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Abstract

In this paper we develop a nonparametric estimation technique for semiparametric transfor-

mation models of the form: H(Y ) = ϕ(Z) + X ′β + U where H,ϕ and β are unknown and

the variables (Y, Z) are endogenous. Identification of the model and asymptotic properties

of the estimator are analyzed under the mean independence assumption between the error

term and the instruments. We show that the estimators are consistent and
√
N -convergence

rate for β̂ can be attained. The simulations demonstrate that our nonparametric estimates

fits the data well.
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1 Introduction

In this paper we focus on nonparametric estimation of a semiparametric transformation

model. The model we study is given by the following relation:

H(Y ) = ϕ(Z) +X ′β + U, E[U |X,W ] = 0 (1)

where Y, Z ∈ R are endogenous, X ∈ Rq is exogenous, W ∈ Rp is a vector of instruments

and U ∈ R is the error term. We aim to estimate the functions of interest, H and ϕ,

and the parameter of interest, β, by nonparametric instrumental regression using the mean

independence condition given in (1). We also study the identification of the model and

asymptotic properties of the estimators.

The model given in (1) is a hybrid of transformation models and partially linear models

that both has been studied extensively in econometrics. Transformation models have the

form H(Y ) = X ′β + U . These models have been used in applied econometrics not only to

improve the performance of the estimators but also to help to interpret the model. One well-

known example is Box and Cox (1964) who propose a power transform of the dependent

variable which may lead to normality in a linear regression. Horowitz (1996) gives other

examples such as parametric and semiparametric proportional hazard rate model, log-linear

regression and accelerated failure time models. Transformation models still get a lot of

attention in econometrics, however, examples with nonparametric specifications are rare.

A semiparametric partially linear model can be written as Y = ϕ(Z) + X ′β + U . Use of

partially linear models in applied econometrics is especially common when it is not clear how

to specify the effect of one variable parametrically. Florens, Johannes, and Van Bellegem

(2009) study the estimation of β in Y = ϕ(Z) + X ′β + U . Their main example is the

model of Engle, Granger, Rice, and Weiss (1986) in which the effect of temperature is

specified nonparametrically in the electricity demand. A more recent example for partially

linear specification comes from Bontemps, Simioni, and Surry (2008) where they look at
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the impact of agricultural pollution on the prices of residential houses and use a nonlinear

nonparametric specification for the effect of pollution on the price of houses.

In this paper we study the nonparametric estimation of a semiparametric transforma-

tion model in equation (1) which includes nonparametric specifications on both sides of the

equation. Hence we are extending transformation models to a general case where the trans-

formation of the dependent variable is specified nonparametrically and the right hand side of

the equation includes a parametric as well as a nonparametric part. The equation we propose

to estimate is motivated by the estimation of demand systems in network industries, where

the effect of size of the network on demand can be ambiguous. For a brief illustration, we

consider the example of the magazine market. The magazine market is a two-sided market

where the magazine is a platform serving to readers and advertisers. The demands of two

end users depend on each other and hence indirect network externalities exist. Since the

advertisers would like to reach as many readers as they can, they would prefer a magazine

with many readers. Additionally, if the readers like advertisements, they would like to read

a magazine with more advertisements. However, when the number of advertising pages in-

creases too much in a magazine, it may have a nuisance effect on the readers and the network

effect may start to decrease and even become negative. If we want to model the demand of

readers for the magazine, it is better to specify this indirect network effect nonparametri-

cally to be able to capture nonlinearities and nonmonotonicities. Assuming that the demand

function of readers is additive in its arguments, we can write1:

Y = F (ϕ(Z) +X ′β + U) (2)

where Y and Z are the market shares of the magazine on the readers’ and advertisers’ side,

respectively. F is the demand function of readers. ϕ(Z) is the network externality function

that depends on the number of advertisers, in other words, it is the effect of number of

advertisements on readers’ demand for the magazine. X are observed and U are unobserved

1For more information on the derivation of the demand equation see Bass (1969).
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magazine characteristics for readers. In Kaiser and Song (2009), X includes number of

content pages, cover price and frequency of the magazine while U is assumed to be a content

related quality shock. β is a parameter to be estimated. Under the assumption that the

demand is one-to-one, we can take the inverse of the demand function and obtain equation

(1): F−1(Y ) = ϕ(Z) +X ′β + U where H(Y ) = F−1(Y ). Note that this specification allows

us to specify both the demand and the network effect functions nonparametrically.

To the best of our knowledge estimation of equation (1) has not been studied yet nor

has it been used in an empirical application. We present the identification, estimation

and asymptotic properties of this model using the mean independence condition between

the error terms and instruments. So, we are not only introducing a very general form

of nonparametric model but also using a relatively weak condition in its estimation. The

estimation we propose depends on nonparametric instrumental variable regression. It is well

known in the nonparametric IV literature that this estimation problem is an ill-posed inverse

problem. More broadly, the solution of our main identifying equation needs the inversion

of an infinite dimensional operator with infinitely many eigen values which are very close

to zero. Hence, it needs a modification, or in the terminology of ill-posed inverse problems,

we need to regularize the problem. In this paper, we solve the ill-posed inverse problem

we encounter by Tikhonov Regularization which can be thought of as the nonparametric

counterpart of Ridge Regression. We show that we get consistent estimators as well as a
√
N -convergence rate for β with nonparametric IV regression.

We investigate the performance of our estimation procedure by means of a Monte Carlo

simulation. Since we regularize the ill-posed inverse problem in the estimation, the practical

implementation requires the choice of 2 tuning parameters: Bandwidth and the regularization

parameter. We present a way to choose the optimal regularization parameter and use it

in the simulations for a given bandwidth. Simulations show that, when the regularization

parameter is chosen optimally, our estimated curves fit the actual ones very well. However, in

cases where we choose the regularization parameter arbitrarily, we may have very oscillating
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or very flat curves, as the theory suggests. This result also proves the importance of the

selection of the regularization parameter in inverse problems which is encountered very often

in nonparametric estimation.

This paper differs from the existing literature in the sense that it covers a very general

case, as it considers a semiparametric transformation model. When the nonparametric es-

timation is considered, Darolles, Fan, Florens, and Renault (2011), Horowitz (2011), Hall

and Horowitz (2005), Newey and Powell (2003) and Ai and Chen (2003) are the first papers

coming to mind as related literature. Darolles, Fan, Florens, and Renault (2011), Horowitz

(2011), Hall and Horowitz (2005) and Newey and Powell (2003) consider models without

finite dimensional parameters and all use the nonparametric IV regression to estimate the

functions of interest using the mean independence condition. We also use the mean inde-

pendence between the error term and instruments to identify and estimate the equations

of interest. Florens, Johannes, and Van Bellegem (2009) and Ai and Chen (2003) consider

the partially linear, semiparametric model. The former uses nonparametric instrumental

variables regression based on kernels and get over the ill-posed inverse problem by Tikhonov

regularization, while the latter restricts the set of functions to be a compact set to avoid the

inverse problem and estimates the parameter and functions of interest by minimum distance

sieve estimation. We follow the approach of Florens, Johannes, and Van Bellegem (2009)

and recover our functions of interest by regularizing the ill-posed inverse problem. In most

examples of transformation models, parametric models are used and the estimations are also

done parametrically. Horowitz (1996) presents semi parametric estimation of transformation

models, though it makes a parametric specification for the right hand side. Linton, Sper-

lich, and Keilegom (2008) also estimate a semiparametric transformation model but they

assume a parametric transformation of the dependent variable. Chiappori, Komunjer, and

Kristensen (2011) show the identification and estimation of a nonparametric transformation

model where they specify the equations on both sides nonparametrically. Different from

our paper, they do not have a partially linear model and they assume that the error terms
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are independent of the exogenous variables conditional on the endogenous variables. Feve

and Florens (2010) estimate a simplified version of our model with nonparametric instru-

mental regression, where they have a nonparametric transform explained by a parametric

linear model. Therefore, this paper is generalizing the nonparametric transformation models.

