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Abstract

In this paper, we investigate the long run dynaroidbe intraday range of the GBP/USD,
JPY/USD and CHF/USD exchange rates. We use a n@amgdric filter to extract the
low frequency component of the intraday range, ewodel the cyclical deviation of the
range from the long run trend as a stationary agressive process. We find that the
long run trend is time-varying but highly persidtewhile the cyclical component is
strongly mean reverting. This has important imgiaas for modelling and forecasting
volatility over both short and long horizons. As #lustration, we use the cyclical
volatility model to generate out-of-sample foresasff exchange rate volatility for
horizons of up to one year under the assumptianttieslong run trend is fully persistent.
As a benchmark, we compare the forecasts of thikcalwolatility model with those of
the two-factor intraday range-based EGARCH modeBi@ndt and Jones (2006). Not
only is the cyclical volatility model significantlgasier to estimate than the EGARCH
model, but it also offers a substantial improvemerdut-of-sample forecast performance.
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1. Introduction

There is now substantial evidence that financialketavolatility is both time-varying and
highly predictable (see, for example, Andersen let 2004). This has important
implications for many applications in finance, wding portfolio optimisation, risk
measurement and option pricing, and has giventdsa large literature on volatility
measurement and forecasting. As noted by BrandtJands (2006), the efficacy of a
volatility model depends on a number of factorse Tinst is the adequacy of the proxy
for unobserved volatility that is employed in thedel. Traditional volatility proxies
based on the squared demeaned return are unbissedters of the latent integrated
variance because the integrated volatility is, loypstruction, the expectation of the
squared demeaned return. However, measures baghd squared return are inefficient
owing to the fact that they employ only a singleaswwement of the price each period
and hence contain no information about the intr@epetrajectory of the price. An
improvement in efficiency can be obtained by usiitaday data. Indeed, Andersen et al.
(2004) show that under very general assumptiores,sthm of squared intraday returns
converges to the unobserved integrated volatil#ytree intraday interval goes to zero.
However, the construction of realized volatilitfies on high frequency data, which is
not readily available for most assets over extengkxibds. Moreover, as the intraday
frequency increases, market microstructure effdidtort the measurement of returns,

leading to an upward bias in realized volatility.

An alternative volatility proxy, and one that hasperienced a significant renewed
interest, is the intraday range, which is definedtlze scaled difference between the
intraday high and low prices. Building on the earliesults of Parkinson (1980), Garman
and Klass (1980) and others, Alizadeh, Brandt amtb@d (2002) show that in addition

to being significantly more efficient than the sgpdareturn, the intraday range is more
robust than realized volatility to market microsture noise. Moreover, a significant

practical advantage of the intraday range is thatontrast with the high frequency data

that are required for the construction of realizethtility, intraday high and low prices



are readily available for almost all financial d@ssever extended periods of tirh@he

intraday range has been employed in a number afitonal volatility models, including

Chou (2005), who develops a conditional autoregressange (CARR) estimator that is
based on the conditional duration model of Engld Russell (1998), and Brandt and
Jones (2006), who extend the EGARCH model of Ne{4881) using the intraday range
in place of the absolute return. In both cases, riree-based GARCH estimators
generate more accurate volatility forecasts thamvedéent models based on squared

returns.

The second factor that determines the efficacy\aflatility model is the specification of
the process that governs volatility dynamics. lasnegly, evidence suggests that
volatility is characterised by a multi-factor sttue, with different dynamic processes
governing the long run and short run dynamics ofatidy. Engle and Lee (1999)
introduce a component GARCH model, which decompesdatility into a permanent
long-run trend component and a transitory shorteamponent that is mean-reverting
towards the long-run trerfdEmpirical evidence suggests that the two-factorRGA
model provides a better fit to the data than anvadent one-factor model. Alizadeh et al.
(2002) exploit the approximate log normality of awlity proxies based on the intraday
range and estimate both one factor and two-fachoge-based stochastic volatility
models for the daily returns of a number of excleangtes using Gaussian maximum
likelihood. They find that the evidence stronglypparts a two-factor model with one
highly persistent factor and one rapidly mean-rewgrfactor. Similarly, Brandt and
Jones (2006) estimate one-factor and two-factagedrased EGARCH models for daily
returns on the S&P 500 index. They too show thdatiiby is well characterised by a

two-factor model with one highly persistent facamd one strongly stationary facfor.

! For example, Datastream records the intraday rdogemost securities, including
equities, currencies and commodities, going baabtmut 1985.

2 See also Christoffersen et al (2008), who deriveva-component version of the
GARCH model developed by Heston and Nandi (200@)ickv permits a closed-form
solution for option valuation.

¥See also Gallant, Hsu and Tauchen (1999), Che@bysels, Gallant and Tauchen
(2003), Barndorff-Nielsen and Shephard (2001) antleBslev and Zhou (2002), Maheu
(2005).



