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Abstract

This paper considers an empirical semiparametric model for two-sided markets. Contrary to

existing empirical literature on two-sided markets, we do not rely on linear network effects.

Instead, network effects and probability distribution functions of net benefits of two sides

are specified nonparametrically. The demand functions and the network effect functions of

readers and advertisers are estimated by nonparametric IV estimation using a data set from

German magazine industry. The ill-posed inverse problem faced during the estimation is

solved by Tikhonov Regularization. We show that semiparametric specification is supported

by the data and the network effects on readers’ side are neither linear nor monotonic. With

a numerical illustration we demonstrate that the mark-up of the magazine on readers’ side

is 27% higher with the nonlinearly specified network effects than in the case with linear

network effects.
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1 Introduction

In the past 10 years a lot of work has been done both in terms of theory and in terms of

empirics of two-sided markets; see, for instance, Rochet and Tirole (2003); Armstrong (2006);

Rysman (2004); Kaiser and Wright (2006). However, most empirical papers use traditional

parametric tools and specify the network effect with a constant parameter, see Argentesi

and Filistrucchi (2007); Borsenberger et al. (2010). More precisely, the externality exerted

on side one by side two is assumed to be linear in the number of agents on side two and vice

versa. In this paper we develop a structural model for two sided markets where we do not

specify any functional form for the network effects and we estimate them with nonparametric

instrumental variables estimation. We solve the ill-posed inverse problem we come across

during nonparametric IV estimation by regularizing it with Tikhonov Regularization scheme.

The nonparametric specification of network effects allows us to capture nonlinearities and

non-monotonicities in the network effect function with the increasing number of agents on

the other side. The results of both nonparametric estimation and parametric estimation

with a nonlinear specification show that network effects are not linear. The implications of

this result for misspecified linear models are demonstrated with a numerical illustration.

The main feature of a two-sided market is the existence of externalities between the

two sides of the market. More precisely, the benefit of agents on one side of the platform

depends on the number of agents on the other side. However, as is pointed out in Rochet

and Tirole (2003), a market with network externalities is a two-sided market if platforms

can effectively cross-subsidize between different categories of end users. So, it is not only

the interdependence of the sides to enter the platform but also the pricing structure of the

platform which defines a market as two (or multi) sided. So far various industries have

been examined under this setting: media, academic journals, dating agencies, credit cards,

shopping malls, etc. For example, in the magazine industry, the decision of advertisers to

advertise in a particular magazine depends on the circulation rate of that magazine. On the

other side of the market, the readers may care about the advertising content of the magazine

they buy. The platform, namely the magazine, can use this interdependence between the

two sides when deciding on its pricing scheme. In this case, it is going to be more aggressive

with the advertisers if they benefit more from contacting the readers on the platform.

While in some industries, the network effect is continuously increasing, in some other

industries it is nonlinear and non-monotone. For example, in the credit card industry, where

the credit card is the platform and buyers and sellers are the two sides, increasing the number

of sellers who accept the credit cards would unambiguously increase the benefit and thus

the number of buyers who hold a credit card. However, when we think of the magazine
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market, although it is found that readers get utility from seeing adverts in a magazine (see

Borsenberger et al., 2010; Kaiser and Wright, 2006; Kaiser and Song, 2009), increasing the

share of ad pages relative to content pages may start to give disutility to readers and thus

make them leave the platform. In this case, the positive network externality for readers

may become negative after some threshold level of ads. These network externalities play

a crucial role in the platform’s decision of pricing scheme since a price change for one side

does not only affect the agents on that side, but it also affects the agents on the other side

through the network effects. More concretely, the pricing equations of the platform can be

explained by the usual Lerner index plus an extra term coming from the relationship with

the other side of the market.1 An empirical study where the network effects are specified

linearly with a parameter may give misleading results if in fact we have nonlinear and non-

monotonic network effects. In the case of nonlinear and monotonic network effects where the

specification is linear, the misspecification will lead to quantitative errors, such as under or

over estimation of markup which in turn may result in erroneous conclusion about the market

power of the platform. The case of non-monotonicity is even more crucial for two-sided

markets, since it is the nonmonotonic network effect functions that lead to the emergence of

many platforms. For example, suppose that there is a publisher with 100 potential pages of

advertisement and the readers start to get disutility after the 50th page. In such a situation,

the optimal strategy for the publisher is to publish two similar magazines with 50 pages of

advertisement in each so that it can extract the profits from both sides. In an empirical

study with linear specification of network effects we may not uncover the true structure of

the market and we may therefore make erroneous conclusions in our analysis.

In order to address this important issue, we set up a semiparametric model, in which we

include the network effects nonparametrically in the demand functions. This way of specifi-

cation lets us see if the increasing number of agents on one side may effect the participation

decision of the agents on the other side negatively or positively. In addition to this, we do not

specify any probability distribution function for the net benefits of agents, which leads to a

nonparametrically specified demand functions. So, we estimate the network effect functions

and the demand functions of the two sides nonparametically. To the best of our knowledge,

neither the functional specification of the network effects nor the nonparametric approach has

been used in the empirical two-sided market literature before. More broadly, nonparametric

approaches have not yet been used in the empirical analysis of network industries.

Nonparametric estimation has gained a lot of attention as it has many advantages. First

of all, the model is not approximated by a set of parameters and hence not affected by

1The Lerner Index, in other words, markup, shows the ratio between the profit margin and the profit
maximizing price and is inversely proportional to the demand elasticity, i.e. p−c

p = 1
ε . (See Tirole, 1988)
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any specification error. Secondly, the estimation results are independent of parametric re-

strictions and show us if the model is really supported by the data or not. We estimate

the functions of interest by nonparametric IV estimation. However, it is well known that

nonparametric IV estimation causes an ill-posed inverse problem which needs to be regu-

larized. There are many papers in the literature that cope with this problem with different

regularization schemes. Following the approach of Darolles et al. (2011), we regularize our

inverse problem with Tikhonov Regularization and estimate the unknown density functions

of the variables with kernels. Depending on the regularity of the function, this may give an

optimal convergence rate or slower, but at the same time prevents the possible specification

errors coming from the misspecification of the parametric form.

Furthermore we perform parametric estimation whose functional specifications are based

on the nonparametric estimation results. More precisely, using the same structural equations,

we approximate the unknown functions by nonlinear parametric forms, and estimate demand

equations simultaneously. The results are consistent with what we have obtained in our

nonparametric analysis.

Two main groups of literature are related to this paper. The first one is the two-sided

markets literature. The theoretical literature on two-sided markets has focused on credit

card markets, buyer-to-buyer platforms, academic journals and media. The model we use

in this paper is related to that of Armstrong (2006), as it is more suitable to the magazine

industry. Empirical studies have concentrated mostly on media. Kaiser and Wright (2006),

Kaiser (2007), Kaiser and Song (2009) and Borsenberger et al. (2010) analyze the magazine

industry, whereas Argentesi and Filistrucchi (2007) and Behringer and Filistrucchi (2010) are

examples of the newspaper industry. In a very recent paper VanDalen (2010) analyzes the

radio broadcasting industry in the Netherlands. In contrast to our paper, all these papers are

using parametric tools and specify network effects linearly. Rysman (2004) uses a nonlinear

specification for network effects in his paper where he examines the market for Yellow Pages

directories. Kaiser (2007), Kaiser and Song (2009) and Borsenberger et al. (2010) consider a

two sided market model for the magazine industry and analyze the effect of advertisements on

readers. Kaiser (2007) finds that readers that are over 50 of age, are less educated and/or have

low income like advertisements more compared to others. Using the same data set, Kaiser

and Song (2009) conclude that readers of Women’s, Business and Politics and Car magazines

value ads, as ads in these magazines are informative. Borsenberger et al. (2010) arrive at

a similar conclusion based on data from France. They show that readers of entertainment

magazines value ads while the readers of information magazines do not. However, what we

are interested in this paper is the level of advertisements from which readers start to get

disutility or utility. With our nonparametric specification of network effects, we do not make
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a priori assumptions on the externality exerted on readers by advertisers, and we search for

a threshold level from where this externality changes its sign. Our results show that the

readers like advertisements. Moreover, we find that their benefits decrease when there are

too few advertisements.

The second group of related literature is on nonparametric estimation methods with

endogenous variables. Ai and Chen (2003), Newey and Powell (2003), Carrasco et al. (2007),

Darolles et al. (2011), Feve and Florens (2009), Florens and Sokullu (2012) all deal with the

problem of nonparametric IV estimation in the presence of endogenous variables. Although

Ai and Chen (2003) and Newey and Powell (2003) use sieve methods and get over the

problem of ill-posedness by putting bounds on integrals of higher order derivatives, all the

other papers use kernel estimation and regularize the ill-posed inverse problem by Tikhonov

Regularization. Florens and Sokullu (2012) is different from the other ones, in the sense that

they develop their estimation technique for semiparametric transformation models. This

paper also studies the nonparametric estimation of semiparametric transformation models,

however, different from Florens and Sokullu (2012), all explanatory variables in our system

are endogenous. Another related work to ours is that of Blundell et al. (2007). They present

a nonparametric estimation technique and estimate shape invariant Engel curves using the

U.K. Family Expenditure Survey.

The paper proceeds as follows. In Section 2, we introduce our model, derive the structural

demand equations for readers and advertisers and pricing equations of the platform. We

perform the nonparametric empirical analysis of the magazine industry in Section 3, where

we describe the data, specify the model and prove identification, and we also define our

estimation method and show its asymptotic properties. Section 4, presents the results of

the empirical analysis with parametric tools while in Section 5, we present a numerical

illustration to show the importance of misspecification of two-sided network effects. Finally,

in Section 6 concludes. All the proofs are presented in the appendices.

2 The Model

In this section we introduce our model taking into account the fact that an agent on

one side will consider the number of agents on the other side when she makes her decision

whether to enter the platform or not. In this paper we use a data from the magazine industry

to perform our empirical analyses. The two-sided market model for the magazine industry

is defined as follows: Each magazine produces content pages and ad pages for its readers

and provides advertising outlet for firms who want to reach the readers of the magazine. It

maximizes its profits by setting a cover price for the readers and an advertising rate for firms
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given the prices of its competitors. On the other hand, readers decide to buy the magazine

or not and the firms decide to buy ad space from the magazine or not by looking at their

net benefits. As it is a two-sided industry, the benefits of readers depend on the number of

ad pages in the magazines and the benefits of advertisers depend on the number of readers

of the magazine, as well as some other magazine characteristics.