Moreover, compared to all the aforementioned papers, we are using a weaker assumption on

the error terms and instruments.

The paper is organized as follows: In Section 2 we introduce a simple model where

X ∈ R and β is normalized to 1. After studying the identification, estimation and asymptotic

properties of this simpler model we generalize it to the model in equation (1) in Section 3.

A data based method for the selection of optimal regularization parameter is discussed in

Section 4 while we present the results of a small Monte Carlo simulation exercise in Section

5. Finally, Section 6 concludes. All the proofs are presented in the appendices.

2 A Semiparametric Transformation Model and Its

Nonparametric Estimation

In this section we study a simpler version of the transformation model in (1) for ease of

exposition. In this simpler version we restrict X to be a scalar and normalize β to 1. The

relationship between the variables is given by the following equation:

H(Y ) = ϕ(Z) +X + U (3)

E[U |X,W ] = 0

This is a semiparametric transformation model in which we have two endogenous variables,

Y, Z ∈ R, and an exogenous variable X ∈ R. U ∈ R is the error term and W ∈ Rp is a

vector of instruments. Moreover, H(.) is a one-to-one monotone function.

Y, Z,X,W generate the random vector Ξ which has a cumulative distribution function
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F . Then for each F , we can define the subspaces of real valued functions as L2
F (Y ), L2

F (Z),

L2
F (X) and L2

F (W ) which depend only on Y, Z,X and W , respectively, and which belong to

a common Hilbert space denoted by L2
F . 2

2.1 Identification

The identification of the model is based on the conditional independence of the error

term and the instruments rather than full independence. Hence, our approach differs from

the existing literature not only by the nonparametric specification of functions on both sides

of the transformation model but also by a weaker assumption for identification.

We consider the random vector Ξ defined above. We assume that this vector satisfies the

following assumptions:

Assumption 1 There exists two square integrable functions H and ϕ such that:

H(Y ) = ϕ(Z) +X + U

with

E[U |X,W ] = 0

We have normalized the equation by assuming that the coefficient of X is equal to 1. Under

this constraint, we want to consider the unicity of H and ϕ under the mean independence

condition. In order to verify this unicity we assume two regularity conditions on the joint

distribution of (Y, Z,X,W ).

Assumption 2 Completeness. The distribution of (Y, Z) given (X,W ) is complete in

2Throughout the paper, all function spaces are assumed to be L2 spaces relative to the density of the data
generating process. This choice of L2 space is motivated by two reasons: First, the conditional expectation
operator is well-defined in an L2 space and second (different from the Lp spaces where p 6= 2) the L2 spaces
are Hilbert spaces which simplifies the use of adjoint operators. A theory in Banach spaces may be developed
but it would be more abstract and not really motivated by applications. The choice of the density for the
L2 definition is also motivated by the simplicity of the computation of the adjoint operators.
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the following sense:

∀m(Y, Z) ∈ L2
F (Y )× L2

F (Z), E[m(Y, Z)|X,W ] = 0 a.s ⇒ m(Y, Z) = 0 a.s

This assumption (also called strong identification) has a long history in statistics in the

analysis of the relation between sufficiency and ancillarity (See Florens, Mouchart, and Rolin,

1990, Chapter 5) and it is essential in the study of instrumental variables estimation (See

Darolles, Fan, Florens, and Renault, 2011; Feve and Florens, 2010; Florens, Johannes, and

Van Bellegem, 2009; Newey and Powell, 2003). More recently DHaultfoeuille (2011), Hu and

Shiu (2011) and Andrews (2011) have analyzed this assumption and the primitive conditions

that lead to the complete distributions.3 From an intuitive point of view, this assumption can

be seen as the nonparametric counterpart of rank condition in the parametric IV estimation.

Assumption 3 Separability. Y and Z are measurably separable i.e., ∀m(Y ) ∈ L2
F (Y ) and

∀l(Z) ∈ L2
F (Z):

m(Y ) = l(Z)⇒ m(.) = l(.) = constant

Assumption 3 is also standard in nonparametric estimation. It means that there is not an

exact relation between Y and Z, or put it differently, X+U in equation (3) is not equal to a

constant. It is essentially a support condition on Y and Z, and it prevents the existence of a

deterministic relation between Y and Z. In particular, if the support of the joint distribution

of Y and Z is the product of the two marginal supports Assumption 3 is satisfied. A more

precise analysis of measurable separability condition is given in Florens, Heckman, Meghir,

and Vytlacil (2008).

Finally, we want to normalize the function ϕ:

Assumption 4 Normalization. If ϕ(Z) is constant a.s. then ϕ(Z) = 0 a.s.

For simplicity, we will assume that ϕ(.) is normalized by the condition E[ϕ(Z)] = 0. Under

3In the appendices, we present a discussion about this assumption
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this assumption, we consider as the parametric space:

E0 = (H,ϕ) ∈ L2
F (Y )× L2

F (Z) such that E[ϕ(Z)] = 0

Theorem 1 Under the assumptions 1-4, the functions H(Y ) and ϕ(Z) are identified.

We may remark that these assumptions can be weakened in some cases. Imagine that

Y ⊥ W |W1 and Z ⊥ W |W2. This means that the instruments can be grouped into 2

components acting separately on Y and Z. We assume also that W1 and W2 are measurably

separable which in particular means that W1 and W2 have no elements in common. In this

case:

E[H(Y )− ϕ(Z)|W ] = 0⇒ E[H(Y )|W1] = E[ϕ(Z)|W2] = c

where c is a constant and it is equal to 0 because E[ϕ(z)] = 0. Then if Y is strongly identified

by W1 and Z is strongly identified W2, we get the identification result.

2.2 Estimation

After showing that the model is identified, we can now continue with the estimation. Let

us define the operator:

T : E0 =
{
L2
F (Y )× L̃2

F (Z)
}
7→ L2

F (X,W ) : T (H,ϕ) = E[H(Y )− ϕ(Z)|X,W ]

where L̃2
F (Z) = {ϕ ∈ L2

F (Z)|E(ϕ) = 0}, and the inner product is defined as4:

〈(H1, ϕ1), (H2, ϕ2)〉 = 〈H1, H2〉+ 〈ϕ1, ϕ2〉

The adjoint operator of T , T ∗, satisfies:

〈T (H,ϕ), ψ〉 = 〈(H,ϕ), T ∗ψ〉
4See appendix for the verification of our inner product definition.
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for any (H,ϕ) ∈ E and ψ ∈ L2
F (X,W ). From this equality it follows immediately that

T ∗ψ = (E[ψ|Y ],E[ψ|Z])

However, as already defined, our parametric space is E0. Let us denote the restriction of T

to E0 by T0 (T0 = T|E0) and the projection of E under E0 by P, {P(H,ϕ) = (H,ϕ − E(ϕ))}.