The finding that volatility has both a highly pesteint factor and a strongly stationary
factor has important implications for modelling dodecasting volatility over both short
and long horizons. In particular, using the rangsdd two-factor EGARCH model,
Brandt and Jones (2006) show that there is sulstgmedictability in volatility at
horizons of up to one year. This is in contrashvaarlier studies, such as West and Cho
(1996) and Christoffersen and Diebold (1999), bothwhich conclude that volatility
predictability is essentially a short horizon phewmon. It is clear that the success of
two-factor models in forecasting volatility rests their ability to correctly identify the
current long run level of volatility, and to exploihe dynamics of the short run
component to forecast reversion of volatility t@ tturrent trend. To the extent that the
long run component is close to being non-stationdsydynamics are only relevant, if at

all, over much longer forecasting horizons.

Motivated by the above interpretation of two-factadatility models, we explore an
alternative, very simple approach to modelling &m@casting volatility over both short
and long horizons. In particular, we estimate teglrun trend in measured volatility
using the non-parametric filter of Hodrick and PRt (1997). We then model the
dynamics of the short run component as a statioaatgregressive process around this
long run trend. Our measure of volatility is basedthe intraday range in order to exploit
the efficiency improvements that it offers over ggpiared return. However, rather than
apply the non-parametric filter directly to theraday range, we separately extract the
long run components of intraday high and low prigew then use these to construct an
estimate of the cyclical component of volatilityhi$ is motivated by the fact that
intraday high and low prices are more likely toidfgtthe assumptions of the non-
parametric filter and hence give reliable estimateshe underlying long run trend in
volatility.

We use this approach to model the volatility dyremof the GBP/USD, JPY/USD and
CHF/USD daily exchange rates over the period 1 a@and987 to 28 April 2008.
Consistent with the findings of Engle and Lee (1)999izadeh et al. (2002) and Brandt



and Jones (2006), we show that the long run commyoisecharacterised by a time-
varying but highly persistent trend, while the ¢ham component is strongly mean-
reverting to this trend. We use the model to gaeevat-of-sample forecasts of exchange
rate volatility. We assume that over the forecastizion, the long run component of
volatility follows a random walk and use the estietaparameters of the autoregressive
model to forecast the deviation of volatility frothe long run component. As a
benchmark, we compare the forecasts of our mod#l those of the two-factor range-
based EGARCH model of Brandt and Jones (2006), wéxplicitly models the long run
component of volatility parametrically as an EGAR@kHbcess. Following the approach
of Brandt and Jones (2006), we forecast volatilppyto one year ahead, and use a range-
based volatility proxy to evaluate the forecastsrfreach model. In almost all cases, the
cyclical volatility model provides a substantialgrovement in forecast performance over
the two-factor EGARCH model, in terms of both aemy and informational content.
The improvement in performance is particularly ewtover shorter horizons where the
random walk assumption for the long trend is mik&tly to be a good approximation. A
significant practical advantage of the cyclicalatdity model is the ease with which it

can be estimated relative to other two-factor viithaimodels.

The outline of the remainder of this paper is afo¥es. In Section 2 we present the
theoretical framework. Section 3 describes the dawa evaluation criteria. Section 4
presents the empirical results. Section 5 concludes

2. Theoretical Background

Suppose that the log price of an asp@d, follows a continuous-time diffusion given by

dp(t) = o ()dW (t) 1)



where dW/(t) is the increment of a Wiener process ast) is the instantaneous
variance, which is strictly stationary and indepamtdof dW (t).* Suppose that the price
is recorded at daily intervats=1,...,T . Then conditional on the sample pathai(t),

the daily logarithmic returny, =p, —p,.,, is normally distributed with integrated

varianced? = J.:_loz(s) ds. The integrated variance;, is unobserved, but in principle

can be estimated arbitrarily accurately using asmeaof realized volatility based on
intraday returns. In particular, Andersen et abD04@) show that under very general
conditions, the sum of squared intraday returnsyreaes to the unobserved integrated
volatility as the intraday interval goes to zercowéver, the construction of realized
volatility relies on high frequency intraday datehich are often not readily available
over extended periods. Moreover, the accuracy afized volatility as a proxy for
integrated volatility is limited by the fact thas @he intraday measurement frequency
increases, market microstructure effects dist@tntteasurement of returns, leading to an
upward bias in estimated volatility (see, for ex&émpAit-Sahalia et al., 2005). An
alternative approach is to construct an estimateot#tility based on the intraday range,
given by

1

é,t=m(pt _pt) (2)

where p/ = max p(s) and pr =tq\int p(s). Parkinson (1980) shows that [ift) follows

the diffusion process given by (1), the mean sqearer of the range-based estimator
with respect to the true integrated variance igin2s smaller than the mean square error
of the squared daily return, and is hence equivatemising realized variance based on
intraday prices that are sampled every 4.6 hoursprhctice, since prices are only

observed at discrete intervals, the sample rangerusstimates the true range of the
continuous price. However, in liquid markets (sashfor the major USD exchange rates

used in this paper) this bias is likely to be ngigle. A significant advantage of the

* For convenience, we assume that drift of the ldgepprocess is zero, which is a
common assumption when dealing with short horiz&turns. However, it is
straightforward to relax this assumption.



estimator given by (2) is that in contrast withthifgequency data, intraday high and low
prices are available on most assets over extendadds. Moreover, Alizadeh et al.
(2002) show that the range-based estimator givef2pys relatively robust to market

microstructure noise.

