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Abstract 

We propose two simple evaluation methods for time varying density forecasts of continuous 

higher dimensional random variables. Both methods are based on the probability integral 

transformation for unidimensional forecasts. The first method tests multinormal densities and 

relies on the rotation of the coordinate system. The advantage of the second method is not only its 

applicability to any continuous distribution but also the evaluation of the forecast accuracy in 

specific regions of its domain as defined by the user’s interest. We show that the latter property is 

particularly useful for evaluating a multidimensional generalization of the Value at Risk. In 

simulations and in an empirical study, we examine the performance of both tests. 
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1. Introduction  

 

Evaluation of the accuracy of forecasts occupies a prominent place in the finance and 

economics literature. However, most of this literature (e.g., Diebold and Lopez, 1996) 

focuses on the evaluation of point forecasts as opposed to interval or density forecasts. 

The driving force for this over-focus is that, until recently, point forecasts appeared to 

serve well the requirements of the forecast users. However, there is increasing evidence 

that a more comprehensive approach is needed. One example is Value at Risk (VaR) 

which is defined as the maximum loss on a portfolio over a certain period of time that can 

be expected with a certain probability. When returns are normally distributed, the VaR of 

a portfolio is a simple function of the variance of the portfolio.1 In this case, normality 

justifies the use of point forecasts for the variance. However, when the return distribution 

is non-normal, as is now the general consensus, the VaR of a portfolio is determined not 

just by the portfolio variance but by the entire conditional distribution of returns. More 

generally, decision making under uncertainty with asymmetric loss function and non-

Gaussian variables involves density forecasts (see Tay and Wallis, 2000; and Guidolin 

and Timmermann, 2005, for a survey and discussion of density forecasting applications 

in finance and economics). 

 

The increasing importance of forecasts of the entire (conditional) density naturally raises 

the issue of forecast evaluation. The relevant literature, although developing at a fast 

                                                 
1 When the mean return on an asset is assumed to be zero, as is commonly the case in 
practice when dealing with short-horizon returns, the VaR of a portfolio is simply a 
constant multiple of the square root of variance of the portfolio. 
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pace, is still in its infancy. This is somewhat surprising considering that the crucial tools 

employed date back a few decades. Indeed, a key contribution by Diebold et al. (1998) 

relies on the probability integral transformation (PIT) result in Rosenblatt (1952). 

Diebold et al. point out that the correct density is weakly superior to all forecasts. This 

suggests that forecasts should be evaluated in terms of their correctness as this is 

independent of the loss function. To this end, Diebold et al. (1998) employ the PIT of the 

univariate density forecasts which, if accurate, are ... dii  standard uniform. They measure 

the forecast accuracy by the distance between the empirical distribution of the PITs and 

the 45° line and argue that the visual inspection of this distance may provide valuable 

insights into the deficiencies of the model and ways of improving it. Obviously, standard 

goodness-of-fit tests (see Noceti et al., 2003 for a comparison of the existing goodness-

of-fit tests) can be directly applied to the PITs and additional tests have been proposed by 

Anderson et al. (1994), Li (1996), Granger and Pesaran (1999), Berkowitz (2001), Li and 

Tkacz (2001), Hong (2001), Hong and Li (2003), Bai (2003), Corradi and Swanson 

(2006) and Hong et al. (2007).  

 

The existing evaluation methods of the multidimensional density forecasts (MDF) rely on 

the advances made in the univariate case. Diebold et al. (1999) extend the PIT idea to the 

multivariate forecasts by factoring the multivariate probability density function (PDF) 

into its conditionals and computing the PIT for each conditional. As in the univariate 

case, the PIT of these forecasts is ... dii  uniform if the sequence of forecasts is correct. 

Clements and Smith (2000, 2002) extend Diebold et al.’s idea and propose two tests 

based on the product and ratio of the conditionals and marginals. While the latter tests 
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perform well when there is correlation misspecification, they underperform the original 

test by Diebold et al. (1999) when such misspecification is absent. However, both 

approaches rely on the decomposition of each period forecasts into their conditionals 

which may be impractical for some applications (e.g., for numerical approximations of 

density forecasts). 

 

Other approaches concerning the evaluation of multivariate density forecasts have been 

proposed by Sarno and Valente (2004) and Chen and Fan (2006). They, however, are 

concerned with superior predictive ability of two competing forecast models. The test 

proposed by Sarno and Valente, which is the equivalent of the test of Diebold and 

Mariano (1995) in the context of density forecasting, relies on the integrated square 

difference. Chen and Fan on the other hand, forecast the joint densities via semi-

parametric copula models and employ the Kullback-Leibler Information Criterion 

(KLIC) to discriminate between them. Dick et al. (2008) and Li and Xu (2009) employ 

the KLIC framework to evaluate the forecasts of the joint density of exchange rates. 