Then we have the following lemma to characterize the adjoint operator T ∗ of T :

Lemma 2 Let us define the operator T0 : E → F with the adjoint T ∗0 : F → E. Moreover,

let us define T = T0|E0, where E0 ∈ E. Then, T ∗ = PT ∗0 where P is the projection operator on

E0.

Then we can write the adjoint operator of T as:

T ∗ =

 E(φ|Y )

PE(φ|Z)


where P is the projection of L2

F (Z) on L̃2
F (Z) (Pϕ = ϕ− E(ϕ)).

Now, we can rewrite our estimation problem as:

T (H,ϕ) = r (4)

where r = E[X|X,W ].

Estimation of H and ϕ requires nonparametric estimation of operator T which has an

infinite dimensional range and in general is compact.5 This, in turn, gives us an ill-posed

inverse problem, since the inversion of the estimator of T , lead to noncontinuities of the

resulting estimators with respect to joint distribution of data.6 To get a stable solution, we

5The compactness is satisfied in particular when the joint density Ξ is square integrable. (See Darolles,
Fan, Florens, and Renault, 2011)

6Engl, Hanke, and Neubauer (1996) define a problem as well-posed if the conditions below hold:
(i) For all admissible data a solution exist.
(ii) For all admissible data the solution is unique.
(iii) The solution continuously depends on the data.
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therefore need to regularize our problem. For this we have chosen the Tikhonov Regulariza-

tion as it is easy to work with. Basically, we control the norm of the solution by a penalty

term, α, which we call the regularization parameter.7 The solution of (4) is then given by

the minimization of the following problem:

min
H,ϕ

(‖r − T (H,ϕ)‖2 + α ‖(H,ϕ)‖2) (5)

Thus,

(H(Y ), ϕ(Z))′ = (αI + T ∗T )−1T ∗X (6)

where I is the identity operator in L2
F (Y ) × L2

F (Z). Note that, we do not perform the

minimization on the estimated operators. Instead, we first solve the inverse problem, thus

minimize the norm with a penalty and perform the estimation on the solution. We can write

the solution in (6) as follows:

(αI + T ∗T )(H,ϕ) = T ∗X

Equivalently,

 αH + E [E(H|X,W )|Y ]− E [E(ϕ|X,W )|Y ]

−αϕ+ PE [E(H|X,W )|Z]− PE [E(ϕ|X,W )|Z]

 =

 E(X|Y )

PE(X|Z)

 (7)

As we do not know the true distribution of our variables, we need to estimate them first. So,

we estimate conditional expectations with kernels. As a result, this brings about the second

source of distortion in our problem. The first one is due to the regularization parameter

α, and the second one is coming from the bandwidths of the kernels. We need to make

two remarks here. First, although in equation (7) it seems that we use the same α’s for

the regularization of different equations, they do not necessarily be the same. In fact, in

7The choice of α is very important since it characterizes the balance between the fitting and the smooth-
ing, and in the following sections we will introduce a data based selection rule for it.
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the simulations we perform, we have seen that we can not get good fits for equal values of

α’s. Second, as is shown in Darolles, Fan, Florens, and Renault (2011), the dimension of

instruments does not have a negative effect on the speed of convergence, on the contrary, the

speed of convergence increases with the dimension of instruments. Therefore, if we have a

large number of instruments this will not cause a problem through the curse of dimensionality,

but it will instead increase the speed of convergence of our estimator.

Remember that T (H,ϕ) =
∫

(H(y)− ϕ(z))f(y, z|x,w)dydz. Denote f̂ as the nonpara-

metric kernel estimator of f . We may define T̂ (H,ϕ) by replacing f by f̂ in this expression.

Analogously,

T ∗(ψ) =

(∫
ψ(x,w)f(x,w|y)dxdw,P

∫
ψ(x,w)f(x,w|z)dxdw

)′

may be estimated by replacing f by its estimator. Let T̂ ∗ be this estimator. In order to

avoid numerical integration T̂ (and T̂ ∗) would be approximated by:

T̂ (H,ϕ) '

∑
j (H(yj)− ϕ(zj))Kx

(
x−xj
hx

)
Kw

(
w−wj
hw

)
∑

jKx

(
x−xj
hx

)
Kw

(
w−wj
hw

)
for some bandwidth parameters hy, hz, hx and hw. The order of the approximation error is

analogous to the order of the bias of the kernel estimation and it does not change the speed

of convergence.

Let Axw(w) be the matrix whose (i,j)th element is:

Axw(w)(i, j) =
Kx

(
xi−xj
hx

)
Kw

(
w−wj
hw

)
∑

jKx

(
xi−xj
hx

)
Kw

(
w−wj
hw

)
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Ay and Az are the matrices with the (i,j)th elements:

Ay(i, j) =
Ky

(
yi−yj
hy

)
∑

jKy

(
yi−yj
hy

)

Az(i, j) =
Kz

(
zi−zj
hz

)
∑

jKz

(
zi−zj
hz

)
Moreover, P is the matrix with n−1

n
on the diagonal and − 1

n
elsewhere. Our estimated

functions are the solutions of the following system:

 αNĤ + AyAxwĤ − AyAxwϕ̂

−αN ϕ̂+ PAzAxwĤ − PAzAxwϕ̂

 =

 AyX

PAzX


More precisely,

Ĥ
ϕ̂

 =

αNI + AyAxw −AyAxw

PAzAxw −(αNI + PAzAxw)


−1 AyX

PAzX

 (8)

Equation (8) is a system of 2N equations in 2N unknowns which means that we can recover

Ĥ and ϕ̂. Here we denote α by αN , where N is the sample size, since in the estimation the

optimal value of the regularization parameter depends on the sample size, see Engl, Hanke,

and Neubauer (1996).

The solution given by equation (8) requires the inversion of a 2N × 2N matrix. So, with

very large N , this will be difficult to compute. In cases with large N , instead of Tikhonov

regularization, we can use the Landweber-Friedman regularization scheme that does not need

the inversion of this matrix, see Carrasco, Florens, and Renault (2007).
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2.3 Consistency and Rate of Convergence

In our estimation process, we are estimating the functions through the estimation of the

operators. For this reason, to be able to talk about the consistent estimation of the functions

of interest, first we have to estimate the operators T ∗T and T ∗X consistently. To show this,

we are going to make a set of assumptions.

Let us begin with the definition of singular value decomposition.

Definition 1 Let {λj, φj, ψj} be the singular system of the operator T such that:

Tφj = λjψj and T ∗ψj = λjφj

where λj denote the sequence of the nonzero singular values of the compact linear operator

T , φj and ψj, for all j ∈ N, are orthonormal sequences of functions in E and L2
F (X,W ),

respectively. We can moreover write the singular value decomposition for each ϕ ∈ E:8

Tϕ =
∞∑
j=1

λj〈ϕ, φj〉ψj

Assumption 5 Source Condition: There exists ν > 0 such that:

∞∑
j=1

〈Φ, φj〉2

λ2νj
=
∞∑
j=1

[〈H,φj1〉+ 〈ϕ, φj2〉]2

λ2νj
<∞

where Φ = (H,ϕ).