In this paper, we employ the intraday range to stigate the short and long run
dynamics of daily exchange rate volatility. In peutar, we assume that the square root
of the intraday range follows a two-factor procgs®&n by

Ort =G * a(UR,t—l - qt—l) T & (3)

whereq, is the long run trend component of the intradaygeao,, —q, is the short run
cyclical deviation of volatility from the long rumend andg, is a random error term with
zero mean and constant variance. The long run tiggnd assumed to be a stationary but
highly persistent process, but we leave its prediseamics unspecified. The parameter
a measures the speed of reversion of the cyclicalpoment of volatility to the long run
trend. This specification is motivated by the fimgs of a number of authors who show
that volatility is characterised by a factor sturet (see, for example, Engle and Lee,
1999; Alizadeh et al., 2002; Brandt and Jones, 006

We estimate the two-factor process given by (3jwo stages. First, we estimate the
long-run component of volatilityy,, non-parametrically using the filter of Hodrickdan
Prescott (1997), which extracts a low frequency-ioear trend from a time-series.
Rather than apply the filter to the intraday rarntgelf, we estimate the long run
components of intraday high and low pric@$, and p- separately. This is motivated by
the fact that intraday high and low prices are niikady to satisfy the assumptions of the
non-parametric filter and hence give reliable eates of the underlying long run trends
in volatility. We set the smoothing parameter o€ thlodrick Prescott filter to the
commonly used value of 100 multiplied by the sqddrequency of the data, which for
daily data (assuming 240 trading days per yeab), 160,000 (see, for example, Baxter
and King, 1999). This implicitly assumes that viblgt is linked to the business cycle.



However, we also experimented with other valuediersmoothing parameter and show
that our results are robust across a large rangaloks. Defining the long run trend
components of intraday high and low pricesfgsand p;, respectively, the long run

trend of volatility is constructed as

1

=|— - 4
=] B @

In the second step, we estimate an autoregressidelrfor the cyclical component:
Ory =G = a(0r —Gi) +V, )

wherev, is a zero mean random error. In order to foreeakitility using the cyclical
volatility model, we assume that the long run trdatiows a random walk over the
forecast horizon, so theﬁ1+i =g, for all i >0, and use the estimated autoregressive
parameter from (5) to forecast the cyclical compon&he n-step ahead forecast of

volatility in the cyclical volatility model is thefore given by

a-R,Hn =@~ &n)qt + a'na-R,t (6)
As n -, 0y,,, -0, with a speed that is determined by the estimetedficient 4.
The two-factor range-based EGARCH model
Brandt and Jones (2006) estimate one-factor andfaetor range-based EGARCH
models for daily returns on the S&P 500 index. Theow that volatility is well
characterised by a two-factor model with one highdysistent factor and one strongly

stationary factor. As a benchmark against whicbampare the cyclical volatility model,

we estimate the two-factor range-based EGARCH majilen by



d, ~ N(0.43+Ing, 0.29) (7)

r_
Ing, -Ina, = (NG, ~ng) +ax, +4_= (8)
t-1

Il
Ing, —Ing,_, = y,(6—-Inq,_,) + %XI_1+520‘—1 ©

t-1

where d, =In(p" -p5) , rn=p-p, , and x =(d, -043-Ing)/0.28 is the
standardised deviation of the log range from ifgeeted value. We also estimate a one
factor range-based EGARCH model derived by setiay = € so that the long run trend

is constant. In order to forecast volatility usthig EGARCH model, the shocks,, and
r,. are set to zero for al>1. The 1-step ahead forecast of volatility usingE@ARCH

model is therefore given by

~ A ~ ~ ~ T
Inam=(1-n)lnq+nlnqt+¢1xt+é1;t (10)

t

The 2-step ahead forecast is given by

|n5{+2 =(1_I/1)Ina{+1+j/1|ndt+1 (11)

~ N Ao ~ T
Inqm=(1—y2)lnqt+y26’+¢7zxt+52;t (12)

t
Then-step ahead forecast for= 3 is given by

Ing,,, =(1-KIng,,,+%nG.,, (13)

A~

NG, =@~ 1) INGpy + 150 (14)



As n - o, 62 - exp@), with a speed that is determined by the estimatedficients

t+n

¥, and j,.
3. Data and For ecast Evaluation
Data

We use the cyclical volatility model to forecastatdity for the GBP/USD, JPY/USD
and CHF/USD exchange rates. Daily data were oldafoe the three exchange rates
from Reuters for the period 01 January 1987 to BBIR008 and used to construct daily
log returns. The period 01 January 1987 to 05 Déeem 988 (500 observations) is
reserved for initial estimation of the volatilityaaels, while the period 06 December
1988 to 28 April 2008 (5047 observations) is usadolut-of-sample evaluation in which
the estimation window of 500 observations is rolfedward daily. Table 1 reports
summary statistics for the three log return seioeshe full sample of 5547 observations.
Panel A reports the mean, standard deviation, skssvand excess kurtosis coefficients
and the Bera-Jarque statistic, while Panel B rsgponie first six autocorrelation
coefficients and the Ljung-Box Q statistic for azdaelation up to six lags for both
returns and squared returns. P-values are report@drentheses. All three series are
highly non-normal with positive excess kurtosis aegdative skewness. The return series
are serially uncorrelated, but squared returnshégbly autocorrelated, indicative of

volatility clustering.
[Table 1]