We obtain the demand functions of readers and advertisers following the approach used

by Larribeau (1993) and Feve et al. (2008). Let us begin with the reader side. We have

i = 1, ..., I readers. We assume that the readers are heterogeneous in their net benefit bri of

buying the magazine and these benefits are drawn from a continuous distribution. So, the

reader i decides to buy magazine m if its net benefit is higher than a threshold (say, its net

costs) br:

bri ≥ br(Na, X, U)

where br(.) is the threshold benefit level for readers which is a function of the share of

advertisers on the same platform Na, the observable magazine characteristics X and the

unobservable magazine characteristics U . All the readers whose net benefits are higher than

this threshold will buy the magazine. Thus, the probability of buying the magazine and

hence the market share of readers is given by:

N r = P (bri ≥ br(Na, X, U)) = 1− F r(br(Na, X, U)) (1)

where F r(.) is the cdf of net benefits of readers. We can rewrite the equation 1 as:

N r = Sr(br(Na, X, U)) (2)

where Sr(.) = 1−F r(.) is the survival function. Equation (2) gives us the demand of readers

for the magazine. We assume that it is strictly decreasing in the threshold benefit level.

Given the distribution of benefits of readers, the higher the threshold is, the less readers buy

the magazine. Furthermore, if the observable magazine characteristics are price and number

of content pages, we expect the threshold benefit level to be increasing in cover price and

decreasing in the number of content pages thus the demand is decreasing in cover price and

increasing in number of content pages. The effect of share of ad pages is ambiguous, since the

readers may like the ads or not, depending on the type of the magazine or depending on the

readers’ tastes. Note that, here we include the market share of advertisers as an explanatory

variable in the reader demand. What one would expect is that readers instead care about

the total number of ad pages and/or the ratio of ad pages to content pages in a magazine.

The reason we use the market share in the modeling is to have a fully simultaneous system,
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i.e, N r = Sr(Na, ., .) and Na = Sa(N r, ., .). Moreover, in our application we show that

our results on readers’ side are robust to different definition of advertising amount in the

magazine.

Now, let us consider the advertisers. We have j = 1, ..., J advertisers. Each of them

has a net benefit baj from advertising in a magazine and these net benefits are drawn from a

continuous distribution F a(.). They advertise in the magazine if their net benefit is higher

than ba, i.e:

baj ≥ ba(N r,W, V )

where ba(.) is the threshold benefit level for advertisers and it is a function of the share

of readers of the magazine N r, observable magazine characteristics for advertisers W and

unobservable magazine characteristics V . Like in the case of readers, the probability of

advertising in the magazine and thus the share of advertisers who join the magazine is given

by:

Na = P (baj ≥ ba(N r,W, V )) = 1− F a(ba(N r,W, V )) (3)

We can rewrite the equation 3 as:

Na = Sa(ba(N r,W, V )) (4)

where Sa(.) = 1−F a(.). Equation (4) is the demand equation of firms for advertising in the

magazine. It is strictly decreasing in the threshold benefit function. The threshold benefit

function is expected to be increasing in the ad rate and decreasing in the share of readers.

So, more firms would like to advertise in a magazine with a higher readership and a lower

ad rate.

Now, we can write the demand system for the magazine:

N r = Sr(br(Na, X, U))

Na = Sa(ba(N r,W, V ))

Given the demand equations of both sides, the magazine chooses its cover price and

advertising rate to maximize its profit:

max
pr,pa

Π = prN rM r + paNaMa − C(N rM r, NaMa, IP )− FC (5)

where p(i) and M (i), i = a, r are price and market size for both sides, C is the cost function

which depends on the number of agents on each side as well as other cost variables such as
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input prices, IP , and FC is the fixed costs. The maximization problem in equation (5) gives

the following pricing equations:

pr − ∂C
∂Nr

pr
= − 1

εNr

−
(
pa − ∂C

∂Na

)
∂Na

∂pr

∂Nr/∂pr

pr

(6)

pa − ∂C
∂Na

pa
= − 1

εNa

−
(
pr − ∂C

∂Nr

)
∂Nr

∂pa

∂Na/∂pa

pa

(7)

It should be noted that both equation (6) and equation (7) are modified versions of the

Lerner Index, in the sense that they also include the network externalities coming from the

two-sidedness of the industry. For the reader side, the mark-up (the term on the left hand

side), which is the ability of the magazine to price over its cost, depends on the inverse

price elasticity of the readers, 1/εNr as well as on a second term. This second term captures

the externality that readers have over advertisers. If they exert a positive externality on

advertisers, the magazine charges readers a lower price compared to a situation where this

externality is ignored. The intuition is simple. By lowering the cover price, the magazine can

attract more readers which in turn attract more advertisers through network externalities,

thus increasing the profits of the magazine. For the advertisers, the same holds. The mark-

up depends not only on the inverse price elasticity of the advertisers, 1/εNa but also on

the externality they exert on readers. If the readers don’t like ads, the magazine prices ads

higher than otherwise, so that it can subsidize the readers for the disutility caused by ads. In

return, the readers can be kept in the platform and the profits are made from the advertisers.

So, it is important to identify the sign and magnitude of the externalities as they play

a crucial role in the pricing. For example, in the case where readers like ads as long as

they do not pass a certain share of the magazine content, the magazines pricing scheme will

not be the same below and above of that certain level of ads. It can extract surplus from

both sides when they both exerts a positive externality on each other, thus increasing it

profits. However, when advertisers exert a negative externality on readers, the profits will be

extracted from advertisers and the readers will be subsidized by paying a price lower than

in the ”no externality case”. In the next section, where we conduct an empirical analysis of

the industry, we will specify the network effects as unknown functions to be able to see if

the exerted externality changes its sign with the increasing number of ad pages or not.
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3 Empirical Analysis of Magazine Industry : A Non-

parametric Approach

In this section, we present a nonparametric empirical analysis of the magazine industry.

We will specify network effects nonparametrically, and estimate the semiparametric demand

equations using a nonparametric IV estimation.

3.1 Model Specification

In the studies of magazine markets, two approaches have been adopted for externality

between advertisers and readers. In the first approach it is assumed that there is a positive

externality of advertisement on readers whereas in the second one the externality is assumed

to be negative. Kaiser (2007), uses data on the magazine industry in Germany and shows

that readers are in fact ad-lovers. On the other hand, Borsenberger et al. (2010) conclude that

the readers of entertainment magazines like advertisements while the readers of information

magazines do not. Their result is quite intuitive. It is natural to expect that the readers

of women’s magazines value advertisements because ads in these types of entertainment

magazines are in fact informative. In contrast, the information magazines are valued for

their content and advertisements that are not related to their content can be perceived as

nuisance. In this section our aim is to see if this network externality between the two sides

changes sign as the share of agents on one side increases, rather than to see if it is negative

or positive. So, instead of making a linear parametric specification for these externalities,

we specify it with a function to be able to capture the variation in network externality with

variation in the number of advertisements.

Evans and Schmalensee (2008) and Argentesi and Ivaldi (2005) point out that failure

to account for network externalities in two-sided platforms can lead to serious errors in

antitrust analysis. Correct specification of these network effects is important for the same

reason. However, none of the aforementioned papers on the magazine industry allows for

nonlinear and nonmonotone network effects. It is straightforward to see that in case of

nonlinearity or non-monotonicity of the network effect functions, the results of Kaiser and

Song (2009) and Kaiser and Wright (2006) regarding the elasticities or mark-ups, would not

be the same.2 Rysman (2004) adopts a nonlinear specification for network effect functions.

2Suppose that the network effects are specified as second order polynomials in Kaiser and Song (2009),
so that the mean utility is given by: δjt = Xjtβ + θ0 + θ1Adjt + θ2Ad

2
jt − αpjt + γt + ηj + ξjt instead of

δjt = Xjtβ+θAdjt−αpjt+γt+ηj+ξjt. Then the advertising elasticity of demand would not only depend on
θ1 but also on θ2Adjt, thus the magnitude as well as the effect would be ambiguous in case these parameters
are estimated to have different signs.
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However, his specification does not allow for non-monotonicity. It can be easily shown that,

if non-monotonicities exist in the network effect functions, the market equilibrium condition

he derives would be harder to satisfy, i.e. it may not be satisfied for all values of the

advertisements. Thus, his results may not hold anymore if the network effect of advertisers

on consumers are nonmonotone. We demonstrate with a simple numerical example in Section

5 that a linear specification instead of a quadratic one results in 27% difference in the mark-

up of the magazine on the reader’s side.

In this semiparametric model specification, we make as few parametric approximations

as we can. First of all, we make no assumption on the family of distribution functions of

net benefits of readers and advertisers. Secondly, we assume that network effects are given

by some unknown functions, ϕ(Na) and ψ(N r). Finally we specify the threshold benefit

functions br and ba as linear functions of network externalities and platform characteristics.

Then, the system of demand equations are given by the following:

N r = Sr(ϕ(Na) +Xβ + U) (8)

Na = Sa(ψ(N r) +Wγ + V ) (9)

We are interested in estimating the network externality between the two sides, hence for

simplicity, we consider just one platform characteristic, price, whose coefficient is normalized

to one for identification. The reason to use just one characteristic is that since we use

kernels in estimation, increasing the dimension of instruments and/or exogenous variables

complicates the estimation process. Note that this way of specification does not allow us

to analyze the elasticities however in this paper we are interested in identifying the shape

of the network effect functions and we can do this normalization without loss of generality.