 

Similar to Diebold et al. (1998, 1999) and Clements and Smith (2000, 2002), this paper 

assumes that the forecasting model is correct under the null hypothesis. This assumption 

has important implications which impact upon the evaluation tools employed (see 

Corradi and Swanson, 2006). However, as the focus of this paper is to relate our test to 

similar tests, we ignore parameter estimation error and potential dynamic 

misspecification but acknowledge that these could be important. Finally, we stress that 
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forecasts may vary over time making a forecast evaluation based on the laws of large 

numbers unfeasible. 

 

The outline of the remainder of this paper is as follows. In Section 2, we discuss an 

evaluation procedure for multinormal density forecasts. Section 3 presents a test for 

arbitrary continuous densities while Section 4 discusses the results of Monte Carlo 

simulations and an empirical application for the newly proposed tests. Finally, Section 5 

concludes. 

 

2. Evaluation Procedure for Multinormal Density Forecasts 

 

Rosenblatt (1952) showed that for the cumulative distribution function (CDF) tF
)

 (PDF 

tf
)

), which correctly forecasts the true data generating process (DGP) tF  of the 

observation tx ,  i.e., for which tF
)

( tx )= tF ( tx ), the PIT 

)()( tt

x

tt xFduufz
t ))

== ∫
∞−

 

is ... dii  according to ]1,0[U . Therefore, the adequacy of forecasts can be easily evaluated 

by examining the tz  series for violations of independence and uniformity. 

 

The PIT idea is extended to the multivariate case by Diebold et al. (1999). Their test 

procedure (D-test hereafter) factors each period MDF into the product of the conditionals 

 

)()|(),...,,|(),...,,( 11121,1211211 ttttttNttNttNtttt xfxxfxxxxfxxxf −−−−− ⋅⋅⋅⋅=
))))
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and obtain the PIT for each conditional distribution, producing a set of N z series, which 

are ... dii  ]1,0[U  individually and as a whole whenever the MDF is correct. 2 Rejecting the 

null of ... dii  ]1,0[U  for any, as well as the combined tz  series implies that the MDF is 

misspecified. Clements and Smith (2000, 2002) propose two tests (CS-tests hereafter) 

based on the product (CS1) and the ratio (CS2) of PITs for the conditionals and marginals, 

where the N dimensional vector of scores has typical elements m
t

c
t

j
t zzz ,1,1|2 ⋅=  and 

m
t

c
t

j
t zzz ,1,1|2 /=  respectively. 

 

For a multinormal density forecast, we describe below a test (MN-test hereafter) that 

avoids the possibly cumbersome factorization of the MDF. Instead, we transform the 

coordinate system according to a linear transformation composed of a translation and a 

rotation and compute the PITs for each marginal distribution. Note that the standard 

multinormality tests (e.g., Cox and Small, 1978; Smith and Jain, 1988) do not apply for 

time varying distributions.  

 

Specifically, let ),...,( ,,1 tNtt XXX =  represent an N-dimensional multinormal random 

variable with mean tµ  and the variance-covariance matrix tΣ . The null hypothesis 

assumes that the MDF 1−tF
)

 is the same as the true distribution tF  of tX  and we do not 

distinguish between these functions in what follows. It is well known that the random 

variable )(
~

tttt XRX µ−= , where tR  is the matrix of eigenvectors of tΣ , is multinormal 

                                                 
2 There are N! different ways to factor the joint density forecast ),...,( 1,1,1 −− tNtt xxf

)
, giving 

us a wealth of  z series with which to evaluate the forecast. 
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with mean zero and a diagonal variance-covariance matrix T
tttt RR Σ=Σ~ . Since tX  is 

multinormal, tX
~

 is a collection of independent univariate variables with marginal 

distributions tNt FF ,,1

~
,...,

~
, tiF ,

~
 ∼ N(0, ),(

~
iitΣ ). Moreover, the null hypothesis that the 

observations tx  are drawn from 1−tF
)

 is equivalent to the hypothesis that the transformed 

observations )(~
tttt xRx µ−=  are drawn from tX

~
. From the results in Rosenblatt (1952) 

and by the independence of the components of tX
~

 follows then, that the scores 

)~(
~~

,,, tititi xFz = , Ni ,...,1= , are independently and uniformly3 distributed on [0,1]N 

individually and as a whole. As the scores are computed from N independent marginals, 

their computation simplifies to the multiplication of N unidimensional PITs, with the 

important implication that the computation time increases only linearly in N. In the next 

section, we show that linear transformations re-emerge as a useful tool in a test that does 

not rely on the normality of the forecasts. 