Panel A of Figure 1 plots the intraday range meaxirstandard deviation over the
whole sample of 5547 observations together withldéhg run trend estimated using the
Hodrick-Prescott filter. Panel B of Figure 1 plthe resulting cyclical component of the
standard deviation. It is clear that the long reend in volatility is time-varying and

highly persistent, while the cyclical component ssongly mean-reverting, lending

support to the two-component representation oftiitya Panel C of Figure 1 plots the
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recursively estimated endpoint of the trend, whiclised for forecasting volatility out-
of-sample, together with the trend estimated ugimg full sample. The recursively
estimated trend is more volatile than the full-skrpend owing to the fact that at the
end point of each rolling sample, the Hodrick-Pogsilter is implemented as a one-
sided filter, while for the corresponding obsereatiwithin the full sample, it is a
implemented as a two-sided filter which exploitformation contained in subsequent

observations to identify the trend ex post.
[Figure 1]
Forecast evaluation

Each of the two models is used to generate outwipde forecasts of the standard
deviation of returns for horizons of up to 240 dayser the evaluation period. The
models are initially estimated using the first filkandred observations, and then the
estimation period is rolled forward daily until tead of the sample is reached. Following
Brandt and Jones (2006), from the point forecasidarat daté, we construct average

forecasts of the standard deviation betweern, andt +7,:

R 1 .
o(1,1,)=—— 2.0, 15
(Er) = 2.0 (15)

We consider forecast horizons of 1, 5, 20, 60, 420 240 days. For the three shorter
horizons, we take the average over the forecasdmri.e. (7, 7,) = (1, 1), (1, 5) and (1,
20). For the three longer horizons, we use mordliBrages, i.e.i(, 7,) = (41,60), (101,
120) and (221, 240). As a proxy for true volatjlitye use the square root of the range-
based estimator of the variance given by (2). Thisised to construct the average

volatility over the each of the six forecast intes:

1 <
O(1,T,) =————= 2. 0r14r 16
() = 2k (16)
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We evaluate the forecasting performance of the cvamlapping conditional variance

forecastsg; (7,,7,) generated by modeélusing two measures. The first is the root mean

square error (RMSE) with respect to the true awerexgatility:

1/2

RMSE = %i(q(a, )= G, (1, 1,))’ (17)

The second criterion is the Mincer and Zarnowit26@) regression for each model given

by:
a-t(z-l’ Z-2) = ai +[;Ia;,t(rl’ Z-2) +£i,t(’1’ Z-2) (18)

The Mincer-Zarnowitz regression measures the efiicy of the forecasts from each
model. In particular, if the model is weakly eféait, a, =0 and £ =1. We test the null
hypothesis of weak efficiency for each modahd for each forecast intervak, (7,). The
R-squared coefficient from the Mincer-Zarnowitz neggion reveals the explanatory
power of the model, irrespective of its efficienand is thus a useful measure of the

information content of a model’s forecasts.
4. Reaults

Table 2 reports the RMSE given by (17) for the ¢hcenditional volatility models over
the different forecasting intervals for the thragrencies. Across all three models, the
RMSE at first falls with the forecast horizon amen rises. This is explained by the fact
that initially, the forecast interval increasesnfrd day to 5 days and then to 20 days. By
averaging forecasts over increasingly long intexvtide noise in the forecasts is reduced,
and this tends to outweigh any reduction in acgutatsing from an increase in the
forecast horizon. After the 20-day horizon, thesti@st interval is fixed at 20 days, and so
forecast accuracy reduces as the horizon increbseshe 2-factor EGARCH model, the

deterioration in forecast accuracy is very pron@ahat the 240-day horizon. Overall, the

12



cyclical model offers the highest forecast accuriacy2 of the 18 cases, followed by the
2-factor EGARCH model in five of the 18 cases. mmyoone case does the 1-factor
EGARCH offer the lowest RMSE, which is consistelithvine component representation

of volatility.

[Table 2]

Tables 3 to 8 report the estimation results of Ntiecer-Zarnowitz regression given by
(18). The tables report the estimated regressioanpeters, the standard errors of these
estimates, the regression R-squared statistic lenéFstatistic to test the null hypothesis
of conditional unbiasedness. In line with the resébr the RMSE reported in Table 2,
the R-squared generally increases for horizonsoupOtdays, and then falls, reflecting
initially the reduction in noise from extending theerval over which the forecasts are
averaged, and then a reduction in performance #rtanding the forecasting horizon.
For the short horizon forecasts (Tables 3 to 5§ dyclical volatility model has
substantial explanatory power. Across all threeaenaies, the average value of the R-
squared statistic is 15.4% for the one-day forec&.5% for the five-day forecasts and
38.3% for the 20-day forecasts. The explanatory grofer the two-factor EGARCH
model is generally considerably lower (10.7%, 2238 31.8%, respectively), and for
the one-factor EGARCH model, lower still (8.4%, 1%. and 18.9%, respectively). Of
the nine short horizon forecasts, the highest egitay power is offered by the cyclical
volatility model in seven cases, and by the twada&EGARCH model in two cases.
However, where the explanatory power of the twaelaEGARCH model is higher than
that of the cyclical volatility model, the differees are relatively small. The highest
explanatory power for short horizon forecasts of ahthe three models is 43.5% for the
20-day forecasts of the cyclical volatility model the GBP. In all cases, the estimated
slope coefficient is lower than unity and declimesnotonically with the forecast horizon.
The null hypothesis of conditional unbiasednesgjected in all cases at the five percent
significance level, but the rejection is notablyosger for the one-factor EGARCH

model than for either of the two-factor models.
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[Tables 3 to 5]