By this assumption we define a regularity space for our functions. In other words, as stated in

Carrasco, Florens, and Renault (2007), we can say that the unknown value of Φ0 = (H0, ϕ0)

belongs to the space Ψν where

Ψν =

{
Φ ∈ E such that

∞∑
j=1

〈Φ, φj〉2

λ2νj
<∞

}
8For more on singular value decomposition, see Carrasco, Florens, and Renault (2007).
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In fact, assuming that Φ0 ∈ Ψν just adds a smoothness condition to our functional pa-

rameter of interest. As was pointed out by Carrasco, Florens, and Renault (2007), this

regularity assumption will give us an advantage in calculating the rate of convergence of the

regularization bias.

Assumption 6 There exists s ≥ 2 such that:

•
∥∥∥T̂ − T∥∥∥2 = O

(
1

Nhp+2
N

+ h2sN

)
•
∥∥∥T̂ ∗ − T ∗∥∥∥2 = O

(
1

Nhp+2
N

+ h2sN

)
where s is the minimum between the order of the kernel and the order of the differentiability

of f , p is the dimension of the instrument vector W and hN is the bandwidth.

Assumption 7 ∥∥∥T̂ ∗X − T̂ ∗T̂Φ
∥∥∥2 = O

(
1

N
+ h2sN

)
Assumption 8

lim
N→∞

αN = 0

lim
N→∞

h2sN
α2
N

= 0

lim
N→∞

α2−ν
N Nhp+2

N →∞ or ν ≥ 2

lim
N→∞

α2
NN →∞

lim
N→∞

Nhp+2
N →∞

Theorem 3 Let us define Φ = (H(Y ), ϕ(z)). Let s be the minimum between the order of

the kernel and the order of the differentiability of f and ν be the regularity of Φ. Under

assumptions 5 to 8:

•
∥∥∥Φ̂α

N − Φ
∥∥∥2 = O

(
1
α2

(
1
N

+ h2sN
)

+ 1
α2

(
1

Nhp+2
N

+ h2sN

) (
αmin{ν,2})+ αmin{ν,2}

)
•
∥∥∥Φ̂α

N − Φ
∥∥∥→ 0 in probability.
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Optimal speed of convergence is obtained by the calculation of optimal α. To do this we

equalize the first and the third term of the rate of convergence above, as the second term is

negligible. Then we obtain that the optimal αN is proportional to N−1/[min{ν,2}+2]. Moreover,

under the assumption that h2s = Op(1/N) if the conditions [(p + 2)(ν + 2)]/2ν ≤ s when

ν ≤ 2, and (p + 2)/4 ≤ s when ν > 2, are satisfied, we can obtain the following optimal

speed of convergence: ∥∥∥Φ̂α − Φ
∥∥∥2 ∼ O

(
N−

min{ν,2}
min{ν,2}+2

)
This rate of convergence follows from an argument similar to that of Darolles, Fan, Florens,

and Renault (2011). Under more specific assumptions (for example, geometric rate of decline

of λj, 〈H,ϕj1〉 and 〈ϕ, ϕj2〉 as in Hall and Horowitz (2005)) it may be improved upon, and

shown to be minimax, see Chen and Reiss (2007); Breunig and Johannes (2009). As we want

to focus on the semiparametric specification, we do not reproduce this discussion which is

not specific to our model.

3 Semiparametric Transformation Model: The Gen-

eral Case

In this section, we generalize the simple model of Section 2. We examine the identifica-

tion and estimation of H,ϕ and β in equation (1) as well we study the asymptotic properties

of the estimators. We show that, in the semiparametric transformation models with many

explanatory variables, we can get
√
N -consistency for the estimated parameters. In other

words, we show that the nonparametrically estimated parameters of a partially linear trans-

formation model can still attain
√
N -convergence rate. Remember that, equation (1) is:

H(Y ) = ϕ(Z) +Xβ + U

For identification, we need to normalize one element of the vector β to 1. Then, we can
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write the model in (1) as the following:

H(Y ) = ϕ(Z) +X0 +X ′1β + U (9)

where X = {X0, X1}. Moreover, Y, Z,X0, U, V ∈ R, X ∈ Rq and W ∈ Rp.

Since the estimation and asymptotic properties of the nonparametric parts are already

discussed in Section 2, in this section we restrict our attention to β.

3.1 Identification

Identification of this general model is not very different from the previous one, nonetheless

we need some additional assumptions.

Assumption 9 (Y,Z,X) are strongly identified by (X,W).9

E[g(Y, Z,X)|X,W ] = 0⇒ g(Y, Z,X) = 0 a.s.

Remark: Assumption 9 may be weakened by considering only the function g(Y, Z,X)

satisfying:

g(Y, Z,X) = g1(Y, Z) + g2(X)

Assumption 10 (Y, Z) and X1 are measurably separable:

m(Y, Z) = l(X1)⇒ m(.) = l(.) = constant

Theorem 4 Under the assumptions 1-4, 9 and 10 the functions H(Y ) and ϕ(Z) and the

parameter β are identified.

9This assumption can also be stated as: (Y,Z) are strongly identified by W conditional on X.
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3.2 Estimation

We can now proceed with the estimation. Let us keep the operator T the same as

in Section 2, and introduce an additional operator TX : Rk → L2
F (X,W ) : β 7→ X ′1β.

Equivalently its adjoint is defined T ∗X : L2
F (X,W ) → Rk : g 7→ E[X1g(X,W )] which follows

from the following relation:

〈TXβ, g(X,W )〉 = 〈β, T ∗Xg(X,W )〉

Then we can write:

T (H,ϕ)− TXβ = X0 (10)

The normal equations are:

T ∗T (H,ϕ)− T ∗TXβ = T ∗X0 (11)

T ∗XT (H,ϕ)− T ∗XTXβ = T ∗XX0 (12)

From equation (11), we get (H,ϕ) = (αNI + T ∗T )−1(T ∗TXβ + T ∗X0) and if we substitute it

into equation (12), we obtain an expression for the β:

β = (T ∗X(Pα − I)TX)−1T ∗X(I − Pα)X0

where Pα = T (αI + T ∗T )−1T ∗. Then the estimator is given by:

β̂ =
(
T̂ ∗XT (αNI + T̂ ∗T̂ )−1T̂ ∗TX − T̂ ∗XT

)−1 (
TX − T̂ ∗XT (αNI + T̂ ∗T̂ )−1T̂ ∗TX

)
X0

Note that the αN in this generalized version and the αN in the simple version need not

necessarily be the same.
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3.3 Consistency and Rate of Convergence of β̂

We can continue with the asymptotic properties of β̂. In a semiparametric context

the
√
N -convergence of the parametric component is a standard question (See Ichimura

and Todd, 2007), and is generally addressed in cases where the nonparametric component

is a density or a regression function. Usually this
√
N -convergence requires assumptions

to distinguish the nonparametric and parametric part of the model. In this paper, the

nonparametric component is estimated by solving an inverse problem. In the sequel we

present the assumptions that are needed to prove the parametric rate of convergence.