This final specification gives us the equations we are going to estimate:

N r = Sr(ϕ(Na) + P r + U) (10)

Na = Sa(ψ(N r) + P a + V ) (11)

where P r is the cover price of the magazine and P a is the ad rate of a single page.3

We are going to estimate the functions of interest, namely, Sr, Sa, ϕ and ψ nonparamet-

3In the magazine industry there are different price levels for the readers depending on the way to obtain
the magazine, i.e., buying from kiosk or having a subscription. However, we do not observe this in our
sample, and we use only one price, cover price. Borsenberger et al. (2010) observe also the subscribers in
their data set and use this information. They find that the subscribers are less price sensitive. Moreover in
our data set all advertisements are assumed to be one single page and the ad rate is the average price of
giving one page of advertisement in the magazine
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rically.

3.2 Identification

Before proceeding to discussion of identification, let us introduce our variables and some

notation.

N r, Na ∈ R are the endogenous market shares of the magazine on the readers’ and

advertisers’ side, respectively. The platform characteristics for readers and advertisers, which

we denote by X and W in equations (8) and (9), can be endogenous or exogenous. These

characteristics generally include prices on both sides, number of content pages, magazine

segment and frequency of the magazine. Since we are interested in estimating the network

effect functions ϕ(.) and ψ(.), for simplicity, we include just one platform characteristic in

each function, namely cover price (P r) and ad rate (P a). Thus, P r, P a ∈ R, are endogenous.

Zr, Za ∈ R2 are instruments for each equation and Z = {Zr, Za}. For the moment we assume

that we have valid instruments. We introduce the instruments in Application. Finally,

unobservable characteristics for each side, U and V are scalars as well.

We assume that (N r, Na, P r, P a, Z) generate a random vector, Ξ, which has a cumulative

distribution function F . Then for each F , we can define subspaces of our variables as

L2
F (N r), L2

F (Na), L2
F (P r), L2

F (P a) and L2
F (Z) which belong to a common Hilbert space.

That is, L2
F (Y ) denotes the subspace of L2

F of real valued functions depending on Y only. In

the sequel, we use the notation L2
Y to denote the L2

F (Y ).

Now we can state the needed assumptions for identification.

Assumption 1 Strict monotonicity. The survival function Sq, q ∈ {r, a} is strictly

decreasing in its arguments.

As S is a survival function, we know that it is decreasing, however, by making the assump-

tion of ”strictly decreasing”, we guarantee to have an inverse of it, which we will use for

identification and estimation. Thus, using assumption (1), we can rewrite the system of

equations in (10) and (11) as:

Hr(N r) = ϕ(Na) + P r + U (12)

Ha(Na) = ψ(N r) + P a + V (13)

where Hq(N q) = (Sq)−1(N q) for q = a, r.

Assumption 2 Conditional mean independence. E[U |Zr] = 0 and E[V |Za] = 0
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Assumption 3 Completeness. (N r, Na) are strongly identified by Zq for q = a, r, i.e.:

∀m(N r, Na) ∈ L2
Nr×L2

Na , E[m(N r, Na)|Zq] = 0 ⇒ m(N r, Na) = 0 a.s forq ∈ {a, r}

Assumption 4 Measurable separability. N r and Na are measurably separable:

∀m ∈ L2
Nr , l ∈ L2

Na ,m(N r) = l(Na)⇒ m(.) = l(.) = constant

Assumption 5 Normalization.

∀l ∈ L2
Na , l(.) = constant⇒ constant = 0

For simplicity, we will assume that ϕ(.) and ψ(.) are normalized by the conditions

E(ϕ(Na)) = 0 and E(ψ(N r)) = 0 . Under this assumption, the parametric space we consider

is:

E0 = (H,φ) ∈ L2
Nr × L2

Na such that E[φ] = 0

Assumption(2) is just a conditional mean independence condition and it holds whenever

Zr and Za are exogenous. Assumption(3), Completeness is the nonparametric counterpart

of the rank condition in parametric IV estimation and it is also referred as complete statistic

in the statistics literature. It is a condition on the power of Zr and Za to identify Hr(.)

and ϕ(.) and Ha(.) and ψ(.), respectively. Intuitively, it means that there is no function

of N r and Na that is not correlated with any function of Zr and Za. The completeness

assumption is an assumption on the distribution of the endogenous variables conditionally

on the instruments. Although, in this paper we take it as given, further reference on the

primitive conditions for the completeness can be found in DHaultfoeuille (2011), Andrews

(2011) and Hu and Shiu (2011). As it is shown by Hu and Shiu (2011), our complete-

ness condition on the multivariate distribution function of the endogenous variables can be

obtained by the completeness on univariate distribution functions and thus it is not very

restrictive. Assumption(4), Measurable separability, is needed to distinguish Hr(.) and ϕ(.)

and Ha(.) and ψ(.). It says that two functions m(N r) and l(Na) can be equal only if they

are equal to a constant. In other words, it states that there is no exact relation between N r

and Na. So, for the reader demand equation, Assumption(4) holds whenever P r + U varies

independently of Na and for the advertiser demand equation, it holds whenever P a + V

varies independently of N r. It is not hard to verify measurable separability in our model.

In the model, we already state that reader demand depends on the share of advertisers as

well as some observable and unobservable magazine characteristics for readers. Hence, we

do not make an unrealistic assumption by measurable separability, as it is natural to expect
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that some magazine characteristics for readers vary independently of the share of advertisers.

Moreover, with the same reasoning, it is natural to expect that the magazine characteristics

for advertisers vary independently of the share of readers. Finally, Assumption(5) is just a

normalization assumption for identification.

Theorem 1 Under the assumptions 1-5, the functions Sr, Sa, ϕ and ψ are identified.

In this paper we are considering a fully recursive system of equations. For this reason

we now state some extra assumptions that guarantee the existence of the reduced form

solution of the system. In other words, we show that N r and Na can be explained by

the other variables of the system for given cover price and ad rate. Blundell and Matzkin

(2010) also discuss the existence of reduced form solution to the system of equations where

they investigate the control function approach in nonparametric nonseparable simultaneous

equations models.

Remember that our structural system is given by equations (10) and (11)

N r = Sr(ϕ(Na) + P r + U)

Na = Sa(ψ(N r) + P a + V )

Let us now state some more assumptions:

Assumption 6 For all values of N r, Na, P r, P a, U and V , the functions Sr and Sa are

continuously differentiable.

This assumption requires that the net benefits of readers and advertisers are distributed

continuously so that the survival functions will be continuously differentiable on the interval

(0, 1).

Assumption 7 For all values of N r, Na, P r, P a, U and V , we have:

• ∂Sr

∂Na
∂Sa

∂Nr < 0 or equivalently

• ∂Sr

∂ϕ
∂ϕ
∂Na

∂Sa

∂ψ
∂ψ
∂Na < 0

We know that ∂Sr/∂ϕ and ∂Sa/∂ψ are negative since the survival function is decreasing

in its arguments. So the assumption reduces to

∂ϕ

∂Na

∂ψ

∂N r
< 0
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This actually means that in the equilibrium, the network externalities have the opposite

effects.

Now, we can state the theorem for the existence of a reduced form solution:

Theorem 2 Under assumptions 1,6, 7 and for given cover price and ad rate, there exist

unique functions hr and ha representing the structural model in equations (10) and (11),

such that:

N r = hr(P r, P a, U, V ) and Na = ha(P r, P a, U, V )

Remark 3 In this section we present the identification of a separable model. Identification

of a nonseparable model can also be obtained but for this we need stronger assumptions,

i.e., instead of conditional mean independence, we need to assume full independence between

the unobservable random terms and exogenous variables. Moreover, solutions for this kind

of models lead to a nonlinear inverse problem, which is even harder to solve. In addition,

we cannot identify the network effect functions separately in a nonseparable model. For

these reasons, we decided to maintain a separable model for the application. Nonetheless,

we present our model under a nonseparable framework and discuss its identification and

estimation in Appendix A.

3.3 Nonparametric Estimation of Semiparametric Transformation

Equations

We estimate equations (12) and (13) with the nonparametric instrumental variable es-

timator for semiparametric transformation models. As already stated, nonparametric IV

regression has gained a lot of attention recently. The model we present in this section is

different from those found in the existing literature in the sense that it covers a very gen-

eral case. We allow for nonparametric specification on the right and left hand side of the

transformation model, as well as for endogeneity and use the mean independence condition

rather than full independence. Although Horowitz (1996) and Linton et al. (2008) study

the nonparametric estimation of transformation models, none of them considers the case of

nonparametric specification on both sides of the regression equation. Our method is very

similar to that of Florens and Sokullu (2012), since both are nonparametric estimation of

semiparametric transformation models which allow for nonparametric specification on both

sides of the equation. The difference between the two models is that in our model all ex-

planatory variables are endogenous. Nonetheless, the estimation method we present below

follows the approach of Florens and Sokullu (2012) closely.

We follow a limited information approach while presenting nonparametric IV estimation

for transformation equations. In other words, we estimate the demand system given by
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equations (12) and (13) equation by equation. For the rest of this section, we continue

to present the estimation method using equation (12) only. Extension to equation (13) is

straightforward.

By the assumptions 1 and 2, we can write our estimation problem as:

E[Hr(N r)− ϕ(Na)− P r|Zr] = 0

From now on, for ease of presentation we will work with operators. Let us define the

following operator:

T r : Er =
{
L2
Nr × L̃2

Na

}
7→ L2

Zr : T r(Hr, ϕ) = E[Hr − ϕ|Zr]

where

L̃2
Na =

{
ϕ ∈ L2

Na : E(ϕ) = 0
}

We use this projected space in order to satisfy the normalization assumption for identifica-

tion, Assumption 5. Without this constraint on the space we cannot identify the function

ϕ. The inner product is defined as:

〈(Hr
1 , ϕ1), (H

r
2 , ϕ2)〉 = 〈Hr

1 , H
r
2〉+ 〈ϕ1, ϕ2〉

The adjoint operator of T r, T r∗ satisfies:

〈T r(Hr, ϕ), ξ〉 = 〈(Hr, ϕ), T r∗ξ〉

for any (Hr, ϕ) ∈ Er and ξ ∈ L2
Zr . From the equality above it follows immediately that

T r∗ξ = (E[ξ|N r],PE[ξ|Na])

where P is the projection operator.4

Now we can rewrite our estimation problem using the operator notation:

T r(Hr(N r), ϕ(Na)) = f r (14)

where f r = E(P r|Zr) . This equation is a Fredholm integral equations of the first kind

and the solution needs the inversion of the operator T r. Thus it causes an ill-posed inverse

problem. More precisely, this equation violates one of the definitions of the well-posedness

4It should be noted that we make a normalization, we need a projection of the non-normalized function
on the normalized space. See Florens and Sokullu (2012).
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of a problem.5 The solution does not continuously depend on the data, so it is unstable.