For the long horizon forecasts (Tables 6 to 8),ekxglanatory power of the three models
declines relative to the 20-day forecasts as thecst horizon increases. For the cyclical
model, the average R-squared statistic acrosshtiee tturrencies is 22.2% for 60-day
forecasts, 10.1% for 120-day forecasts and 4.8%24d@-day forecasts. Again, this is
higher than either of the two EGARCH models. In snaases, the two-factor EGARCH
model has higher explanatory power than the onexfd&GARCH model, although the
differences are generally small. At the 240-dayidwor, the explanatory power of the
two-factor EGARCH model falls to zero for all threerrencies. In contrast, the cyclical
volatility model is able to explain 11.5% of theriaion in volatility for the CHF at the
240-day horizon. Note, however, that the estimafege coefficients fall significantly
over longer forecast horizons, and indeed for thdFGit the 240-day horizon, the

estimated slope coefficient is significantly negatior the cyclical volatility model.
[Tables 6 to 8]

We now explore the sensitivity of the cyclical mbslgperformance to the choice of
smoothing parameter in the Hodrick-Prescott filtarparticular, Figure 2 reports the R-
squared coefficient from the Mincer-Zarnowitz reggien for values of the smoothing
parameter from zero to 1O Results are reported for each currency and foh e the
six different forecast intervals. A smoothing paeden of zero corresponds to no trend. In
this case, the forecast of the next period’s vithais simply equal to the current period’s
volatility. As the smoothing parameter increasd® estimated trend becomes more
linear. With a smoothing parameter of*16 the highest value that we consider — the
trend estimated over the full sample is visuallgistinguishable from a linear trend.
Figure 2 reveals that forecast performance at fmsteases with the value of the
smoothing parameter and then decreases, and thas thue for all six forecast horizons
and for all three currencies. In almost all caghs, optimal smoothing parameter is
between 1®and 16. This is reasonably close to the smoothing paramaged in the
results reported above (0.576XL0and for the GBP and JPY, the reduction in

14



performance from using the higher value is reldyiwenall. For the CHF, the difference
is more pronounced. Although not reported, a smpkttern emerges for the RMSE of
the model’s forecasts, with the most accurate Bstscgenerated by intermediate value of
the smoothing parameter. Indeed, the optimal vafube smoothing parameter in terms

of RMSE appears to be even closer to the ‘defaaltie that we have used.

[Figure 2]

5. Conclusion

The finding that volatility has both a highly pesteint component and a strongly
stationary component has important implicationsnfmdelling and forecasting volatility
over both short and long horizons. In this paper,develop a simple yet effective model
for forecasting volatility that is based on a deposition of the intraday range measure
of volatility into its trend and cycle componentssing a non-parametric filter, we are
able to estimate the long run trend in volatilititheut having to specify its dynamics.
Modelling the cyclical deviation of volatility fronthe long run trend as a simple
autoregressive process then allows us to foreadatiity under the assumption that the
trend component follows a random walk over the dast horizon. We show that out-of-
sample forecasts generated by the cyclical vdlatimodel are able to explain a
substantial fraction of the variation in actualatdity at horizons of up to one year. The
model generally outperforms the two-factor rangselaEGARCH model of Brandt and
Jones (2006), in terms of both forecast accuradyi@iormational content. Owing to its
simplicity, the cyclical volatility model also offe a substantial computational advantage
over the two-factor EGARCH model. Indeed, the eation time for the cyclical

volatility model was many orders of magnitude lowwean for the EGARCH model.

The results reported in this paper, as encouragintpey are, are based on the simplest
possible specification both for the long run tremtnponent (which we leave unspecified
but assume to follow a random walk over the foredawizon) and the cyclical

component (which we assume to follow a first ordetoregressive process). A natural
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line of further investigation would be alternatisjgecifications for these two components.
Almost certainly, a higher order ARMA process wopldvide a better fit for the cyclical
component in-sample, and consequently it wouldnberesting to establish whether this
translates into an improvement in out-of-sampledast performance. Similarly, in order
to estimate the long run trend, we have employed‘'default’ value of the smoothing
parameter in the Hodrick-Prescott filter, thus iimkthe trend in volatility to the trend in
the business cycle. While this is perhaps a redder@ssumption, it is clear from the
results reported above that this is not the optwaile, and so it would be interesting to
estimate this parameter from the data. Moreoveilewthe random walk assumption for
the long run trend provides a good approximatiansfwrt horizon forecasts, it becomes
increasingly unrealistic as the forecast horizazreases since the long run trend, while
highly persistent is nevertheless stationary andcéemean-reverting. It would be
straightforward to adapt the specification of theslical model to incorporate these
dynamics. A further avenue for future research Wdié to extend the cyclical volatility

model to the multivariate setting.
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Figure 1 Decomposition of GBP Volatility into Trend and Cycle Components