 

3. Evaluation Procedure for Arbitrary Continuous MDFs 

 

The test introduced in this section (Q-test hereafter) fulfils two purposes. On the one hand, 

it is a simple, ready-to-use procedure to evaluate an arbitrary (continuous) MDF. On the 

other hand, it allows for focusing on a specific region of the MDF instead of examining it 

over its entire domain. As we shall explain later in this section, existing tests can then be 

used to verify the region-specific accuracy of the forecasts. The latter application is 

                                                 
3 This will be the case when all variables intX

~
 are not degenerated. Otherwise, we use 

only variables with positive variance to compute the scores. 
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particularly interesting from a risk-management perspective. Risk managers and regulators 

are interested, generally, in the likelihood of large losses, i.e. in a specific tail of the 

distribution. If this is the case, then, a model superior in forecasting the central part of the 

distribution will be eschewed in favor of another model which accurately forecasts the tails. 

This objective motivates the censored likelihood test of Berkowitz (2001), in which the 

observations not falling into the negative tail of the distribution (with cut-off point being 

decided by the user’s requirements) are truncated. 

 

As the Q-test is based on the PIT computation, we show first in a simple example that for a 

correct MDF 1−tF
)

, the PITs )(1 tt xF −

)
 are not necessarily uniformly distributed. For the 

standard binormal )(1 tt xF −

)
, it is straightforward to compute that the probability mass of the 

contour area }025.0)(:{ 1
2 <∈ − yFRy t

)
 is 0.117. Thus, under this distribution, the 

probability of obtaining a score )(1 ttt xFz −=
)

 < 0.025 is 0.117 rather than 0.025 as would be 

the case if tz  were uniformly distributed. It follows that, generally, the multidimensional 

extension of the PIT does not produce uniformly distributes scores. However, a simple 

modification in the PIT computation restores the uniformity. First, we transform the series 

T
ttxx 1}{ ==  into M

tx = )1,....,1(},....,{ ,,1 ⋅tNt xxMax  and then compute the scores 

)(1
M
tt

M
t xFz −=

)
. Instead of the original observation tx , we use for the computation of the 

PIT the projection of the largest coordinate of tx  on the main diagonal along the vector 

perpendicular to the corresponding axis (see Figure 1). Note that for unidimensional 

forecasts, our procedure reduces to the traditional PIT.  In the appendix, we prove the 

following result.   
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Proposition 1:  If T
ttF 1}{ =  is the DGP for the sequence T

ttx 1}{ = , then T
t

M
tt

M
t xFz 1)}({ == , 

)1,....,1(},....,{ ,,1 ⋅= tNt
M
t xxMaxx , is ... dii  according to the uniform distribution ]1,0[U . 

 

The proposition leads to a simple test for the MDF accuracy that verifies the uniformity of 

the M
tz -scores (see Noceti et al., 2003). For an intuition of the proof, we focus on two-

dimensional orthants (quadrants) )),(( vvQ = )},(:{ 2 vvyRy ≤∈ , ,Rv∈  as illustrated by 

the dark gray rectangle in Figure 1.4 The crucial observation is that for any point tx  inside 

(outside) of the quadrant )),(( vvQ , M
tx  also lies also inside (outside) of )),(( vvQ . In other 

words, ),( vvxt ≤  implies ),( vvxM
t ≤  and vx ti >,  for at least one i  implies ),( vvxM

t > . 

As a consequence, the probability of obtaining a score )(1
M
tt

M
t xFz −=

)
 below )),((1 vvFt−

)
 is 

equivalent to the probability of tx  lying in )),(( vvQ , i.e., it is equal to )),((1 vvFt−

)
. 

 

[Figure 1] 

 

The proposed procedure effectively transforms a multidimensional MDF 1−tF
)

 into a 

unidimensional random variable )(1
M
tt

M
t XFZ −=

)
, M

tX = )1,....,1(},....,{ ,,1 ⋅tNt XXMax . Due 

to the Max{.} operator, each realization Mtz  of M
tZ  exploits the information in the entire 

multidimensional observation tx . Forecast 1−tF
)

 is deemed correct whenever the proportion 

                                                 
4 Strictly speaking, the set )),...,(( vvQ = )},...,(:{ vvyRy N ≤∈  is an orthant in the 
coordinate system centred at ),...,( vv .  Due to the importance of orthants (quadrants), we 
call our procedure the Q-test. 
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of observations that fall into each orthant )),...,(( vvQ  approximates the probability of this 

orthant under 1−tF
)

. In particular, the Q-test allows for assessing the accuracy of the 

forecasts in the “negative tail” of the distribution, as illustrated in the following application 

to risk management. 