The reason is that the operator T r has infinitely many eigenvalues in the neighborhood of

zero, which makes (T r)−1 discontinuous. As a result, a very small change in the value of f r

may lead the solution to explode. Intuitively, in the finite dimensional case, this situation

amounts to having a matrix M with zero eigenvalues and thus noninvertable.

To solve this ill-posed problem, we need to regularize it, i.e., we need to modify the

operator such that the solution is not unstable, and such that this amount of modification

approaches to zero as the sample size increases. For this, we choose the Tikhonov Regu-

larization scheme. Basically, under this regularization scheme, the norm of the solution is

controlled by a penalty term, γ, which is called regularization parameter. The Tikhonov

Regularization requires the inversion of an n-by-n matrix, where n is the sample size, so it

is not practical to use with very large samples. Since we have a relatively small sample, we

use this scheme which is easier to apply in our case. The ill-posed inverse problem literature

offers other regularization schemes, as well. See Carrasco et al. (2007) and Carrasco (2008).6

The regularized solution to the identifying relation in (14) is given by the following

minimization program:

min
Hr,ϕ
‖T r(Hr, ϕ)− f r‖2 + γrn ‖(Hr, ϕ)‖2

where γrn > 0 and γrn converges to zero at a suitable rate. Hence,

(Hr(N r), φ(Na))′ = (γrnI + T r∗T r)−1T r∗f r (15)

where I is the identity operator in L2
Nr × L2

Na . We can write the solution in (15) as follows:

(γrnI + T r∗T r)(Hr(N r), φ(Na)) = T r∗f r

Equivalently:(
γrnH

r + E [E(Hr|Zr)|N r]− E [E(ϕ|Zr)|N r]

−γrnϕ+ PE [E(Hr|Zr)|Na]− PE [E(ϕ|Zr)|Na]

)
=

(
E[E(P r|Zr)|N r]

PE[E(P r|Zr)|Na]

)
(16)

To explain the implementation of the defined method, suppose that we have an i.i.d.

5As defined in Engl et al. (1996), a problem is well-posed if the definitions below hold:
(i) For all admissible data a solution exist.
(ii) For all admissible data the solution is unique.
(iii) The solution continuously depends on the data.

6For large samples, instead of Tikhonov Regularization, Landweber-Friedman Regularization can be used,
which is an iterative scheme and does not require the inversion of an n-by-n matrix.
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sample of (N r
i , N

a
i , P

r
i , P

a
i , Zi), i = 1, .., n. As we do not know the true distribution of our

variables, we need to replace the conditional expectations with their empirical counterparts.

The multivariate kernel that is used in the implementation is defined as follows (See Florens

et al., 2009):

Definition 1 For all w = (w1, ..., wq) ∈ Rq, K is a multiplicative kernel of order τ , i.e.,

K(w) =
∏q

j=1 g(wj) where g is a univariate, continuous, bounded function such that∫
g(u)du = 1

∫
ujg(u)du = 0

for all j = 1, ..., τ − 1, and there exist two finite constants sτK and CK such that∫
uτg(u)du = sτK ,

∫
g(u)2du = CK

Then we can rewrite the system of equations with kernels. For the system in (16), let AZr

be the matrix whose (i,j)th element is:

AZr(i, j) =
KZr,hZr

(
Zr
i − Zr

j

)∑
jKZr,hZr

(
Zr
i − Zr

j

)
Let ANr and ANa be the matrices with the (i,j)th elements:

ANr(i, j) =
KNr,hNr

(
N r
i −N r

j

)∑
jKNr,hNr

(
N r
i −N r

j

)
ANa(i, j) =

KNa,hNa

(
Na
i −Na

j

)∑
jKNa,hNa

(
Na
i −Na

j

)
for some bandwidth parameters hNr , hNa and hZr . Moreover let Ap be the matrix with n−1

n

on the diagonal and − 1
n

elsewhere. We can rewrite the system in (16) as:(
γrnĤ

r + ANrAZrĤr − ANrAZr ϕ̂

−γrnϕ̂+ ApANaAZrĤr − ApANaAZr ϕ̂

)
=

(
ANrAZrP

r

ApANaAZrP
r

)

Then the estimated functions are given by:(
Ĥr

ϕ̂

)
=

(
γrnI + ANrAZr −ANrAZr

ApANaAZr −(γrnI + ApANaAZr)

)−1(
ANrAZrP

r

ApANaAZrP
r

)
(17)

Equation (17) is a system of 2n equations in 2n unknowns which means that we can recover
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Ĥr and ϕ̂, hence Ŝr. For the estimation of the second equation of our system the procedure

is exactly the same and Ĥa and ψ̂ are given by:(
Ĥa

ψ̂

)
=

(
γanI + ANaAZa −ANaAZa

ApANrAZa −(γanI + ApANrAZa)

)−1(
ANaAZaP

a

ApANrAZaP
a

)
(18)

3.4 Consistency and Rate of Convergence

Consistent estimation of the functions of interest depends on the consistent estimation

of the defined operators T r∗T r and T r∗f r (and for the second equation T a∗T a and T a∗fa).

To prove the consistency, we are going to make a set of assumptions about the operators.7

Assumption 8 Source Condition: There exists ν > 0 such that:

∞∑
j=1

〈Φ, φj〉2

λ2νj
<∞

where Φ = (Hr, ϕ), {λj, φj, ψj} is the singular system of operator T r.8,9

With this assumption we can define a regularity space for our functions. In other words,

we can say that the unknown value of Φ0 = (Hr
0 , ϕ0) belongs to the space Ψν where

Ψν =

{
Φ ∈ Er such that

∞∑
j=1

〈Φ, φj〉2

λ2νj
<∞

}

In fact, assuming that Φ0 ∈ Ψν just adds a smoothness condition to our functional parameter

of interest. It amounts to assuming that the functions Hr and ϕ have regularity ν > 0.10

This regularity captures both the properties of solution of Φ and the operator T r, for that

reason, in Hall and Horowitz (2005) and Horowitz (2009), two different assumptions are

made instead of using the source condition. As was pointed out by Carrasco et al. (2007),

this regularity assumption will give us an advantage in calculating the rate of convergence

of the regularization bias.11

7In this part we continue to present our results based on the first equation of the demand system, namely,
for Hr and ϕ, everything holds for the second equation, too.

8Moreover, we can write our source condition in a more explicit way as
∑∞
j=1

[〈Hr,φj1〉+〈ϕ,φj2〉]2
λ2ν
j

<∞.
9For singular value decomposition, see Carrasco et al. (2007).

10In Assumption 8, we assume that the functions Hr and ϕ belong to the same regularity space. Analysis
with functions with different regularities is very complicated and left for future work.

11Tikhonov Regularization do not allow for regularity ν > 2 (See Engl et al., 1996), for that reason in the
analysis of convergence rate we are constrained by ν ≤ 2.
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Assumption 9 There exists s ≥ 2 such that:

•
∥∥∥T̂ r − T r∥∥∥2 = O

(
1
nh3n

+ h2sn

)
•
∥∥∥T̂ r∗ − T r∗∥∥∥2 = O

(
1
nh3n

+ h2sn

)
where s is the minimum between the order of the kernel and the order of the differentiability

of the joint density function of (N r, P r, Zr).

Assumption 10 ∥∥∥T̂ r∗f̂ r − T̂ r∗T̂ rΦ∥∥∥2 = O

(
1

n
+ h2sn

)
Assumption 11

lim
n→∞

γrn = 0

lim
n→∞

(γrn)2n→∞

ν ≥ 2 or lim
n→∞

(γrn)2−νnh3n →∞

lim
n→∞

hn = 0

lim
n→∞

h2sn
(γrn)2

= 0

lim
n→∞

nh3n →∞

Assumptions (9) and (10) are assumptions on the rate of convergence of the operators.

In fact, they can be obtained by imposing more primitive assumptions but here we do not go

through this process. Assumption (11) presents the conditions needed to get the consistency.

Theorem 4 Define Φ = (Hr(N r), ϕ(Na)). Let s be the minimum between the order of

the kernel and the order of the differentiability of f and ν be the regularity of Φ. Under

assumptions 8 to 11:

•
∥∥∥Φ̂γn

n − Φ
∥∥∥2 = O

(
1
γ2n

(
1
n

+ h2sn
)

+ 1
γ2n

(
1
nh3n

+ h2sn

)(
γ
min{ν,2}
n

)
+ γ

min{ν,2}
n

)
•
∥∥∥Φ̂γn

n − Φ
∥∥∥→ 0 in probability.

The speed of convergence given in Theorem (4) can not be considered as optimal without

any further assumptions. However, under some assumption on γ and s, the minimax rate is

attainable. Corollary (5) states this.

Corollary 5 Under assumptions 8 to 11, if:
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• ν < 2 and s ≥ 3
2
ν+3
ν+1

,

or if:

• ν ≥ 2 and s > 3,

Then, for γ ∼ n−
1

min{ν,2}+2 , there exist bandwidth choices satisfying the minimax rate:12∥∥∥Φ̂γn − Φ
∥∥∥2 = OP

(
n−

min{ν,2}
min{ν,2}+2

)
3.5 Empirical Analysis of German Magazine Industry

In this section we make an application of the nonparametric estimation defined in the

previous section. Using the specification in Section 3.1 and data on the German magazine

industry, we estimate the network effect functions nonparametrically. Estimation results

show that the model is supported by the data, since we managed to get well-behaved demand

functions without imposing any constraint on estimation. The found network effects are

neither linear nor monotone.