Pand A: Volatility and L ong Run Trend
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Notes: Panel A shows the range-based estimatdreoétndard deviation of log returns for the
GBP estimated using equation (2) and the long rendt estimated using the Hodrick-Prescott
filter with a smoothing parameter of 5,760,000. Eaenple period is 01/01/87 to 28/04/08. Panel
B shows the cyclical component of volatility defihas the difference between the original series
and the trend. Panel C shows the trend estimaied tiee whole sample and the end points of the

trend estimated using a rolling window of 500 okiatons.
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Figure 1 (Continued) Decomposition of GBP Volatility into Trend and Cycle Components

Pand C: Full-Sample Trend and Recursively Estimated Trend
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Notes: Panel A shows the range-based estimatdreo$tandard deviation of log returns for the

GBP estimated using equation (2) and the long rendt estimated using the Hodrick-Prescott

filter with a smoothing parameter of 5,760,000. Baenple period is 01/01/87 to 28/04/08. Panel
B shows the cyclical component of volatility defihas the difference between the original series
and the trend. Panel C shows the trend estimaied tiee whole sample and the end points of the
trend estimated using a rolling window of 500 okiadons.
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Figure 2 Sensitivity Analysis

Panel A: GBP
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Notes: The Figure shows the value of the R-squamelficient in the Mincer-Zarnowitz
regression for different values of the smoothingapeeter in the Hodrick-Prescott filter, for
different forecast horizons and different curreacihe evaluation sample is 06 December 1988
to 28 April 2008 (5047 observations).
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Figure 2 (Continued) Sensitivity to Smoothing Coefficient

Panel C: JPY
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Notes: The Figure shows the value of the R-squamelficient in the Mincer-Zarnowitz
regression for different values of the smoothingapeeter in the Hodrick-Prescott filter, and for
different forecast horizons. The evaluation sanipl@é December 1988 to 28 April 2008 (5047

observations).
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Table 1 Summary Statistics and Autocorrelations

Pandl A: Summary Statistics

Standar Exces
Mean Deviation Skewness Kurtosis Bera-Jarque
GBF 0.005¥% 0.589¥ -0.207% 3.05( 662.26¢
CHF -0.008¥% 0.715¥% -0.11z 1.701 763.29!
JPY -0.007¥% 0.689v -0.49¢ 5.21: 839.62:

Panel B: Autocorrelations
Returns

1 2 3 4 5 6 Q
GBF -0.01( 0.03] -0.01¢  -0.03¢ 0.06¢ 0.02¢ 0.69<(0.994
CHF -0.001  -0.12¢ 0.04: -0.04: 0.00s -0.00( 1.74£(0.941
JPY 0.05¢ -0.09¢ -0.07¢ -0.072 0.03: 0.00: 2.122(0.908

Squared Returns

1 2 3 4 5 6 Q

GBF 0.0¢4 0.1 0.0¢3 0.09: 0.097 0.1(8 354.79:(0.000

CHF 0.0¢6 0.028 0.042 0.0¢4 0.052 0.0¢7 136.49¢(0.000
JPY 0.14: 0.078 0.043 0.0711 0.059 0.0711 229.82:(0.000

Notes: Panel A reports the mean, standard deviaskewness, excess kurtosis and the Bera-
Jarque statistic for daily log close-to-close netufor GBP/USD, CHF/USD and JPY/USD. The
sample period is 01/01/87 to 28/04/08. Panel B tepthe first six autocorrelation coefficients
and the Ljung-Box Q statistic for autocorrelatiop 1 six lags, for both returns and squared
returns. P-values are reported in parentheses.
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Table 2 Root Mean Square Error

7, cVv EGARCH (IF  EGARCH (2F)
1  GBF 0.0023! 0.0026« 0.0024+
CHF 0.00280 0.00321 0.00333
JPY 0.00303 0.00336 0.00298
5  GBF 0.00133 0.00164 0.00136
CHF 0.00158 0.00177 0.00180
JPY 0.0019( 0.0022: 0.0022¢
20 GBF 0.00108 0.00160 0.00106
CHF 0.00119 0.00150 0.00146
JPY 0.00146 0.00185 0.00132
60 GBF 0.0012; 0.0013; 0.0012¢
CHF 0.00136 0.00148 0.00161
JPY 0.00160 0.00205 0.00174
12C  GBF 0.00141 0.00172 0.00151
CHF 0.00174 0.00150 0.00145
JPY 0.0018° 0.0018: 0.0017¢
24C  GBF 0.00170 0.00303 0.00185
CHF 0.00236 0.00242 0.00280
JPY 0.00243 0.00193 0.00284

Notes: The table reports the Root Mean Square ERMSE) for the cyclical volatility model,
the 1-factor range-based EGARCH model and the faange-based EGARCH model for the
forecast intervalt+r, to t+r7,, where r, =max(1r,-20) for the three currencies. The
evaluation sample is 06 December 1988 to 28 A& (5047 observations). Each model is
estimated recursively using an estimation sampl00fobservations. At each dateach model

is used to generate forecasts of standard deviafi@r the intervalt+7, to t+7,. These
forecasts are averaged and compared with the averdge of the actual standard deviation over
the same interval, estimated using equation (2).
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Table 3 Mincer-Zarnowitz Regression Results( 7, =1, 7, =1)