 

Multidimensional Value at Risk 

 

In a market with N assets, an investor is interested in the event E that the random return of 

each asset falls below a certain value v. Equipped with the forecast 1−tF
)

,  the investor can 

compute tv  such that α=− )),...,((1 ttt vvF
)

, i.e., such that the event E is expected to occur 

with probability α. If the value of tv  is negative, the investor can compute the loss due to 

the event E for any portfolio of long positions. 

 

The rationale in this example lies at the heart of the concept of Value at Risk (VaR) which 

is now one of the most widely used risk measure among practitioners, largely due to its 

adoption by the Basel Committee on Banking Regulation (1996) for the assessment of the 

risk of the proprietary trading books of banks and its use in setting risk capital requirements 

(see Jorion, 2000). For the unidimensional CDF 1−tF
)

, the VaR at the coverage level 1-α is 

the quantile tv  for which α=− )(1 tt vF
)

. Generalizing this definition to the MDF 1−tF
)

, we 

require that the multidimensional VaR (MVaR) ),...,( tt vv  satisfies the condition 
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α=− )),...,((1 ttt vvF
)

.5 From the definition M
tz = )(1

M
tt xF −

)
 follows immediately that M

tz  is 

less than α  whenever all components of the observation ),...,( ,,1 tNtt xxx =  fall below 

(exceed) the critical value tv , 

 

M
tz  < α  ⇔  tix ,  < tv  for all i = 1,…,N 

 

The latter property has important consequences when assessing the MVaR forecasts (the 

density forecasts for an orthant )),...,(( tt vvQ ). For a sufficiently large number of 

observations, we can compute the proportion of scores that exceed the MVaR (the 

proportion of observations that fall into )),...,(( tt vvQ ), and compare this number to the 

nominal significance level α . We refer to this procedure as unconditional accuracy. On 

the other hand, the conditional accuracy requires that the number of scores that exceed 

the MVaR forecast should be unpredictable when conditioned on the available 

information (i.e., the MVaR violations should be serially uncorrelated). To assess both 

types of accuracy, we can resort to the unconditional accuracy test of Kupiec (1995) and 

the conditional accuracy test of Christoffersen (1998), which have been developed for 

testing the VaR accuracy. Although both tests are designed for univariate densities, they 

still apply for our purposes because the Q-test effectively converts a MDF into a 

univariate score variable.  

 

                                                 
5 Asymmetric specifications of MVaR, α=− )),...,(( ,,11 tNtt vvF

)
, where tNt vv ,,1 ...≠≠ , are 

also possible and can be evaluated with the Q-test in a suitably transformed coordinate 
system. 
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In the context of the last example, the MVaR is a suitable instrument of risk measurement 

for situations of joint losses incurred by long positions in N assets. If, however, the 

investor contemplates also (some) short positions, she will be interested in the joint risk 

of negative and positive returns. In other words, the investor will be interested in the 

appropriate orthant which combines negative returns for the long positions and positive 

returns for the short positions. The accuracy of the density forecasts for areas other than 

the “negative orthant” can be assessed by transforming the canonical coordinate system. 

In order to compute the Mtz -scores in the transformed system, we have to express the 

observations tx  and the arguments in the MDF 1−tF
)

 in the new coordinates. Specifically, 

for a translation vector tµ  and a rotation matrix tR , we compute tx~ = )( ttt xR µ− , M
tx~ = 

)1,...,1()~,...,~( ,,1 ⋅tNt xxMax  and M
tz~ = tF

~
( M

tx~ )= 1−tF
)

)~( 1
t

M
tt xR µ+− . Note that under this 

transformation, tF
~

 is a CDF and the M
tz~ -scores are i.i.d. ]1,0[U  when 1−tF

)
 is the true 

DGP. The orthant )),...,(( tt vvQ  in the transformed system corresponds then to a different 

area of the original 1−tF
)

 domain and the accuracy of the 1−tF
)

 in this area can be tested by 

the same means as in the canonical system. Figure 2 shows the example of 2=N  assets 

with means zero and the MDF 1−tF
)

. The rotation of the coordinates clockwise by 90° 

relocates the south-east orthant (a positive and a negative return) in the canonical 

coordinates to the south-west orthant (two negative returns). The investor can, 

consequently, assess the MVaR under 1−tF
)

 for a portfolio composed of a short position in 

the first asset and a long position in the second asset. 

 

[Figure 2] 
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The possibility of generating scores in different coordinate systems allows, potentially, for 

gathering abundant information on the tested MDF. Unlike the D-test and CS-tests, where 

various independent score series can be generated, the scores in the Q-test are not 

independent across transformations. Figure 3 shows the scatter plot of the scores computed 

under the standard binormal in the canonical (x-axis) and in the 90°-rotated system (y-axis) 

are highly dependent. For example, both scores are not less than 0.2 simultaneously.  