3.5.1 Data

We use a data set on the magazine industry from Germany which is available online at

www.medialine.de. It is an annual data on cover prices, ad prices, number of ad pages, num-

ber of content pages, and circulation numbers of German magazines for the year 2009.13 The

original source of their data is the Informationsgemeinschaft zur Feststellung der Verbreitung

von Werbetragern e.V. This association ascertains, monitors and publishes information on

magazine dissemination and circulation.

The unit of observation in our sample is a magazine and we have information on 171

magazines. In the original data set the magazines are grouped according to their content

such as actuality, DIY, women’s, parents, tv, etc. Our sample consists of magazines from

17 different segments. Table (1) shows how our sample is divided into different segments.

18% of the magazines in our data set belong to the weekly women’s magazines segment and

this is the most frequent segment in our sample. The least frequent segments are DIY and

animals each comprising 1.7% of the observations.

The magazines in our sample are published by 25 different publishers. Some of the

publishers own magazines only in one segment while some others are publishing for several

12Darolles et al. (2011) show that under the maintained assumptions, the rate we obtain is a minimax
rate.

13The initial data set is quarterly, but we annualize it as the cover prices do not change within a year and
ad rate data is supplied annually by the website.
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Table 1: Magazine groups in the data

Group of Magazine Number of titles Percentage

Women’s weekly 32 18.71
Women’s monthly 17 9.94
TV 16 9.36
Gardening 13 7.60
Actuality 12 7.02
Photo-electronics-PC 11 6.43
Cars and Motors 11 6.43
Food 10 5.85
Economics 9 5.26
Music and Youth 8 4.68
Science-Geography 8 4.68
Life style-adult-erotic 6 3.51
Parents 6 3.51
Women’s bimonthly 4 2.34
Sports 4 2.34
Do-it-yourself 2 1.17
Animals 2 1.17

TOTAL 171 100

different segments. Table (2) shows the publishers of the magazines in our data set. The most

dominant publishers in the industry are Bauer Media Group, Hubert Burda Media, Gruner

and Jahr and Axel Springer, publishing 19.3%, 18.1%, 11.7% and 9.9% of the magazines in

our data set, respectively.

We assume that the advertisements are all the same size: one page. The mean advertising

rate for the sample we use is 16, 701 Euros per ad, while the maximum and minimum rates are

highly different from this mean value, at 64, 004 and 1, 450 Euros respectively. In contrast,

the cover price range is not that wide. It has a minimum value of 0.45 Euros, a maximum

value of 7.95 Euros and the average price is 2.61 Euros. In the data, the average circulation

is 1, 273, 800, the average number of ad pages is 543 and the average number of content

pages is 2199 per year.14 We also check the share of ad pages to total pages and the share

of ad pages to content pages. The average share of ad pages to total pages is 20% while

the average share of ad pages to content pages is 26.59%. Two magazines in the monthly

women’s magazines group, Cosmopolitan and InStyle have ad pages to content pages ratios

larger than 1, showing the importance of adverts in women’s magazines.

The share of readers is constructed by dividing the circulation of a given magazine by the

population over the age of 14. For the share of advertisers, since we do not have the data on

14Circulation rate is composed of the following items: Copies delivered for retail sale, copies for subscribers,
copies of the board, reading circle, other sales, free copies. Unsold copies are deducted from the sum of these
items.
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Table 2: Magazine groups in the data

Publisher Number of titles Percentage

Bauer Media Group 33 19.30
Hubert Burda Media 31 18.13
Gruner & Jahr 20 11.70
Axel Springer AG 17 9.94
Klambt Verlag 9 5.26
Gong Verlag 6 3.51
Jahreszeiten-Verlag 6 3.51
Motor-Presse-Stuttgart 6 3.51
Westdeutscher Zeitschriften-Verlag 5 2.92
Vision Media 4 2.34
Bayard Media 3 1.75
CHIP Communications 3 1.75
Cond Nast Verlag 3 1.75
MVG Medien Verlagsgesellschaft 3 1.75
Delius Klasing Verlag 2 1.17
Egmont Verlag 2 1.17
Family Media 2 1.17
Finanzen Verlag 2 1.17
IDG Enterainment Media 2 1.17
In Verlag 2 1.17
Jahr Top Special Verlag 2 1.17
Konradin Medien 2 1.17
SPIEGEL-Verlag Rudolf Augstein 2 1.17
Verlagsgruppe Handelsblatt 2 1.17
Weka Media Publishing 2 1.17

TOTAL 171 100.00

the total number of firms which use the magazines as an advertising medium, we construct

it by taking the ratio of the number of ad pages to the total number pages of all magazines

in a given segment. We assume that the market size for advertisements is the total number

of pages of the magazines in a given segment. For example, for women’s weekly magazines

the market size is the sum of the number of pages of all women’s weekly magazines.

In reality, a magazine with a high share of advertisers has generally a high share of ad

pages over total pages. We check the correlation between our constructed market share

and the ratio of ad pages over total pages and find that they are highly correlated with a

correlation coefficient equal to 0.6. So, the magazines with a greater market share of adverts

has generally greater ad page to total page ratio. Although an increase in advertising may

decrease the cover price, it may also have a ”congestion” effect for the readers. We check the

correlation of cover price and share of advertisers and find that it is equal to 0.27. Although

it is not high, its positive sign may reflect the fact that the two sides in our sample appreciate
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each other. In other words, readers are enjoying seeing adverts and the magazine is exploiting

this fact.

Table 3: Summary Statistics of the data

Variable Mean Std Dev. Min Max

No. of Circulation 1273800 1467978 66039 9601297
No. of Ad pages 543.38 496.23 5 2664.1
No. of Content pages 2199.96 1405.99 79 6235.5
Cover price 2.61 1.57 0.45 7.95
Adrate 16701.38 11764.83 1450 67004
Ad pages/Total pages 0.20 0.09 0.04 0.52
Ad pages/ Content pages 0.2659931 0.1813923 0.0474383 1.10498

Remark 6 We have a sample with 171 observations to estimate our model nonparametri-

cally. In Appendix C, we present a simulation to show that the estimation method we propose

performs well with a sample of 170.

3.5.2 Estimation

In this section we estimate the network externality functions ϕ(.) and ψ(.) as well as the

inverse survival functions Hr(.) and Ha(.).15 We adopt the estimation technique defined in

Section 3.3. Let us rewrite the system of equations that we estimate:

Hr(N r) = ϕ(Na) + P r + U (19)

Ha(Na) = ψ(N r) + P a + V (20)

where N r is the share of readers who read the magazine, Na is the magazine’s market share

of advertisers as defined in the previous subsection, P r is the cover price, and P a is the

advertising rate.16 Moreover, U and V are unobserved magazine characteristics.

All the explanatory variables in equations (19) and (20) are endogenous, so we need to

use instruments. Following Kaiser and Wright (2006), we instrument the cover price with

the average cover price of the publisher’s other magazines. We assume that the common

underlying costs will affect the cover price of all other magazines of the same publisher while

they are going to be uncorrelated with the disturbances in a particular magazine’s demand

15It should be noted that our main object is to estimate network effect on each side nonparametrically.
For this reason, we give our attention to the functions of interest, ϕ and ψ, and leave a more complex analysis
for future work.

16As already stated in Section 2, the reason to use the market share of the magazines on the advertisers’
side instead of other measures of the advertising amount is to have a fully simultaneous system. We check
robustness of our results by using other measure and find that the estimated ϕ is quite robust.
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equation. We instrument the ad rate with the number of titles of the publisher. It is assumed

that the number of the titles of the publisher will be correlated with the ad rate through its

effect on cost factors via economies of scale. Moreover, again following Kaiser and Wright

(2006), the share of readers in the advertising demand equation is instrumented with the

average circulation rate of the publisher’s other magazines and the share of advertisers in

the reader demand equation is instrumented with the average number of advertising pages

of the publisher’s other magazines. We check the correlation of our instruments with the

explanatory variables and they are all found to be reasonably correlated.

We use a rule of thumb to construct the bandwidth parameters. The regularization pa-

rameters γrn and γan are chosen by the data-based selection rule of regularization parameter

proposed in Florens and Sokullu (2012). Furthermore, since the survival function is mono-

tonic, we monotonized our functions both by isotonisation and by rearrangement, after the

estimation.17 We report the results where the monotonization is done by rearrangement since

it gives better results for the monotonization of probability distribution functions compared

to other existing methods, as is pointed out by Chernozhukov et al. (2010). Finally, we

construct pointwise bootstrap confidence intervals for the estimated functions. We obtain

the confidence interval with 100 replications of bootstrap in pairs.18 In estimation with the

bootstrapped data, the values of the regularization and bandwidth parameters are fixed at

the levels that we use in the original estimation.

The results are given in Figures (2) to (11). Figures (2) and (3) present the estimation

results without monotonization. Figures (6) to (11) show the pointwise bootstrap confidence

intervals for the estimated functions. First of all, it is worth noticing that even without

monotonization, the estimated functions Ĥr and Ĥa seem to be downward sloping. We

know that the survival function is decreasing and so is its inverse. The fact that we are able

to obtain decreasing estimated functions without any restriction proves that the model is

supported by the data. More concretely, the model we set up to explain the demand and the

network externality in the German magazine industry fits the data very well. Figures (4) and

(5) show that these results can be improved by monotonization by rearrangement. Moreover,

obtaining well behaved inverse survival functions with our estimation method demonstrates

also the strength of the method.

Secondly, the estimated network externality functions do not exhibit the same pattern.

While the network externality function of advertisers on readers is nonlinear and nonmono-

tone, the network externality function of readers on advertisers seems quite linear. The

17For isotonisation and rearrangement, see Chernozhukov et al. (2009).
18Bootstrap in pairs is performed by resampling the data directly by replacement. We do bootstrap in

pairs since all the explanatory variables in the model are endogenous. (See Freedman, 1981; Flachaire, 2005;
Horowitz, 2001)
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network effect of advertisers, ϕ is linear and decreasing up to 4% of ad share. Up to 1.5%

ad share it takes positive values, and after that point, it takes negative values. In our set

up, the share of agents joining the platform is given by the survival function of their net

benefits and the survival function is decreasing in its arguments. So, it means that, up

to an advertiser share of 1.5%, increasing share of advertiser in a magazine, increases the

threshold benefit level and thus decreases the survival function. Hence the readers of the

magazines in our sample do not like too few advertisements. They start to get benefit after

1.5% market share of the advertisers. This benefit keeps increasing until 4% and after that

point it starts decreasing. So the benefits that the readers get from adverts starts to decrease

after a threshold point, as expected. Our result are consistent with the previous literature.