Let {λj, φj, ψj} be the singular system of the operator T as defined before and let

{µj, ej, ψ̃j} be the singular system of the operator TX , such that for each β ∈ Rk we can

write:

TXβ =
k∑
j=1

µj〈β, ej〉ψ̃j

Assumption 11 Source Condition: There exists η > 0 such that:

max
i=1,...,k

∞∑
j=1

〈
ψ̃i, ψj

〉2
λ2ηj

<∞

This source condition explains the collinearity between (Y, Z) and (X). Indeed, Assumption

11 is false if the range of T is included in the linear space generated by the elements of

X1. In contrast, if the range of T (the space of E(H|X,W ) − E(ϕ|X,W ) for all H and

ϕ) is orthogonal to X1, then Assumption 11 is directly satisfied because the term
〈
ψ̃i, ψj

〉
cancels out. This assumption says that the degree of collinearity is not too high compared

to the singular values of T . In other words, any linear function of X1 has Fourier coefficients

in the basis ψj declining sufficiently fast. In fact, the values of η gives a measurement of

collinearity, i.e., η = 0 if there is perfect collinearity and η =∞ if there is no collinearity.
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Assumption 12 There exists s ≥ 2 such that:

∥∥∥T̂ ∗TX − T ∗TX∥∥∥2 = O

(
1

NhN
+ h2sN

)

where s is the minimum between the order of the kernel and the order of the differentiability

of f .

Assumption 13 ∥∥∥T̂ ∗XTX − T ∗XTX∥∥∥2 = O

(
1

N

)
∥∥∥T̂ ∗XT − T ∗XT∥∥∥2 = O

(
1

N

)
Assumption 14

lim
N→∞

α
min{η,2}
N h2s = 0

lim
N→∞

α
min{η,2}
N

Nhp+q+1
→ 0

lim
N→∞

α
min{η,2}
N

N
→ 0

lim
N→∞

h2s

N
→ 0

Now, we can state the theorem about the
√
N -consistency of β̂.

Theorem 5 Under the assumptions 5, 6, 7, 8, 11, 12, 13, 14:

√
N
∥∥∥β̂ − β∥∥∥ = Op(1)
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4 Data Based Selection of αN

Selection of the regularization parameter is crucial. It is of great importance because it

characterizes the balance between fitting and smoothing. As a result, it may have important

impacts on the estimation. For example, a regularization parameter which is selected too

high gives very flat curves. In contrast, a regularization parameter which is too small results

in oscillating curves. Engl, Hanke, and Neubauer (1996) propose a heuristic selection rule,

called the discrepancy principle. The discrepancy principle is based on the comparison be-

tween the residual and the assumed bound for the noise level. Moreover, it has been proven

that the regularization method where α is defined via this rule is convergent and of optimal

order.

In this section we define an adaptive method for the selection of the optimal regulariza-

tion parameter, namely the method of residuals. The method of residuals is similar to the

discrepancy principle in the sense that the aim is to minimize the error from the estimation.

Indeed it is based on the minimization of some function of the squared norm of residuals.

Since the squared norm of residuals can be shown to reach its minimum at αN = 0, we can

not directly use it, hence we need a function of it. This function is obtained by first dividing

the norm by α2
N and second by calculating the residuals from an estimation obtained by

Tikhonov Regularization of order 2. One of the drawbacks of Tikhonov regularization (of or-

der one) is that since its qualification is 2, when the function being estimated is very regular,

i.e. ν > 2, we can not improve more on the rate of convergence. So, iterated Tikhonov reg-

ularization is developed to get over this problem.10 This second modification to the squared

norm of residuals is especially done for cases where ν > 2.

For the simple model in equation (3) introduced in Section 2, it can be shown that the

functions of residuals defined above is decreasing in α. Moreover as can be seen in Equation 7,

we have two regularization parameters for two unknown functions and these two parameters

10For more information on Iterated Tikhonov Regularization see Engl, Hanke, and Neubauer (1996),
Chapter 5.
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need not necessarily be the same. To get over the stated problems, we first assume that

there is a constant ratio between the 2 regularization parameters, i.e. αϕ = cαH for c ≥ 0.11

We then propose to choose optimal values for αH and c in two steps:

• First, we choose αH according to method of residuals defined above where the estima-

tion problem is given by:

G(Y, Z) = X + U

where G(Y, Z) = H(Y ) − ϕ(Z). Under the mean independence condition in (1) the

main identifying equation can be written as:

TGG(Y, Z) = X

where TG : L2
F (Y, Z) 7→ L2

F (X,W ) : TGG = E[G(Y, Z)|X,W ]. The adjoint T ∗G is

defined as: T ∗G : L2
F (X,W ) 7→ L2

F (Y, Z) : T ∗Gφ = E[φ(X,W )|Y, Z]. Then Ĝ is given by:

Ĝ = (αI + T ∗GTG)−1T ∗GX

Let Ayz be the matrix with (i, j)th entry:

Ayz(z)(i, j) =
Ky

(
yi−yj
hy

)
Kz

(
z−zj
hz

)
∑

jKy

(
yi−yj
hy

)
Kz

(
z−zj
hz

)
Ĝ obtained from estimation with Tikhonov regularization of order 1 can be written as:

Ĝα
(1) = (αI + AyzAxw)−1AyzX

and Ĝ obtained from estimation with Tikhonov regularization of order 2 is given by:

Ĝα
(2) = (αI + AyzAxw)−1(AyzX + αĜα

(1))

11αϕ represents the α in front of ϕ and αc represents the α in front of H in equation 7.
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Finally, the residuals from the estimation obtained by Tikhonov Regularization of order

2 are given by:

ε̂α(2) = AyzX − AyzAxwĜα
(2)

Then the optimal αH is given by the minimization of the following problem:

α∗H = argmin
α

1

α2
‖ε̂α(2)‖2

• In the second step, we plug α∗H in our original estimation problem:

Ĥ
ϕ̂

 =

α∗HI + AyAxw −AyAxw

+PAzAxw −(cα∗HI + PAzAxw)


−1 AyX

PAzX

 (13)

and choose c which minimizes the squared norm of residuals obtained from an estima-

tion regularized by Tikhonov regularization of order 2.

Another issue in the choice of regularization parameter is its sensitivity to the choice of

bandwidth. The method of residuals is defined for given bandwidths. In our simulations, we

choose the bandwidth by a rule of thumb and then optimize on regularization parameter.

Feve and Florens (2010) use an iterative approach in their simulations where they first choose

α for an arbitrary bandwidth and then they iterate the optimization to choose the bandwidth.

They conclude that the results do not change drastically when an iterative scheme is used

since α adapts itself for any a priori selection of bandwidth. The simultaneous choice of the

regularization parameter and bandwidth is still an open question in the literature and is left

for future work.