 

[Figure 3] 

 

On the other hand, the use of only one score series raises the question of the transformation 

that maximizes the power of the test. A simple transformation that, arguably, comes closest 

to this goal, projects the largest component from the principal component analysis of the 

covariance matrix tΣ  of 1−tF
)

 on the main diagonal. This transformation can be constructed 

by rotating the demeaned 1−tF
)

 firstly by the matrix of eigenvectors of tΣ , and then by the 

matrix that rotates the axis with the largest variance to the main diagonal.  

 

4. Monte Carlo Simulations and Empirical Results 

 

Although a comprehensive study of the statistical properties of the proposed tests is beyond 

the scope of this work, we performed Monte Carlo simulations, in which we compared the 

performance of four test procedures (D-test, CS-tests, Q-test and MN-test). 
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In the first experiment, we generated observations according to a mixture of two binormal 

distributions, i.e., at each time t, an observation was drawn from one of the distributions 

according to the probability weights in the mixture. Note that this experiment can be 

interpreted as emulating a time-varying DGP that is forecasted correctly by time-varying 

densities. Specifically, we used two mixtures,  I)),,½N((  I)),,-½N((- δδδδ + and 

 ,1)))2/(-),2/((1,-½N((0,0), δδ + ,1)2/(),2/((1,N((0,0), ½ δδ , where δ is interpreted as 

the deviation from the null hypothesis. The scatter plots of the representative data are 

reproduced in Figure 4 and Figure 5, respectively. 

 

[Figure 4 and 5] 

 

For both mixtures, we tested the null hypothesis that the observations came from a 

binormal with mean µ  and variance Σ , both estimated from the relevant sample. In 

order to compute the test statistic in the D-test and the CS-tests, we factor the 

multinormal pdf ),;( Σµxf  into a product of two multinormal pdfs (a conditional and a 

marginal), 

),;(),;(),;( 2222||1 2121
ΣΣ=Σ µµµ xfxfxf xxxx ,   (1) 

where,  

.),(

,),,(),,(

21
1

221211|12
1

2212|

2221

1211
2121

21221
ΣΣΣ−Σ=Σ−ΣΣ+=










ΣΣ
ΣΣ

=Σ==

−−
xxxxx xx

xxx

µµ

µµµ
 

 



15 
 

In our bivariate case, we computed one score for the marginal ),;( 2222 Σµxf  and another 

for the conditional ),;(
2121 ||1 xxxxxf Σµ  pdf for each observation ),( ,2,1 tt xx . When the null is 

true, these scores are i.i.d. ]1,0[U  (Diebold et al., 1999). Two mutually independent 

scores can be also obtained from another factorization, in which 1x  and 2x  are swapped 

but they are not independent from the scores obtained in the first factorization. Therefore, 

we use one pair of independent scores per observation in the evaluation of the D-test and 

the CS-tests. For the Q-test, only one independent score series can be generated. For the 

reasons discussed at the end of Section 3, we compute the scores under the 

transformation that projects the largest component from the principal component analysis 

of the covariance matrix Σ  on the main diagonal. Finally, the MN-test produces, by 

construction, two independent score series. 

 

Table 1 reports the results of the experiment for two data generating processes (mixture 1 

and 2) and different values of the parameter δ. The table contains the p-values of the 

Pearson's goodness-of-fit2χ -statistic for all tests that is computed from 2500 data points 

under the null of binormality with the parameters estimated from the sample. 

 

[Table 1] 

 

The performance of all tests, with the exception of the CS2-test and – to a lesser extent – 

the D-test, is comparable for the first mixture despite the fact that the Q-test uses only 

half of the scores relative to the other tests. For the second mixture, however, the Q-test 
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and CS-tests clearly outperform their competitors.6 The comparative disadvantage of the 

latter is due to the fact that the covariance matrices, estimated from the samples, are close 

to the identity matrix. In this case, the null hypothesis takes the form of the standard 

binormal. The D-test and the MN-test verify then, whether the marginal distributions 

follow the univariate standard normal and ignore the correlation between the variables. 

The Q-test and the CS-tests, on the contrary, combine the information from both 

variables, which allows for a sharper detection of a deviation from binormality.  

Furthermore, we found in this experiment that the performance of the Q-test does not 

deteriorate essentially in the canonical coordinate system.  