Borsenberger et al. (2010), Kaiser (2007) and Kaiser and Song (2009) conclude that readers

of entertainment magazines like advertisements, however we also show that they do not like

too few advertisements. Although this may sound strange, considering the fact that readers

appreciate informative ads, this result means that they are not satisfied with too little infor-

mation. An example can be given from the Monthly high-price women’s magazines. Readers

of these magazines would not be satisfied to see just the ad of one product of one fashion

brand, but they would like to see the ads of other brands and of other products.

On the other side of the market, when we look at the estimated curves for the advertiser

demand, figure (5), again we see that the network externality function ψ of readers changes

its sign over the interval. Up to a readership share of 20%, ψ takes positive values meaning

that it decreases the survival function. However, after 20%, the benefits of advertisers are

increasing with the share of readers. So, we can conclude that advertisers do not benefit from

advertising in a magazine with a very low level of readership. Another point worth noting

is that, contrary to ϕ this network effect function follows a linear pattern. The benefit of

advertisers keeps increasing with the readership of the magazine once it passes the threshold

level.

Our results for both sides are intuitive. To give an example, women’s magazines are

mostly read for the advertisements they include and the adverts in these magazines are

informative, see Kaiser and Song (2009). A women’s magazine with the advertisement of

only one brand and one type of product would not be appreciated by its readers. So, these

magazines can have a large share of advertisements and at the same time charge high prices to

their readers. ”Vogue” is a perfect example of this. It is a highly priced women’s magazine

with a high level of advertising pages. The story holds for other types of entertainment

magazines, as well. Readers of a photography magazine are interested in the ads of new

products for photography, similarly readers of gardening magazines are interested in the

ads of new gardening products. So, the readers of entertainment magazines would not be
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disturbed by seeing advertisements since ads have informative value for them. Furthermore,

advertisers would not be interested in advertising in a magazine with low level of readership,

since their aim is to reach as many people as they can.

We conduct three more estimations to check the robustness of our results: (i) We es-

timate the reader demand using adpages/totalpages as the explanatory variable instead of

market shares of advertisers; (ii) we estimate both demands with a subsample which includes

women’s, tv, sports, gardening, food, music & youth and cars & motors magazines; and (iii)

we estimate both demands with a subsample which excludes women’s, tv and animal mag-

azines.19 We present the results in Appendix D. Results of all three estimations expose the

same patterns such that the network effect functions of advertisers on readers are found to

be nonlinear and the network effect functions of readers on advertisers are found to be linear.

4 Empirical Analysis of the Magazine Industry : A

Parametric Approach

In this section we estimate the model for the magazine industry parametrically. When

we make the parametric specification of network effect functions, we take into account the

results obtained with our nonparametric specification. Using the same set of explanatory

variables, we estimate the system of equations in (8) and (9) simultaneously using GMM.

The results we obtain are consistent with the results of the nonparametric estimation.

4.1 Model Specification

To do our analysis with a parametric model, we need to do some specifications for the

demand system given by equations (8) and (9). We need to specify (i) a distribution func-

tion for the net benefits of readers and advertisers, (ii) a functional form for the network

effects, ϕ(.) and ψ(.) and (iii) a functional form for the threshold benefit level of readers and

advertisers.

• For the distribution of net benefits, we have chosen the log-logistic distribution function

which is common in the literature of network diffusion models, see Larribeau (1993);

Feve et al. (2008) Thus, the survival function will be given by:

S(X|m, ρ) =
1

1 + ( x
m

)ρ

19We have only two observations from animal magazines and one of it having a very high market share
on the advertising side.
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where m is the scale parameter and ρ is the shape parameter. These parameters can

be estimated in advance or during the estimation of the other parameters. In this

chapter, we assume that both m and ρ are equal to 1. Larribeau (1993) assumes that

ρ is constant over time while m varies and she estimates both of the parameters before

estimating the demand equations. On the other side, Feve et al. (2008) assume that

they are constant and are equal to 1. For simplicity and without loss of generality, we

also assume that both parameters are equal to 1.

• Secondly, we need to approximate the unknown functions ϕ(.) and ψ(.) by some para-

metric form. To do this, we use our nonparametric estimation results. We choose

second order polynomial form for both reader and advertiser demand equations. Thus:

ϕ(Na) = α0 + α1N
a + α2(N

a)2

ψ(N r) = θ0 + θ1N
r + θ2(N

r)2

Taking into account the result of nonparametric estimation of advertiser demand, ob-

taining an insignificant estimate for θ2 would not be surprising.

• Finally we need to choose a functional form for the threshold net benefit levels of the

two sides. We decide to use an exponential function which will make the threshold

benefit level nonnegative:

br = f(Na, Xβ, U) = exp(ϕ(Na) +Xβ + U)

equivalently for the advertisers’ side:

ba = f(N r,Wγ, V ) = exp(ψ(N r) +Wγ + V )

Now, we need to specify the explanatory variables X and W . To be consistent with the

nonparametric analysis, we used the same explanatory variables, cover price and ad rate of

the magazines.

Then our simultaneous demand system to be estimated becomes:

N r =
1

1 + exp(α0 + α1Na + α2(Na)2 + βP r + U)
(21)

Na =
1

1 + exp(θ0 + θ1N r + θ2(N r)2 + γP a + V )
(22)
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4.2 Estimation

Using the specification above, we estimate the demand equations, (21) and (22) simul-

taneously by GMM. As we have mentioned before, to be consistent with the nonparametric

estimation, we use just one explanatory variable in each equation, cover price and ad rate.

Since, the prices, and the share of agents in each side is endogenous, we use instruments. The

instruments for cover price and ad rate are the same as in the nonparametric analysis. So, we

instrument them with the average cover price of the same publisher’s other magazines and

the number of titles published by the own publisher, respectively. For the share of readers

and advertisers, we do not change the instruments, either, but we also use the competitors’

averages.20 Moreover, following Kaiser and Wright (2006), we use the natural logarithm of

the number of magazine titles published by the same publisher and the natural logarithm of

the total number of pages published by the same publisher. These are also assumed to be

cost side instruments for cover prices and ad rates, while the latter is a proxy variable for

the returns to scale, the former is considered as a proxy variable for the returns to scope.

Other additional instruments we use are magazine group dummies. P-value of the Hansen’s

J-statistic is reported to be greater than 0.1 so that we can not reject the orthogonality of

instruments and the error terms. The estimation results are given in Tables (4) and (5).

Table 4: Estimation Results for the Reader Demand

Variable Parameter Estimate Standard Error t-stat p-value
constant α0 1.786042 0.2157 8.28 < .0001
share of advertisers α1 -113.34 30.2096 -3.75 0.0002
(share of advertisers)2 α2 819.8798 276.9 2.96 0.0035
cover price β 0.903281 0.2013 4.49 < .0001

Table 5: Estimation Results for the Advertiser Demand

Variable Parameter Estimate Standard Error t-stat p-value
constant θ0 4.243117 0.6937 6.12 < .0001
share of readers θ1 26.64147 9.1254 2.92 0.0040
(share of readers)2 θ2 -25.1534 16.6758 -1.51 0.1333
ad rate γ -0.13 0.016 -8.23 < .0001

For readability, estimated coefficient and standard error of ad rate (γ) is multiplied by 1000.

All of our estimated parameters are significant at 5% level and have the expected sign

in the readers’ demand equation. The fact that the coefficient of (Na)2 is found to be

20Similarly, assuming the fact that the underlying cost factors are the same across the same segments of
the industry, more precisely, across the same magazine groups, Borsenberger et al. (2010), use competitors’
average values of the related variables as the instruments for the endogenous variables.
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significant leads to rejecting the null hypothesis that the network effects are linear. The

coefficient of price is found to be positive, meaning that an increase in the cover price will

increase the threshold benefit function, thus leading to a decrease in demand. The estimated

constant is equal to 1.78 and is significant. It suggests that, a magazine with 0 price and 0

advertising pages will be bought or taken by the 14.5% of the readers. When we examine the

estimated network effect function, ϕ̂, we see that our results are very much in line with the

nonparametric estimate of ϕ. According to the parametric estimation results, the readers

start to get benefit from advertising only after a threshold level of approximately 1.8%.

Moreover, their benefit from adverts is increasing up to around 7% of advertising share, then

it starts to decrease. Note that with nonparametric estimation these values are estimated

to be 1.5% and 4% respectively. In Appendix E, we present the graph of ϕ̂ estimated

parametrically. Moreover, we present a plot which shows parametric and nonparametric

estimates of ϕ in one graph. It can be seen from the graph that the estimated values are

similar with both methods for low levels of advertising share and the curves present almost

the same patterns. According to the nonparametric estimation result, threshold level is

reached at a lower rate of ads. The figure also suggests the possibility of using a third order

polynomial in parametric approximation.

For the advertising demand equation, all of the estimated parameters, except the coeffi-

cient of (N r)2, are significant at 5% level. The estimated coefficient of (N r)2 is insignificant,

so we fail to reject the null hypothesis that the network effect of readers are linear. Indeed

this result is also in line with what we obtained in Section 3.5.2. However the estimated

coefficients of ad rate and the readership share do not have the expected sign. According

to the results, advertiser demand is decreasing in readership share and increasing in price

of adverts. This counter-intuitive result may stem from incorrect functional approximations

which brings us again to the debate of parametric vs. nonparametric estimation.

