 1 or ḡi, j = −1
∀i, j ∈ N.

Proof. First, ḡi, j = 1 ∀i, j ∈ N. This is not a BE as any pair of agents i, j can
profitably deviate by both extending a negative link to a third agent k. Second, ḡi, j =

−1 ∀i, j ∈ N. Agents i and j can profitably deviate with the following strategies
g̃∗i + g+i, j and g̃∗j + g+j,i. This strictly increases payoffs, as i and j have now more
friends than all remaining agents, to which i and j sustain negative links. Q.E.D.

A bilateral equilibrium may not always exist. The reason for this is that now
pairs of agents may find it profitable to simultaneously extend negative links to a
third agent within the same clique. Below we provide a simple example where a
bilateral equilibrium exists.

Example 1: There are n = 5 players. Assume f to be the normalized contest
success function in ratio form with φ = 1. An agent i′s payoffs from a coercive
link with agent j, denoted by pi, j, is then given by pi, j =

ηi+1
(ηi+1)+(η j+1) −

1
2 . The

following configuration is a bilateral equilibrium. A clique of positively connected
agents 1, 2, and 3, who extend negative links to agents in a second clique, consisting
of players 4 and 5. There are only two relevant candidates for a profitable deviation.
First, a deviation where two agents in the larger clique, say agents 1 and 2, extend
negative links to a third agent within the clique, say agent 3. Second, a deviation
where an agent in the larger clique, say agent 1, creates a positive link with an agent
in the smaller clique, say agent 4. Payoffs for agents in the larger clique prior to a
deviation are given by 2 · 3

3+2 = 6
5 . Agent 1 and 2′s payoffs after the first deviation

are given by 2
2+1 −

1
2 + 2 · ( 2

2+2 −
1
2) =

1
5 . This is less than the payoffs prior to the

deviation of 6
5 and proposed deviation is therefore not profitable. Agent 1′s payoffs

after the second deviation are given by 4
4+1 =

4
5 . Again this is less than payoffs prior

to the deviation of 6
5 and proposed deviation is therefore not profitable.
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