 

Regarding the effect of the dimension N on the power of the tests, we investigated in 

another simulation the extent to which the tests suffer from the curse of dimensionality. For 

this purpose, we generalized the mixture 1 from the previous example to 

 )),/,...,/(½N( INN δδ −− +  )),/,...,/(½N(  INN δδ . In this mixture, δ is the 

Euclidean distance between the origin of the coordinates and the means 

)/,...,/( NN δδ ±±  of the DGP. This distance remains constant for all dimensions N 

which makes the test results comparable across dimensions, 

 

d(( N/δ ,…, N/δ ),(0,..,0)) = d(( N/δ− ,…, N/δ− ),(0,..,0)) = δδ =NN 2)/(  

 

                                                 
6 These results confirm the findings in Clements and Smith (2002) for the CS-tests and 
the D-test. 
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As in the previous experiment, the scores were computed under the null of multinormality 

with parameters estimated from the relevant sample. For reasons of computational 

efficiency, the scores in the Q-test were obtained in the coordinate system rotated by the 

matrix of the eigenvectors of the estimated covariance matrix. As the hypothesised function 

becomes then a product of N marginal PDFs, the computation simplifies to the 

multiplication of N PITs of these marginals. This operation can be performed efficiently in 

higher dimensions. For the evaluation of the MN-test, we stacked the N-dimensional scores 

into a single vector. Additionally, in an unidimensional version of the MN-test (MN1-test 

hereafter), we examined the vector of MN scores that corresponded to the rotated variable 

with the largest variance (the first principal component). The N vectors of scores in the D-

test were obtained from the repeated application of the factorization (1) to the N-

dimensional forecast. One score per observation ),...,( ,,1 tNt xx  was then computed for each 

of the independent factors. Table 2 reports the p-values of the Pearson’s 2χ -statistic for the 

tests Q/MN1/MN/D as computed from a sample of 2500 observations drawn from the 

above mixture for each value of δ and N.  

 

[Table 2] 

 

The MN1-test is by far the most powerful among the three contenders and seems to retain 

power in higher dimensions, at least for the parameter space under study. Interestingly, 

the tests MN and D are the worst performing ones in spite of exploiting N-1 additional 

independent score series relative to the tests MN1 and Q. Further analysis of the MN 

scores showed that the information on the true DGP is concentrated in the scores 
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corresponding to the first principal component. The inclusion of other scores dilutes this 

information and leads to the loss of power. For the D-test, none of the N individual score 

vectors is consistently superior to any other or to the stacked vectors. Finally, the Q-test 

performs worse than MN1-test but is clearly more powerful than the tests MN and D, 

although its power appears to decrease somehow with higher N. 

 

Finally, in an empirical study, we tested the hypothesis of multinormal distribution for 

the daily returns of S&P500, Dow Jones and Nasdaq equity indices. Table 3 presents 

summary statistics for the continuously compounded daily return series of equity indices 

computed from the raw prices. The mean returns are almost identical for all series and 

close to zero. In line with previous evidence, the distribution of daily returns is heavily 

leptokurtic and the hypothesis of univariate normality is strongly rejected for each equity 

index. 

 

[Table 3] 

 

In light of the individual results for the three indices, it comes as no surprise that the null 

of multinormality, where the parameters are estimated from the sample, is strongly 

rejected by all three tests with the p-values of the Pearson’s 2χ -test virtually equal to 

zero.7 More interesting are the insights offered by the scores computed by the Q-test. As 

explained in Section 3, these scores allow for verifying the accuracy of the forecasted 

density in specific areas. For the Q-test in the canonical system, the scores contain 

                                                 
7 For brevity, the detailed results are not presented. They are available from the authors 
upon request. 
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information on the forecast accuracy in the “negative orthants” of the distribution. Table 

4 contains the proportion of scores that fell into the orthant )),...,(( tt vvQ , where tv  is 

defined by α=− )),...,((1 ttt vvF
)

 for the nominal significance levels α= 0.005, 0.01, 0.015, 

0.02 and 0.025. By the results presented in Section 3, this proportion is equal to the 

exceedence rate of the MVaR at the corresponding coverage level 1-α. These proportions 

(exceedence rates) are consistently higher than the nominal levels α which means that the 

number of observations far in the negative tails is higher than that implied by a 

multinormal distribution. The stylized fact of fat tails in financial time series seems to be 

valid also in the multidimensional context. 