GBP CHF JPY
a Vi R? F a Jii R F a Vi R F
cv 0.092 0.812 0.169 27.330 0.146 0.762 0.113 3&1.37 0.099 0.825 0.180 25.012
(0.013)  (0.025) (0.019)  (0.030) (0.015)  (0)25

EGARCH (1F  0.134 0.608 0.110 498.473 0.285 0.444 0.041 595.976.045 0.766 0.101 348.220
(0.015)  (0.024) (0.022)  (0.030) (0.022) (0032

EGARCH (2F) 0.118 0.749 0.105  34.794  0.440 0.379 0.018  39.515 .0180  0.998 0.198 7.599
(0.016)  (0.030) (0.052)  (0.080) (0.016)  (0)028

Notes: The table reports the estimated intercémpesand R-squared of the Mincer-Zarnowitz regms$or the cyclical volatility model, the 1-
factor range-based EGARCH model and the 2-factuyedbased EGARCH model for the forecast intetvat, to t+ r, for the three currencies.
Standard errors for the estimated parameters pogtesl in parentheses. The estimated slope caaffieind standard error are multiplied by 100.
The table also reports the F-statistic for the hyflothesis that the intercept is equal to zerothadlope is equal to one. The five percent atitic
value of the F-statistic is 2.99. The evaluatiomgie is 06 December 1988 to 28 April 2008 (5047eokmtions). Each model is estimated
recursively using an estimation sample of 500 olz&Ems. At each datie each model is used to generate forecasts ofatduwidviation over the
interval t+ 7, to t+7,. These forecasts are averaged and compared witivdrage value of the actual standard deviatien e same interval,

estimated using equation (2).
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Table 4 Mincer-Zarnowitz Regression Results (7, =1, 7, =5)

GBP CHF JPY
a Vi R? F a Jii R F a Vi R F
cv 0.107 0.784 0.365 22.007 0.176 0.711 0.254 28.19 0.154 0.728 0.297 29.678
(0.016)  (0.033) (0.024)  (0.038) (0.021) (035

EGARCH (1F  0.223 0.624 0.213 141.26 0.314 0.504 0.107 66.886 .2740 0.584 0.133 97.026
(0.017)  (0.038) (0.027)  (0.046) (0.024) (0047

EGARCH (2F)  0.092 0.838 0.327 15383  0.319 0.473 0.175  131.078.288 0.468 0.180  148.789
(0.019)  (0.038) (0.020)  (0.032) (0.020)  (0)032

Notes: The table reports the estimated intercégpesand R-squared of the Mincer-Zarnowitz regms$or the cyclical volatility model, the 1-
factor range-based EGARCH model and the 2-factuyedbased EGARCH model for the forecast intetvat, to t+ r, for the three currencies.
Standard errors for the estimated parameters pogtegl in parentheses. The estimated slope caaffieind standard error are multiplied by 100.
The table also reports the F-statistic for the hyfiothesis that the intercept is equal to zerothadlope is equal to one. The five percent aiitic
value of the F-statistic is 2.99. The evaluatiomgie is 06 December 1988 to 28 April 2008 (5047eokmtions). Each model is estimated
recursively using an estimation sample of 500 ofz&Ems. At each datie each model is used to generate forecasts ofatduwidviation over the
interval t+ 7, to t+7,. These forecasts are averaged and compared witvrage value of the actual standard deviatien e same interval,

estimated using equation (2).
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Table 5 Mincer-Zarnowitz Regression Results (7, =1, 1, =20)

GBP CHF JPY
a Vi R? F a Jii R F a Vi R F
cv 0.147 0.703 0.435 17.195 0.230 0.623 0.338 Z3.32 0.202 0.641 0.375 23.489
(0.026)  (0.051) (0.034)  (0.055) (0.031) (052

EGARCH (1F  0.274 0.550 0.243 116.972 0.393 0.351 0.107 51.5230.317 0.504 0.218 66.265
(0.025)  (0.061) (0.040)  (0.064) (0.031) (0060

EGARCH (2F) 0.115 0.784 0.398 8.063 0.371 0.406 0.147  50.588 0900.  0.864 0.408 3.937
(0.030)  (0.061) (0.037)  (0.062) (0.037)  (0)066

Notes: The table reports the estimated intercégmbesand R-squared of the Mincer-Zarnowitz regms$or the cyclical volatility model, the 1-
factor range-based EGARCH model and the 2-factuyedbased EGARCH model for the forecast intetvat, to t+ r, for the three currencies.
Standard errors for the estimated parameters pogtegl in parentheses. The estimated slope caaffieind standard error are multiplied by 100.
The table also reports the F-statistic for the hyfiothesis that the intercept is equal to zerothadlope is equal to one. The five percent aiitic
value of the F-statistic is 2.99. The evaluatiomgie is 06 December 1988 to 28 April 2008 (5047eokmtions). Each model is estimated
recursively using an estimation sample of 500 ofz&Ems. At each datie each model is used to generate forecasts ofatduwidviation over the
interval t+ 7, to t+7,. These forecasts are averaged and compared witvrage value of the actual standard deviatien e same interval,

estimated using equation (2).
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Table 6 Mincer-Zarnowitz Regression Results( 7, =41, 1, =60)