5 A Simulation Analysis

This section presents a Monte Carlo simulation analysis of our estimation method. We

first explain the data generating process and then present our results.
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We generate the data according to a simultaneous equations model where Y and Z are

derived simultaneously. We simulate the following model:

H(Y ) = ϕ(Z) +Xβ + U (14)

G(Z) = ψ(Y ) +Wγ + V (15)

H(.) and G(.) are chosen to be inverse of the logistic survival function, i.e., H(t) = S−1(t)

where S−1(t) = log((1− t)/kt). Moreover ϕ(.) and ψ(.) are chosen to be:

ϕ(x) = Axa

ψ(x) = Bxb

Then the simulated simultaneous transformation model is given by the following:

log

(
1− Y
kY

)
= ϕ(Z) +X ′β + U (16)

log

(
1− Z
kZ

)
= ψ(Y ) +W ′γ + V (17)

We associate the parameters with the following values: k = 0.1, A = 1, a = 2, B = 1 and

b = 0.5. As in the simpler model β and γ are normalized to 1. (X,W ) are drawn from a

joint normal distribution with mean µ = (2, 3) and covariance

Σ =

 1 0.8

0.8 1


U and V are drawn independently from a standard normal distribution. Given the associate

values of parameters and sample of (U,V,X,W), we solve the equation system in (16) to get

the values of Y and Z to use in the estimation process. We generate 100 samples of sizes

200, 500 and 1000. We perform the simulation for different sample sizes to control for the
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effect of sample size on the estimation.

In the estimation process, all the kernels are Gaussian and the bandwidths of the kernels

are computed by a rule of thumb. For the regularization parameter, we use the data based

selection rule defined in Section 5 at each estimation. The simulation is performed by user

written code in MATLAB.

Results are given in Figures 1 to 5 in Appendix D. Figure 1 shows the estimated functions

over the true ones for a single sample of 200 and Figure 2 presents a Monte Carlo analysis

for a sample size of 200. Our results are very satisfactory. As can be seen in Figure 1 we

can get very close to the true values of our estimated functions. There are a couple of issues

worth noting. Firstly, the estimated functions are very sensitive to both the regularization

parameter and the bandwidth of the kernel estimator. Secondly, as already stated in the

previous section, we are estimating two functions simultaneously and thus we need two differ-

ent regularization parameters, which makes the estimation even harder. In the simulations,

we see that Ĥ(.) is also very sensitive to the regularization parameter we use for ϕ̂(.) and

using the same regularization parameter for both functions does not give good estimates, see

Figures 3 and 4. Another point worth noticing is the change of optimal α parameter with

the sample size. The simulations show that an optimal α which gives very good estimates

with a sample size of 200, cannot do the same with a sample size of 1000, see Figure 5. This

also supports the theory that the optimality of the regularization parameter is related to the

sample size.

In addition to those, we know that we need a strong regularization, i.e., a large regu-

larization parameter for the operators whose smallest eigenvalue is close to 0. In our case,

not only the smallest eigen value was very close to zero but also the 3rd largest one. In our

simulations, the optimal α for Ĥ, αH , lies between the ranges [10−3, 10−1] while that for ϕ̂,

αϕ was in [101, 103].

25



6 Conclusion

In this paper, we have considered the nonparametric estimation of a semiparametric

transformation model. The equation we introduce is motivated by empirical study of net-

work industries and can be applicable to many models in economics. We have studied the

identification and estimation of the model and the asymptotic properties of the estimators.

Furthermore, we have presented a data based selection rule for the regularization parameter

for a fixed bandwidth. Development of a rule for the simultaneous selection of the two is left

for future work.

The contributions of the paper are manyfold. First, it considers a transformation model

where both left hand side and right hand side functions are introduced nonparametrically.

Second, for the right hand side we make a partially linear specification and show that under

some assumptions, we can obtain
√
N -convergence rate in the nonparametric estimation

of the parametric part. Third, all the results of this very general model holds under the

assumption of mean independence which is weaker than the full independence condition.

There may be many other possible extensions of the paper. First of all, estimation

of a system of semiparametric transformation model with a full information approach is

worth studying. Moreover, the estimation method and its asymptotic properties can be

generalized to other nonparametric techniques different from kernels, which would be very

useful when working with high dimensional variables. Nonparametric tests of specification

for transformation models is still underdeveloped in the literature. Finally, estimation of

a structural economic model by applying the method developed here will be an interesting

application.
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Appendices

A Illustration of Completeness Assumption

Assumption 2, the so called Completeness assumption is crucial in the identification of

nonparametric IV models. In this section, we will give an illustration of primitive conditions

needed in the case of a simultaneous equations system. Let us consider the model in (14)

presented in the simulation and assume that we normalize the β and γ to one:

H(Y ) = ϕ(Z) +X + U (18)

G(Z) = ψ(Y ) +W + V (19)

Let us define the following variables:

ζ = H(Y )− ϕ(Z)

η = G(Z)− ψ(Y )

To show that (Y, Z) is complete for (X,W ) we need the following assumptions:

Assumption 15 The function h : (Y, Z) 7→ (ζ, η) is a bijection.

Assumption 16 (U, V ) is independent of (X,W ).

Assumption 17 Fourier transform of joint distribution of (U,V) is strictly positive, i.e.,

∫ ∫
e−i(tµ+sν)fu,v(µ, ν)dµdν 6= 0

Lemma 6 Under assumptions 15-17, (Y, Z) is complete for (X,W ).

Proof. Under Assumption 15, if (ζ, η) is complete for (X,W ), then (Y, Z) is complete for

(X,W ) as well. (See Florens, Mouchart, and Rolin, 1990, Chapter 5) So, it is enough to
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show that (ζ, η) is complete for (X,W ), i.e:

If E[φ(ζ, η)|X,W ] = 0 a.s.⇒ φ(ζ, η) = 0 a.s

Let us write the expectation:

∫ ∫
φ(ζ, η)fζ,η(ζ, η|X,W )dζdη = 0

By Assumption 16: ∫ ∫
φ(ζ, η)fU,V (ζ −X, η −W )dζdη = 0

We apply Fourier Transform:

∫ ∫ ∫ ∫
ei(tX+sW )φ(ζ, η)fU,V (ζ −X, η −W )dζdηdxdw = 0

Let µ = ζ −X and ν = η −W . Then:

∫ ∫ ∫ ∫
eit(ζ−µ)eis(η−ν)φ(ζ, η)fU,V (µ, ν)dζdηdµdν = 0

∫ ∫
e(itζ+isη)φ(ζ, η)dζdη︸ ︷︷ ︸

Fφ(t,s)

∫ ∫
e−i(tµ+sν)fU,V (µ, ν)dµdν︸ ︷︷ ︸

Ff (t,s)

= 0 (20)

Equation 20 can be equal to zero either Fφ(t, s) or Ff (t, s) equals zero. By Assumption

16, Ff (t, s) is different than zero, so Fφ(t, s) = 0. Since Fourier transform is injective, this

implies that φ(ζ, η) = 0 and so (Y, Z) is complete for (X,W ).