 

[Table 4] 

 

5. Summary and Conclusion 

 

The focus of the forecasting literature has recently shifted to interval and density 

forecasts. This shift has been motivated by applications in finance and economics as well 

as the realization that density and interval forecasts convey more information that point 

estimates. Density forecasts naturally raise the question of evaluation. While efficient 

evaluation techniques for the univariate case have developed rapidly, the literature on 

multivariate density forecast evaluation remains limited. Indeed, the Diebold et al. (1999) 

PIT test remains the main reference with extensions proposed by Clements and Smith 

(2000, 2002). A drawback of these approaches is that they rely on the PDF factorization 

into conditionals and marginals which may prove challenging even for simple functions.  
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In this paper, we provide flexible and intuitive alternative tests of multivariate forecast 

accuracy that rely on the univariate PIT idea and avoid the cumbersome decomposition into 

conditionals and marginals. We performed Monte Carlo simulations and an empirical case 

study that exemplified the applications of both procedures. Finally, regarding the sources of 

forecast errors, we expect the parameter estimation uncertainty to be of second-order 

importance when compared to dynamic misspecification (Chatfield, 1993). However, 

shedding light on the power of the proposed test in the presence forecast inaccuracy 

requires formal investigation which may suggest a possible avenue for future research. 

 

6. Appendix 

Proof of Proposition 1: 

 

For a series of T observations ),...,(,}{ ,,11 tNtt
T
tt xxxxx == =  of random variables T

ttX 1}{ =  

with continuous distributions T
ttF 1}{ = , we define the series of T transformed values 

T
t

M
tt

M
t xFz 1}}({ == , where M

tx =  )1,...,1(},....,{ ,,1 ⋅tNt xxMax , and the corresponding random 

variables M
tZ = }( M

tt XF = ))1,...,1(},....,{( ,,1 ⋅tNtt XXMaxF . 

 

We observe that if tx  belongs to the orthant )),...,(( vvQ  = )},,...,(:{ vvyRy N ≤∈  Rv∈ , 

then M
tx  also belongs to )),...,(( vvQ . This follows from the fact that vx ti ≤,  for i=1,…,N 

implies .},....,{ ,,1 vxxMax tNt ≤  On the other hand, if tx  does not belong to )),...,(( vvQ  then 

there must exist vx ti >,  and, hence, Mtx )),...,(( vvQ∉ . Therefore, 
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)),...(()()()),,...(( vvFxFxFvvQx t
M
ttttt ≤≤∈∀ , (A1) 

)).,...(()()),,...(( vvFxFvvQx t
M
ttt >∉∀  

 

In order to prove that M
tZ  is uniformly distributed over U[0,1], we have to show that 

Pr( M
tZ < α) = α. From (A1) follows that M

tz = )( M
tt xF  ≤ α  =: )),...,(( vvFt  whenever 

)),...,(( vvQxt ∈ . The probability of the latter event is equal to the density mass over 

)),...,(( vvQ , i.e., equal to )),...,(( vvFt = α. 

 

Finally, since M
tZ ∼U[0,1] for any CDF tF

)
, the distribution of M

tZ  is independent of the 

distribution of M
sZ  for any s≠t. 
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Table 1 The performance of Q/MN/D/CS1/CS2 in a Monte Carlo Simulation 

 

 
Notes: The table reports the p-values of the Pearson’s 2χ -test for the tests 
Q/MN/D/CS1/CS2, respectively, under the null N(µ, Σ) with parameters µ and Σ 
estimated from 2500 realizations of the corresponding mixture. The test statistic was 
computed from 5000 stacked scores (499 degrees of freedom) for MN/D/C1/C2 and from 
2500 scores (249 degrees of freedom) for the Q-test. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

    δ 

Mixture 1                                  Mixture 2 
½N((-δ,-δ),I) 

+ ½N((δ, δ ),I) 
½N((0,0),((1, δ/2),(δ/2,1)))    

+½ N((0,0),((1,-δ/2),(-δ/2,1))) 
0.60 .430/.253/.308/.321/.961 .834/.242/.356/.341/.749 
0.80 .072/.006/.251/.092/.545 .632/.702/.481/.546/.723 
1.00 .003/.002/.197/.000/.728 .181/.093/.199/.132/.943 
1.20 .000/.000/.128/.000/.535 .017/.349/.284/.004/.204 
1.40 .000/.000/.000/.000/.130 .000/.432/.391/.000/.009 
1.60 .000/.000/.000/.000/.094 .000/.000/.432/.000/.000 
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Table 2 The performance of Q/MN1/MN/D in a Monte Carlo Simulation 

 