5 A Numerical Illustration

In this section we present a numerical example to demonstrate the importance of a correct

specification of the network effects. To do this we perform two parametric estimations. In

the first one the network effect function in reader demand is specified as a second order

polynomial (Equation 21) and in the second one it is specified linearly as in equation (23)

below. The network effect function in advertiser demand is specified linearly (Equation 24)

in both models since we fail to reject linear network effects for advertisers in the previous

section. Thus, the first model is given by equations (21) and (24) and the second model is
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given by equations (23) and (24):

N r =
1

1 + exp(α0 + α1Na + βP r + U)
(23)

Na =
1

1 + exp(θ0 + θ1N r + γP a + V )
(24)

We estimate the equations in each model simultaneously by GMM and we use the same

set of instruments as in the previous section for both models. The estimation results are

presented in Tables (6) and (7) in Appendix E. All the estimated parameters are significant

at 5% level. For both of the models, readers are found to be ad-lovers and an increase in the

price levels of magazines decreases the reader demand. On the other side of the market, the

results for the advertiser demand are again counter-intuitive.

We use the estimated parameters from both models to compute the mark-ups given in

equations (6) and (7) at the mean values of demands.21 We find that for the readers’ side

the mark-up estimated with linear network effects in 27% lower than the mark-up estimated

with nonlinear network effects. For the advertisers’ side, it is estimated 7% higher in the

linear case.

This numerical illustration shows the importance of functional specifications in empirical

analysis and that an analysis which is done under wrong specification will lead to erroneous

conclusions. This is especially important from a regulatory point of view. If the analysis in

the Argentesi and Filistrucchi (2007) is considered, where they analyze the market power of

Italian newspapers, an error coming from this type of specification may reverse their results.

The collusive behavior on the reader side would have been found to be competitive and/or

the competitive behavior on the advertising side would have been found to be collusive if

the network effects were allowed to be nonlinear.

6 Conclusion

This paper has developed a semi-nonparametric empirical model for two sided markets.

We specify the network externalities nonparametrically to be able to capture the nonlinear-

ities. The distribution functions of benefits of readers and advertisers are not specified and

are left to be estimated, as well. The model is estimated with nonparametric IV estimation.

We get two main results: First of all, the structural model is supported by the data since

21Although the results we obtain imply that the advertisers do not like readers so that they are subsidized
by readers, since we are doing this exercise for illustrative purposes only, we think that we can still use the
results.
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we obtain well behaved demand curves by nonparametric instrumental variables estimation

without any restriction. Secondly, network effects on the readers’ side are nonlinear and

nonmonotone.

Using our nonparametric estimation results, we make parametric approximations for the

network effect functions and re-estimate the model by GMM. We find that with a second

order polynomial specification for the network externality function on the reader side, we

get very close to what we have obtained in nonparametric estimation.

This paper has many contributions. First of all, the nonparametric estimation method

is a contribution as an extension to Florens and Sokullu (2012). Secondly, nonparametric

specification and nonparametric tools have never been used in empirical two sided markets

literature. Finally, it proves both by nonparametric and parametric estimations that the

network effects in magazine industry are neither linear nor monotone. This result indeed

may have important implications for policy analysis.

The estimations in the paper are done with cross-sectional data so a natural extension,

nonparametric analysis with panel data is left for future work. Moreover, there is still

no dynamic work in the empirical two sided market literature. A dynamic model based

on network diffusion models is also a very interesting future research topic. Finally, the

estimation method presented in this chapter can be applied to any industry with network

externalities.
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Appendices

A A Discussion on Nonseparable Case

In Section 3 we discuss the identification and estimation of a semi-nonparametric model.

We present the identification, estimation and consistency of the model in equations (10) and

(11), where the threshold benefit function, bi, i ∈ {r, a} is specified partially linear. In this

section, we discuss the nonseparable case. More concretely, the case where we do not specify

any form for bi and we just assume that the survival functions of the readers’ and advertisers’

benefits are functions of (Na, P r, U) and (N r, P a, V ), respectively. Before going into details

of identification and estimation of a nonseparable model, let us state why we do not use this

nonseparable model in our empirical analysis. First of all, our aim in this paper is to identify

the network externality functions of the two sides that they exert on each other and a fully

nonparametric nonseparable specification would not allow us to estimate ϕ and ψ. Secondly,

the assumptions needed for the identification of our model is weaker and easier to satisfy

than the nonseparable model. For example, conditional mean independence between U and

Zr and V and Za is enough for the identification of our model, whereas, for the nonseparable

case full independence is needed. Finally, the estimation of the nonseparable case leads to a

nonlinear ill-posed inverse problem which is much harder to deal with. Since the results we

obtain with our model makes sense and since the method is easy to apply, we decide to use

that one for our application.

Let us now rewrite the system of equations in (10) and (11) under the nonseparable

framework:22

N r = Sr(Na, P r, U) (25)

Na = Sa(N r, P a, V ) (26)

The two main assumptions for the identification of nonseparable models are (i) the inde-

pendence of U and Zr and V and Za, and (ii) the strict monotonicity of Sr in U and Sa

in V . By its set up, our model satisfies these two assumptions. The identification results of

this type of a model are already studied in Chernozhukov et al. (2007). Chernozhukov et al.

(2006) examines estimation with Tikhonov Regularization and asymptotic properties of the

same model.

Under the construction of nonseparable model we can identify (i) the network effect of

one side on a particular quantile of the other side, namely, quantile treatment effect, and (ii)

22It should be noted that, in this case we no longer need the ϕ(.) and ψ(.) functions, as we do not make
any specification for bi, i ∈ {r, a} .
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network effects on the whole distribution (average structural function). However as already

mentioned such a specification would not allow us to identify separate functional forms for

the network externalities.

B Proofs of Theorems

B.1 Theorem 1

Proof. We will present the proof just for the reader side equation as the proofs are the

same. By Assumptions (1) and (2)

E[Hr(N r)− ϕ(Na)− P r|Zr] = 0

Let us recall two more functions Hr∗(N r) and ϕ∗(Na). By Assumption (2) again, we can

write:

E[Hr(N r)− ϕ(Na)− P r|Zr] = 0 E[Hr∗(N r)− ϕ∗(Na)− P r|Zr] = 0

If we take the difference of the two expectations:

E[(Hr(N r)−Hr∗(N r))− (ϕ(Na)− ϕ∗(Na)) + (P r − P r)|Zr] = 0

then by Assumption (3):

(Hr(N r)−Hr∗(N r))− (ϕ(Na)− ϕ∗(Na)) = 0

finally by Assumption (4):

(Hr(N r)−Hr∗(N r)) = (ϕ(Na)− ϕ∗(Na)) = c

and by Assumption (5):

c = 0

then:

Hr(N r) = Hr∗(N r) and ϕ(Na) = ϕ∗(Na)
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B.2 Theorem 2

Proof. Assumption (1) guarantees the existence of the structural inverse system of differ-

entiable functions gr and ga that satisfy:

U = gr(N r, P r, Na) and V = ga(Na, P a, N r)

and

N r = Sr(Na, P r, gr(N r, P r, Na)) and Na = Sa(N r, P a, ga(Na, P a, N r))

By Assumption (6), we can differentiate these equations with respect to N r and Na to get:(
1 0

0 1

)
=

(
∂Sr

∂U
∂gr

∂Nr
∂Sr

∂ϕ
∂ϕ
∂Na + ∂Sr

∂U
∂gr

∂Na

∂Sa

∂ψ
∂ψ
∂Nr + ∂Sa

∂V
∂ga

∂Nr
∂Sa

∂V
∂ga

∂Na

)
(27)

so:

• ∂Sr

∂U
∂gr

∂Nr = 1 ⇒ ∂Sr/∂U = (∂gr/∂N r)−1

• ∂Sr

∂Na = −∂Sr

∂U
∂gr

∂Na

• ∂Sa

∂Nr = −∂Sa

∂V
∂ga

∂Nr

• ∂Sa

∂V
∂ga

∂Na = 1 ⇒ ∂Sa/∂V = (∂ga/∂Na)−1

Then we can write

• ∂gr/∂N r = (∂Sr/∂U)−1 < 0

• ∂ga/∂Na = (∂Sa/∂V )−1 < 0

• ∂gr/∂Na = −(∂Sr/∂Na)(∂Sr/∂U)−1

• ∂ga/∂N r = −(∂Sa/∂N r)(∂Sa/∂V )−1

By Assumption (7), this implies, (∂gr/∂Na)(∂ga/∂N r) < 0. Then it follows from Theorem

7 of Gale and Nikaido (1965) that the function F (N r, Na) = (Sr(.), Sa(.)) is univalent and

hence there exist unique functions hr and ha such that for given P r, P a and for all U and V :

U = gr(hr(P a, P r, U, V ), ha(P a, P r, U, V ), P r)

V = ga(hr(P a, P r, U, V ), ha(P a, P r, U, V ), P a)
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B.3 Theorem 4

Proof. Remember that the solution of our problem was given by

Φ = (γrnI + T r∗T r)−1T r∗f r

• For the proof of the rate of convergence, following Darolles et al. (2011), we decompose

Φ̂γ
n − Φ into three parts. Then we look at the rate of convergence of each part.

Φ̂γ
n − Φ = (γnI + T̂ r∗T̂ r)−1T̂ r∗f̂ r − (γnI + T̂ r∗T̂ r)−1T̂ r∗T̂ rΦ︸ ︷︷ ︸

I

+ (γnI + T̂ r∗T̂ r)−1T̂ r∗T̂ rΦ− (γnI + T r∗T r)−1T r∗T rΦ︸ ︷︷ ︸
II

+ (γnI + T r∗T r)−1T r∗T rΦ− Φ︸ ︷︷ ︸
III

The first term (I) is the estimation error about the right hand side (f r) of the equation,

the second term (II) is the estimation error coming from the kernels and the third term

(III) is the regularization bias coming from regularization parameter γn.

Now, let’s first examine the first term:

I = (γnI + T̂ r∗T̂ r)−1T̂ r∗f̂ r − (γnI + T̂ r∗T̂ r)−1T̂ r∗T̂ rΦ

I = (γnI + T̂ r∗T̂ r)−1T̂ r∗(f̂ r − T̂ rΦ)

‖I‖2 ≤
∥∥∥(γnI + T̂ r∗T̂ r)−1

∥∥∥2 ∥∥∥T̂ r∗f̂ r − T̂ r∗T̂ rΦ∥∥∥2
where the first term is O

(
1
γ2n

)
by Darolles et al. (2011) and the second term is

O
(
1
n

+ h2sn
)

by Assumption (10).