Note that Assumption 16 is stronger than what we require in our identification theorem,

however we present Lemma 6 just as an illustration of completeness assumption. Moreover,

Assumption 16 can be relaxed under a location-scale model. Proof of completeness with

such a construction can be found in Hu and Shiu (2011).
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B Verification of Inner Product Space

Definition 2 Let H be a complex vector space. A mapping 〈, 〉 : H × H 7→ C is called an

inner product in H if for any φ, ψ, ξ ∈ H and α, β ∈ C the following conditions are satisfied:

• 〈φ, ψ〉 = 〈ψ, φ〉

• 〈αφ+ βψ, ξ〉 = α 〈φ, ξ〉+ β 〈ψ, ξ〉

• 〈φ, φ〉 ≥ 0 and 〈φ, φ〉 = 0⇔ φ = 0

Remember that our inner product space is defined by

〈(H1, ϕ1), (H2, ϕ2)〉 = 〈H1, H2〉+ 〈ϕ1, ϕ2〉

Let us start with the first condition, conjugate symmetry:

〈(H1, ϕ1), (H2, ϕ2)〉 = 〈H1, H2〉+ 〈ϕ1, ϕ2〉

〈
(H2, ϕ2), (H1, ϕ1)

〉
=
〈
H2, H1

〉
+ 〈ϕ2, ϕ1〉

Then we can write:

〈H1, H2〉+ 〈ϕ1, ϕ2〉 =
〈
H2, H1

〉
+ 〈ϕ2, ϕ1〉

Second condition is the condition of linearity:

〈α(H1, ϕ1) + β(H3, ϕ3), (H2, ϕ2)〉 = α 〈(H1, ϕ1), (H2, ϕ2)〉+ β 〈(H3, ϕ3), (H2, ϕ2)〉

= α (〈H1, H2〉+ 〈ϕ1, ϕ2〉) + β (〈H3, H2〉+ 〈ϕ3, ϕ2〉)
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Finally the last condition is the condition of positive definiteness, which is verified by the

positive definiteness of each term.

〈(H1, ϕ1), (H1, ϕ1)〉 = 〈H1, H1〉︸ ︷︷ ︸
≥0

+ 〈ϕ1, ϕ1〉︸ ︷︷ ︸
≥0

so:

〈(H1, ϕ1), (H1, ϕ1)〉 = 〈H1, H1〉+ 〈ϕ1, ϕ1〉 ≥ 0

and it is equal to zero if each term is equal to zero separately, which can be the case only if

H1 = 0 and ϕ1 = 0.

C Proofs of Theorems

C.1 Theorem 1

Proof. By Assumption 1

E[H(Y )− ϕ(Z)−X|X,W ] = 0

Let us recall two more functions H∗(Y ) and ϕ∗(Z). By Assumption 1 again, we can write:

E[H(Y )− ϕ(Z)−X|X,W ] = 0 E[H∗(Y )− ϕ∗(Z)−X|X,W ] = 0

If we take the difference of the two expectations:

E[(H(Y )−H∗(Y ))− (ϕ(Z)− ϕ∗(Z)) + (X −X)|X,W ] = 0

then by Assumption 2:

(H(Y )−H∗(Y ))− (ϕ(Z)− ϕ∗(Z)) = 0
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by Assumption 3

(H(Y )−H∗(Y )) = (ϕ(Z)− ϕ∗(Z)) = c

finally by Assumption 4:

c = 0

then:

H(Y ) = H∗(Y ) and ϕ(Z) = ϕ∗(Z)

C.2 Lemma 2

Proof. Note that, we can write:

x ∈ E0, 〈T0x, y〉 = 〈Tx, y〉

〈T0x, y〉 = 〈x, T ∗0 y〉

〈Tx, y〉 = 〈x, T ∗y〉

Moreover, x ∈ E0 and z ∈ E

〈x, z〉 = 〈x,Pz〉

then

〈x, T ∗0 y〉 = 〈x,PT ∗0 y〉 = 〈x, T ∗y〉

then

PT ∗0 = T ∗
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C.3 Theorem 3

Proof. Remember that the solution of our problem was given by

Φ = (αI + T ∗T )−1T ∗X

For the proof, we will decompose our equation into three parts as was done in Darolles, Fan,

Florens, and Renault (2011) and look at the rates of convergence term by term.

Φ̂α − Φ = (αI + T̂ ∗T̂ )−1T̂ ∗X − (αI + T̂ ∗T̂ )−1T̂ ∗T̂Φ︸ ︷︷ ︸
I

+ (αI + T̂ ∗T̂ )−1T̂ ∗T̂Φ− (αI + T ∗T )−1T ∗TΦ︸ ︷︷ ︸
II

+ (αI + T ∗T )−1T ∗TΦ− Φ︸ ︷︷ ︸
III

The first term (I) is the estimation error about the right hand side (X) of the equation,

the second term (II) is the estimation error coming from the kernels and the third term

(III) is the regularization bias coming from regularization parameter α.

Now, let’s first examine the first term:

I = (αI + T̂ ∗T̂ )−1T̂ ∗X − (αI + T̂ ∗T̂ )−1T̂ ∗T̂Φ

I = (αI + T̂ ∗T̂ )−1T̂ ∗(X − T̂Φ)

‖I‖2 =
∥∥∥(αI + T̂ ∗T̂ )−1

∥∥∥2 ∥∥∥T̂ ∗X − T̂ ∗T̂Φ
∥∥∥2

where the first term is O (1/α2) by Darolles, Fan, Florens, and Renault (2011) and the second

term is O (N−1 + h2sN ) by Assumption 7.

Now, let us look at the second term II:

II = (αI + T̂ ∗T̂ )−1T̂ ∗T̂Φ− (αI + T ∗T )−1T ∗TΦ
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=
[[
I − (αI + T̂ ∗T̂ )−1T̂ ∗T̂

]
−
[
I − (αI + T ∗T )−1T ∗T

]]
Φ

=
[
α(αI + T̂ ∗T̂ )−1 − α(αI + T ∗T )−1

]
Φ

= (αI + T̂ ∗T̂ )−1(T̂ ∗T̂ − T ∗T )α(αI + T ∗T )−1Φ

‖II‖2 =
∥∥∥(αI + T̂ ∗T̂ )−1

∥∥∥2 ∥∥∥(T̂ ∗T̂ − T ∗T )
∥∥∥2 ∥∥α(αI + T ∗T )−1Φ

∥∥2
The first term in (II) is O(1/α2) by Darolles, Fan, Florens, and Renault (2011) while

the second one is of order O
(
(Nhp+2

N )−1 + h2sN
)

as a result of relation
∥∥∥T̂ ∗T̂ − T ∗T∥∥∥ =

O
(
max

∥∥∥T̂ − T∥∥∥ , ∥∥∥T̂ ∗ − T ∗∥∥∥) by Assumption 6 and by Florens, Johannes, and Van Bel-

legem (2009). Finally, the third is equal to O(α(ν∧2)) by Darolles, Fan, Florens, and Renault

(2011).

The third term can be examined more straightforwardly:

III = (αI + T ∗T )−1T ∗TΦ− Φ

= Φα − Φ

and ‖III‖2 = ‖Φα − Φ‖2 is O(αν∧2) by Assumption 5. Finally if we combine all what we

have:

∥∥∥Φ̂α
N − Φ

∥∥∥2 = O

(
1

α2

(
1

N
+ h2sN

)
+

1

α2

(
1

Nhp+2
N

+ h2sN

)(
α(ν∧2))+ α(ν∧2)

)

The proof of the second part of the theorem follows by Assumption 8.

C.4 Theorem 4

Proof.