δ  N 
    2     3     4     5     6     7     8     9   10 

    1.0 
 

.025 

.004 

.073 

.604 

.122 

.007 

.245 

.473 

.071 

.233 

.779 

.329 

.277 

.020 

.092 

.749 

.423 

.197 

.774 

.231 

.501 

.007 

.931 

.793 

.514 

.021 

.707 

.893 

.697 

.200 

.435 

.583 

.329 

.010 

.217 

.438 
    1.2 
 

.008 

.000 

.036 

.543 

.015 

.000 

.065 

.139 

.065 

.000 

.269 

.891 

.245 

.002 

.129 

.393 

.558 

.010 

.671 

.551 

.321 

.000 

.727 

.173 

.195 

.005 

.342 

.515 

.078 

.000 

.812 

.741 

.291 

.007 

.775 

.116 
    1.4 
 

.000 

.000 

.000 

.373 

.015 

.000 

.001 

.569 

.295 

.000 

.413 

.298 

.074 

.000 

.708 

.905 

.039 

.000 

.299 

.542 

.347 

.000 

.387 

.259 

.412 

.000 

.047 

.233 

.358 

.000 

.551 

.972 

.060 

.000 

.214 

.491 
    1.6 
 

.000 

.000 

.000 

.148 

.000 

.000 

.000 

.631 

.000 

.000 

.002 

.721 

.000 

.000 

.312 

.337 

.002 

.000 

.249 

.612 

.020 

.000 

.551 

.638 

.139 

.000 

.003 

.914 

.002 

.000 

.191 

.285 

.098 

.000 

.606 

.733 
    1.8 
 

.000 

.000 

.000 

.004 

.000 

.000 

.000 

.120 

.000 

.000 

.017 

.348 

.000 

.000 

.064 

.573 

.000 

.000 

.143 

.940 

.000 

.000 

.194 

.341 

.000 

.000 

.248 

.089 

.091 

.000 

.124 

.777 

.037 

.000 

.322 

.483 
 
Notes: The p-values of the Pearson’s2χ -statistic for the tests Q/MN1/MN/D, respectively, 
under the null of multinormality with the parameters estimated in the sample of 2500 N-

dimensional observations, drawn from the mixture  )),/,...,/(½N( INN δδ −− + 

 )),/,...,/(½N( INN δδ . The 2χ -statistics were computed from 2500 scores (249 
degrees of freedom) for the tests Q and MN1 and from 2500*N scores (250*N-1 degrees of 
freedom) for the tests  MN and D.  
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Table 3 Summary Statistics 

 

Statistics S&P500 Dow Jones Nasdaq 
    

Mean (%) 0.0083 0.0147 0.0128 
Stand Dev (%) 1.1389 1.0919 1.8163 

Skewness 0.051 -0.064 0.116 
Kurtosis 4.984 6.004 6.614 

2χ -stat (df=249) 433.5(0) 378.1(0) 514.8(0) 
 
Notes: The table reports the mean, standard deviation, skewness, kurtosis and the 
Pearson’s 2χ  statistic (p-values in parenthesis) under the null of normality for the log 
returns for S&P500, Dow Jones and Nasdaq for the sample period 25/09/1998 to 
29/08/08 (2498 daily observations).  
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Table 4 MVaR Unconditional Forecast Accuracy for the Multinormal Density 

 

Nominal 
Significance %x ut  

%5.0=α  0.881 2.037 
%1=α  1.361 1.558 
%5.1=α  1.962  1.664 

%2=α  2.562 1.778 
%5.2=α  3.163 1.892 

 

Notes: The table reports the percentage of exceptions out of 2498 daily observations (i.e., 
the proportion of times the forecasted MVaR is exceeded) and the Kupiec’s t-statistic to 
test the null hypothesis of unconditional accuracy for different nominal significance 
levels. 
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Figure 1: The contour area }025.0)(:{ 1
2 <∈ − yFRy t

)
 (gray) and the quadrant 

)}1,1(:{))1,1(( 2 −−≤∈=−− yRyQ  (dark gray) for the standard binormal 1−tF
)

. For 

observations (black dots) lying inside (outside) of the quadrant ))1,1(( −−Q , the “highest” 
of the projections on the main diagonal along the axes lies also inside (outside) of 

))1,1(( −−Q . 
 
 

 

 

 

 

 

 
 

 

Figure 2: After the rotation of the canonical system clockwise by 90°, the south-east 
orthant Qse moves to the south-west position Qsw. The dashed lines are the main diagonals 
in the original and the rotated system while the shaded ellipse is the contour area of 1−tF

)
. 

 

 

 

],0[ INFt =
)

- 3 - 2 - 1 0 1 2 3

- 3

- 2

- 1

0

1

2

3



31 
 

 
Figure 3: A scatter plot of scores generated from 1000 standard binormal observations 
under the null N((0,0),I). The x-axis (y-axis) corresponds to the scores computed in the 
canonical (90°-rotated) system. 
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Figure 4: A sample of 1000 observations from the mixture 1: ½ N((-δ,-δ),I) + ½N((δ,δ),I)) 
for δ=1.4. 
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Figure 5: A sample of 1000 observations from the mixture 2: ½N((0,0),((1,-δ/2),   (-δ/2,1))) 
+ ½N((0,0), ((1, δ/2),(δ/2,1))) for δ=1. 
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