GBP CHF JPY
a Vi R? F a Jii R F a Vi R F
cv 0.231 0.519 0.290 14.434 0.339 0.442 0.183 14.63 0.332 0.378 0.193 27.050
(0.045)  (0.090) (0.064)  (0.103) (0.049) (085

EGARCH (1F  0.240 0.514 0.261 39.412 0.405 0.336 0.076 39.997 .4200 0.249 0.057 68.766
(0.028)  (0.055) (0.046)  (0.074) (0.039) (064

EGARCH (2F) 0.217 0.539 0.257  34.069  0.427 0.292 0.091  74.120 2980  0.467 0.170  33.355
(0.030)  (0.058) (0.037)  (0.058) (0.039)  (0)066

Notes: The table reports the estimated intercégmbesand R-squared of the Mincer-Zarnowitz regms$or the cyclical volatility model, the 1-
factor range-based EGARCH model and the 2-factuyedbased EGARCH model for the forecast intetvat, to t+ r, for the three currencies.
Standard errors for the estimated parameters pogtegl in parentheses. The estimated slope caaffieind standard error are multiplied by 100.
The table also reports the F-statistic for the hyfiothesis that the intercept is equal to zerothadlope is equal to one. The five percent aiitic
value of the F-statistic is 2.99. The evaluatiomgie is 06 December 1988 to 28 April 2008 (5047eokmtions). Each model is estimated
recursively using an estimation sample of 500 ofz&Ems. At each datie each model is used to generate forecasts ofatduwidviation over the
interval t+ 7, to t+7,. These forecasts are averaged and compared witvrage value of the actual standard deviatien e same interval,

estimated using equation (2).
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Table 7 Mincer-Zarnowitz Regression Results (7, =101, 7,=120)

GBP

a b R F a
CcVv 0.257 0.483 0.208 6.000 0.458
(0.076)  (0.149) (0.101)
EGARCH (1F  0.346 0.317 0.159 119.087 0.336
(0.022)  (0.046) (0.088)
EGARCH (2F) 0.307 0.386 0.169 66.070 0.347
(0.027)  (0.055) (0.063)

CHF

0.241
(0.162)

0.407
(0.131)

0.405
(0.096)

R

0.052

0.038

0.068

JPY
a b
10.9490.428 0.182
(0.078) (038
35.9850.390 0.302
(0.064) (0109
29.827 .3530 0.365
(0.062) (0105

R

0.042

0.030

0.047

17.976

21.259

19.499

Notes: The table reports the estimated intercégpesand R-squared of the Mincer-Zarnowitz regms$or the cyclical volatility model, the 1-
factor range-based EGARCH model and the 2-factuyedbased EGARCH model for the forecast intetvat, to t+ r, for the three currencies.
Standard errors for the estimated parameters pogtegl in parentheses. The estimated slope caaffieind standard error are multiplied by 100.
The table also reports the F-statistic for the hyfiothesis that the intercept is equal to zerothadlope is equal to one. The five percent aiitic
value of the F-statistic is 2.99. The evaluatiomgie is 06 December 1988 to 28 April 2008 (5047eokmtions). Each model is estimated
recursively using an estimation sample of 500 olz&Ems. At each datie each model is used to generate forecasts ofatduwidviation over the
interval t+ 7, to t+7,. These forecasts are averaged and compared witvrage value of the actual standard deviatien tte same interval,

estimated using equation (2).
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Table 8 Mincer-Zarnowitz Regression Results (7, =221, 1, =240)

GBP CHF JPY
a Vi R? F a Jii R F a Vi R F
cv 0.424 0.169 0.025 5.968 0.818 -0.329 0.115 .28 0.509 0.052 0.003 9.692
(0.127)  (0.241) (0.135)  (0.209) (0.129)  (0p18

EGARCH (1F  0.460 0.087 0.017 12.976 0.610 -0.005 0.003 12627.50.472 0.171 0.012 35.898
(0.014)  (0.043) (0.010)  (0.007) (0.056) (001

EGARCH (2F) 0.484  -0.000  0.001  538.03L  0.604 0.003 0.003 63062. 0.531 0.054 0.006  215.064
(0.008)  (0.000) (0.009)  (0.003) (0.030)  (0)046

Notes: The table reports the estimated intercégpesand R-squared of the Mincer-Zarnowitz regms$or the cyclical volatility model, the 1-
factor range-based EGARCH model and the 2-factuyedbased EGARCH model for the forecast intetvat, to t+ r, for the three currencies.
Standard errors for the estimated parameters pogtegl in parentheses. The estimated slope caaffieind standard error are multiplied by 100.
The table also reports the F-statistic for the hyfiothesis that the intercept is equal to zerothadlope is equal to one. The five percent aiitic
value of the F-statistic is 2.99. The evaluatiomgie is 06 December 1988 to 28 April 2008 (5047eokmtions). Each model is estimated
recursively using an estimation sample of 500 ofz&Ems. At each datie each model is used to generate forecasts ofatduwidviation over the
interval t+ 7, to t+7,. These forecasts are averaged and compared witvrage value of the actual standard deviatien tte same interval,

estimated using equation (2).
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