H(Y )− ϕ(Z)−X0 −X ′1β = U

E[H(Y )− ϕ(Z)−X0 −X ′1β|X,W ] = 0 by Assumption 1

33



Let us recall two more functions H∗(Y ), ϕ∗(Z) and β∗ such that:

H∗(Y )− ϕ∗(Z)−X0 −X ′1β∗ = U

Then, again by Assumption 1:

E[H∗(Y )− ϕ∗(Z)−X0 −X ′1β∗|X,W ] = 0

If we take the difference of the two expectations:

E[(H(Y )−H∗(Y ))− (ϕ(Z)− ϕ∗(Z))− (X ′1β −X ′1β∗)|X,W ] = 0

Then, by Assumption 9:

(H(Y )−H∗(Y ))− (ϕ(Z)− ϕ∗(Z))− (X ′1β −X ′1β∗) = 0

By Assumption 10:

(H(Y )−H∗(Y ))− (ϕ(Z)− ϕ∗(Z)) = (X ′1β −X ′1β∗) = constant

Finally by Assumptions 3 and 4 we get the identification:

H(Y ) = H∗(Y ) ϕ(Z) = ϕ∗(Z) X ′1β = X ′1β
∗
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C.5 Theorem 5

Proof.

β̂ − β = M̂−1α︸ ︷︷ ︸
I

[T̂ ∗X − T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗](X0 − T̂ (H,ϕ) + TXβ)︸ ︷︷ ︸
II

+ [T̂ ∗X − T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗]T̂ (H,ϕ)︸ ︷︷ ︸
III


where M̂α = T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗TX − T̂ ∗XTX .

To prove our final result, we will show the following asymptotic convergences:

I =
∥∥∥M̂−1

α −M−1
α

∥∥∥ = Op

(
α
η∧2
2

(
1√
N

+
1√

Nhp+q+1
+ hs +

1

Nh
+ hs

)
+

1√
N

)

II = Op(A+B)

where

A =

[
1√
N

(
1 +

1√
α

)(
1√

Nhp+q+1
+ hs

)]
1√
α

(
1

Nhp+q+1
+ hs

)

B = α
η∧2
2

((
1

Nhp+q+1
+ hs

)
+

(
1√

Nhp+q+1
+ hs

))

III = Op

(
1√
N

+
√
α

(
1√

Nhp+q+1
+ hs

) ν∧2
2

+ α
1∧(1+ν)

2

)

The assumptions we made to state Theorem 5 ensure that I has the rate Op(1) while II and

III have the rate Op(N
−1/2). Let us begin with I.

Proof of I: ∥∥∥M̂−1
α −M−1

α

∥∥∥ ≤ ∥∥M−1
α

∥∥∥∥∥M̂−1
α

∥∥∥∥∥∥M̂α −Mα

∥∥∥
As Mα and M̂α are finite rank operators, their inverses are bounded. So we need to look at

the convergence of the third term.

∥∥∥M̂α −Mα

∥∥∥ =
∥∥∥[T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗TX − T̂ ∗XTX ]− [T ∗XT (αI + T ∗T )−1T ∗TX − T ∗XTX ]

∥∥∥
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≤
∥∥∥T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗TX − T ∗XT (αI + T ∗T )−1T ∗TX

∥∥∥
+
∥∥∥T ∗XTX − T̂ ∗XTX∥∥∥

≤
∥∥∥T̂ ∗XT − T ∗XT∥∥∥∥∥(αI + T ∗T )−1T ∗TX

∥∥︸ ︷︷ ︸
A

+
∥∥∥T ∗XT [(αI + T̂ ∗T̂ )−1 − (αI + T ∗T )−1]T ∗TX

∥∥∥︸ ︷︷ ︸
B

+
∥∥T ∗XT (αI + T ∗T )−1

∥∥∥∥∥T̂ ∗TX − T ∗TX∥∥∥︸ ︷︷ ︸
C

+
∥∥∥T ∗XTX − T̂ ∗XTX∥∥∥︸ ︷︷ ︸

D

• The first term in A is of order O(1/
√
N) by Assumption 13 and the second term is

O(α(η∧2)/2) by Florens, Johannes, and Van Bellegem (2009)

• B can be decomposed as the following:

‖B‖ ≤
∥∥∥T ∗XT (αI + T̂ ∗T̂ )−1

∥∥∥∥∥∥T ∗T − T̂ ∗T̂∥∥∥∥∥(αI + T ∗T )−1T ∗TX
∥∥

The first term is bounded. The second term is of order O((Nhp+q+1)−1/2 + hs) by

Assumption 6 and the third term is of order O(α(ν∧2)/2) as before.

• The first of C is O(α(ν∧2)/2) and the second term is O
(
(Nh)−1/2 + hs

)
by Assumption

12.

• Finally D is of order O
(
N−1/2

)
by Assumption 13.

Proof of II:

We can denote ê = X0 − T̂ (H,ϕ) + TXβ as T (H,ϕ) = Txβ +X0. Then:

‖ê‖ ≤
∥∥∥T̂ − T∥∥∥
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which is of order O((Nhp+q+1)−1/2 + h2s) by Assumption 6. Then we can write II as:

[T̂ ∗X − T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗]ê

=
{

(T̂ ∗X − T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗)− (T ∗X − T ∗XT (αI + T ∗T )−1T ∗)
}
ê

+(T ∗X − T ∗XT (αI + T ∗T )−1T ∗)ê

The first part is of order

Op

([
1√
N

(
1 +

1√
α

)(
1√

Nhp+q+1
+ hs

)]
+

1√
α

(
1

Nhp+q+1
+ hs

)
+ α

η∧2
2

(
1

Nhp+q+1
+ hs

))

and the second part is of order O(α(ν∧2)/2((Nhp+q+1)−1/2 + hs)).

Proof of III:

By Assumption 5, we can write:

∥∥∥[T̂ ∗X − T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗]T̂ (H,ϕ)
∥∥∥ ≤ ∥∥∥T̂ ∗XT∥∥∥ (H,ϕ)

+
∥∥∥T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗T̂

∥∥∥∥∥∥(T ∗T )ν/2 − (T̂ ∗T̂ )ν/2
∥∥∥ ‖g‖

+
∥∥∥T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗T̂ (T̂ ∗T̂ )ν/2

∥∥∥ ‖g‖
The first term is O(N−1/2), the second is of order O(α1/2). Moreover by Engl, Hanke, and

Neubauer (1996)
∥∥∥(T ∗T )ν/2 − (T̂ ∗T̂ )ν/2

∥∥∥ ≤ ∥∥∥T ∗T − T̂ ∗T̂∥∥∥(ν∧2)/2. The rate of the last part is

also given by Engl, Hanke, and Neubauer (1996) and is equal to O(α1∧(1+ν)/2).
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D Simulation Results

Below, we present the simulation results. Figures contain both the Ĥ1 and ϕ̂ for different

values αH and αϕ

Figure 1: Estimated functions for a sample of 200. Pluses are the estimated value of the function
at each point whereas the diamonds are the true value of the function at each point.αH and αϕ are
chosen by the data driven rule given in Section 4. αH = 0.0307 and αϕ = 0.307
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Figure 2: Monte Carlo simulation. Diamonds show the true values of the function at each point.
Pluses are the estimated values of the function at each point and at each simulation. αH and αϕ
are chosen by the data driven rule at each simulation.
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Figure 3: Estimated functions for αH = αϕ = 0.0106. Pluses are the estimated value of the
function at each point whereas the diamonds are the true value of the function at each point.
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Figure 4: Estimated functions for αH = αϕ = 10−5. Pluses are the estimated value of the function
at each point whereas the diamonds are the true value of the function at each point.
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Figure 5: Estimated functions with a sample size of 1000. αH and αϕ are the data driven optimal
values for a sample size of 200. Pluses are the estimated value of the function at each point whereas
the diamonds are the true value of the function at each point.
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