Now, let us look at the second term II:

II = (γnI + T̂ r∗T̂ r)−1T̂ r∗T̂ rΦ− (γnI + T r∗T r)−1T r∗T rΦ

=
[[
I − (γnI + T̂ r∗T̂ r)−1T̂ r∗T̂ r

]
−
[
I − (γnI + T r∗T r)−1T r∗T r

]]
Φ

=
[
γn(γnI + T̂ r∗T̂ r)−1 − γn(γnI + T r∗T r)−1

]
Φ

= (γnI + T̂ r∗T̂ r)−1(T̂ r∗T̂ r − T r∗T r)γn(γnI + T r∗T r)−1Φ
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‖II‖2 ≤
∥∥∥(γnI + T̂ r∗T̂ r)−1

∥∥∥2 ∥∥∥(T̂ r∗T̂ r − T r∗T r)
∥∥∥2 ∥∥γn(γnI + T r∗T r)−1Φ

∥∥2
The first term in (II) is O( 1

γ2n
) by Darolles et al. (2011) while the sec-

ond one is of order O
(

1
nh3n

+ h2sn

)
as a result of relation

∥∥∥T̂ r∗T̂ r − T r∗T r∥∥∥ =

O
(
max

∥∥∥T̂ r − T r∥∥∥ ,∥∥∥T̂ r∗ − T r∗∥∥∥) by Assumption (9) and by Florens et al. (2009).

Finally, the third is equal to O(γ
min{ν,2}
n ) by Darolles et al. (2011).

The third term can be examined more straightforwardly:

III = (γnI + T r∗T r)−1T r∗T rΦ− Φ

= Φγ
n − Φ

and ‖III‖2 = ‖Φγ
n − Φ‖2 is O(γ

min{ν,2}
n ) by assumption 8. Finally if we combine all

what we have:∥∥∥Φ̂γn
n − Φ

∥∥∥2 = O

(
1

γ2n

(
1

n
+ h2sn

)
+

1

γ2n

(
1

nh3n
+ h2sn

)(
γmin{ν,2}
n

)
+ γmin{ν,2}

n

)

• Now we can continue with the proof of the second part of our theorem. To do this,

we will decompose the estimation error into two as estimation bias and regularization

bias:

∥∥∥Φ̂γ
n − Φ

∥∥∥ ≤ ∥∥∥Φ̂γ
n − Φγ

n

∥∥∥︸ ︷︷ ︸
A

+ ‖Φγ
n − Φ‖︸ ︷︷ ︸
B

We know that the regularization bias goes to 0 as γn → 0, so let us examine A:

Φ̂γ
n − Φγ

n = (γnI + T̂ r∗T̂ r)−1T̂ r∗f̂ r − (γnI + T r∗T r)−1T r∗T rΦ

= (γnI + T̂ r∗T̂ r)−1(T̂ r∗f̂ r − T̂ r∗T̂ rΦ)︸ ︷︷ ︸
I

+ γn

[
(γnI + T̂ r∗T̂ r)−1 − (γnI + T r∗T r)−1

]
Φ︸ ︷︷ ︸

II

If we look at A term by term:

‖I‖ ≤
∥∥∥(γnI + T̂ r∗T̂ r)−1

∥∥∥∥∥∥(T̂ r∗f̂ r − T̂ r∗T̂ rΦ)
∥∥∥

the first term is of order O( 1
γn

) by Darolles et al. (2011) and the second term is of order
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O( 1√
n

+hsn) by Assumption (10). So the the first term (I) converges to
(

1
γn

(
1√
n

+ hsn

))
.

II = γn

[
(γnI + T̂ r∗T̂ r)−1 − (γnI + T r∗T r)−1

]
Φ

‖II‖ ≤
∥∥γn(γnI + T r∗T r)−1Φ

∥∥∥∥∥T̂ r∗T̂ r − T r∗T r∥∥∥∥∥(γnI + T r∗T r)−1
∥∥

The first part is of order O(γ
min{ν/2,1}
n ) by Darolles et al. (2011), the second term

is of order O( 1√
nh3n

+ hsn) by assumption 9 and by Florens et al. (2009) and the

last term is smaller than O( 1
γn

). So, the second term (II) of A converges to(
1
γn

(
1√
nh3n

+ hsn

)
γ
min{ν/2,1}
n

)
. Then, we can conclude that

∥∥∥Φ̂γ
n − Φ

∥∥∥ converges to

zero in probability under the conditions of Assumption (11).

B.4 Corollary 5

Proof. To prove Corollary 5, first it should be noted that the nonparametric estimation

of conditional expectations does not cost too much in terms of speed of convergence. More

precisely, the middle term in the convergence rate given in Theorem 4, is negligible in front

of the two other terms. Optimal convergence rate is attained by the choice of optimal

regularization parameter. Hence, it is obtained by equalizing the first and the third term of

the convergence rate:
1

γ2nn
∼ γmin{ν,2}

n ⇒ γn ∼ n−
1

min{ν,2}+2

So, under the maintained assumption that h2sn is of order 1/n, the optimal regularization

parameter is proportional to n−
1

min{ν,2}+2 . Now, we can work on the middle term to complete

the proof. The rate of the middle term is given by:(
1

nh3n
+ h2sn

)
γmin{ν−2,0}
n = O

(
γ
min{ν−2,0}
n

nh3n

)

Under the assumptions 8 to 11 and under the condition that γn ∼ n−
1

min{ν,2}+2 , we can always

find a bandwidth that satisfies:

1

nh3n
= O

(
γ
min{ν,2}
n

γ
min{ν−2,0}
n

)
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1

h3n
=

O
(
n
ν+1
ν+2

)
ifν < 2

O
(
n

1
2

)
ifν ≥ 2

Combining this result with the assumption that h2sn = O (1/n), we can write:

3

2s
≤

ν+1
ν+2

ifν < 2

1
2

ifν ≥ 2

And, this completes the proof.

C A Simulation to See the Small Sample Performance

of the Nonparametric Estimation

In order to show that the nonparametric estimation technique proposed in this paper

performs well with small samples, we present below a simulation. The model considered in

the simulation is:

H(Y ) = φ(X) +W + U

where Y,X,W ∈ R are endogenous and U ∈ R is the error term. H is specified as:

H(Y ) = ln

(
1− Y
0.1Y

)
Moreover φ(X) = X2. U is drawn randomly from a standard normal distribution. We

draw random samples of εx, εw, i1 and i2 from a uniform distribution, U(0, 1). Then the

endogenous variables are constructed as the following:

ηx = −2U + εx

ηw = U + εw

X = i1 + 0.2i22 + ηx

W = −0.1i2 + ηw

The sample size is chosen to be equal to 170 like the sample size of our dataset in the

application. We present below the the real curves (green dots) and the fitted curves (red

pluses) for the Hy(.) and ϕ.
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Figure 1: Simulation for a sample of size 170

D Estimation Results of the Semiparametric Model

Figure 2: Estimated functions for reader demand equation
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Figure 3: Estimated functions for advertiser demand equation
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Figure 4: Estimated functions for reader demand equation after monotonization with rearrange-

ment
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Figure 5: Estimated functions for advertiser demand equation after monotonization with rear-

rangement
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Figure 6: Bootstrap confidence interval for function Hr(N r)
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Figure 7: Bootstrap confidence interval for function ϕ(Na)
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Figure 8: Bootstrap confidence interval for function Ha(Na)
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Figure 9: Bootstrap confidence interval for function ψ(N r)
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D.1 Estimation Results for Robustness Checks

In the first robustness check exercise we use a different definition of ad pages share in

the reader demand equation. We construct a new variable Nar = adpages/totalpages and

estimate the reader demand equation: Hr(N r) = ϕ(Nar) + P r + U .

Figure 10: Reader demand estimation with Nar = adpages/totalpages
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Figure 11: Bootstrap confidence interval for function ϕ(Nar)
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In the second exercise, we construct a subsample that consist of observations from

women’s and hobby magazines, i.e. women’s, tv, gardening, sports, cars and motors, music

and youth, food. We estimate both the reader and advertiser demand functions.

Figure 12: Estimated functions for reader demand equation after monotonization with rearrange-

ment. Estimation done with subsample of women’s and hobby magazines. Sample size=115
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Figure 13: Estimated functions for advertiser demand equation after monotonization with rear-

rangement. Estimation done with subsample of women’s and hobby magazines. Sample size=115
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As a third robustness check, we drop all the observations of women’s and tv magazines

from our sample and estimate the reader and advertiser demand with this new sample.

Figure 14: Estimated functions for reader demand equation after monotonization with rearrange-

ment. Estimation done with subsample without women’s, tv and animal magazines. Sample

size=100
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Figure 15: Estimated functions for advertiser demand equation after monotonization with rear-

rangement. Estimation done with subsample without women’s, tv and animal magazines. Sample

size=100
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E Estimation Results of the Parametric Model

Figure 16: Parametrically estimated ϕ(Na)
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Figure 17: Parametric and nonparametric estimates of ϕ(Na)
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Table 6: Results for the model in equations (21) and (24)

Variable Parameter Estimate Standard Error t-stat p-value
constant α0 1.732 0.214 8.08 < .0001
share of advertisers α1 -117.027 32.26 -3.63 0.0004
(share of advertisers)2 α2 850.027 291.4 2.92 0.004
cover price β 0.941 0.213 4.41 < .0001
constant θ0 5.083 0.347 14.65 < .0001
share of readers θ1 14.623 2.510 5.83 < .0001
ad rate γ -0.00014 0.000013 -10.73 < .0001

Table 7: Results for the model in equations (23) and (24)

Variable Parameter Estimate Standard Error t-stat p-value
constant α0 1.378 0.498 2.77 0.0062
share of advertisers α1 -103.988 41.196 -2.52 0.0125
cover price β 1.296 0.402 3.23 0.0015
constant θ0 5.204 0.442 11.77 < .0001
share of readers θ1 11.198 2.826 3.96 0.0001
ad rate γ -0.00013 0.000016 -7.66 < .0001
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