Efficient Evaluation of
Multidimensional Time-Varying
Density Forecasts with an
Application to Risk Management

Arnold Polanski
Evarist Stoja

December 2009

Discussion Paper No. 09/617

Department of Economics
University of Bristol
8 Woodland Road
Bristol BS8 1TN



Efficient Evaluation of Multidimensional Time-Varying Density

Forecastswith an Application to Risk M anagement

Arnold PolanskiQueen's University Belfast

Evarist StojalUniversity of Bristol

December 2009
Abstract
We propose two simple evaluation methods for tirmeyimg density forecasts of continuous
higher dimensional random variables. Both methods lzased on the probability integral
transformation for unidimensional forecasts. Thstfimethod tests multinormal densities and
relies on the rotation of the coordinate systene ativantage of the second method is not only its
applicability to any continuous distribution busalthe evaluation of the forecast accuracy in
specific regions of its domain as defined by ther'gsinterest. We show that the latter property is
particularly useful for evaluating a multidimensabrgeneralization of the Value at Risk. In

simulations and in an empirical study, we examireegerformance of both tests.

Keywords: Multivariate Density Forecast Evaluation; Probigypil Integral Transformation;
Multidimensional Value at Risk; Monte Carlo Simidets.

JEL classification: C52; C53.

Address for correspondencérnold Polanski Queen’s University Management School, 25
University Square, Queen's University Belfast, 8&lf BT7 1NN, UK. Email:

a.polanski@qub.ac.uEvarist Stoja School of Economics, Finance and Management, dsiity

of Bristol, 8 Woodland Road, Bristol, BS8 1TN, UKEmail: e.stoja@bristol.ac.ukWe would

like to thanks seminar participants at QUMS andvrsity of Bristol EFIM.

Electronic copy available at: http://ssrn.com/abstract=1672685



1. Introduction

Evaluation of the accuracy of forecasts occupigsaminent place in the finance and
economics literature. However, most of this litarat(e.g., Diebold and Lopez, 1996)
focuses on the evaluation of point forecasts a®sg to interval or density forecasts.
The driving force for this over-focus is that, untcently, point forecasts appeared to
serve well the requirements of the forecast udéosvever, there is increasing evidence
that a more comprehensive approach is needed. Karapde is Value at Risk (VaR)
which is defined as the maximum loss on a portfolier a certain period of time that can
be expected with a certain probability. When retusre normally distributed, the VaR of
a portfolio is a simple function of the variancetbé portfolio® In this case, normality
justifies the use of point forecasts for the vaterHowever, when the return distribution
is non-normal, as is now the general consensusyéfeof a portfolio is determined not
just by the portfolio variance but by the entirendtional distribution of returns. More
generally, decision making under uncertainty wilyrametric loss function and non-
Gaussian variables involves density forecasts {sgeand Wallis, 2000; and Guidolin
and Timmermann, 2005, for a survey and discussiarensity forecasting applications

in finance and economics).

The increasing importance of forecasts of the erfionditional) density naturally raises

the issue of forecast evaluation. The relevantditee, although developing at a fast

! When the mean return on an asset is assumed zerbeas is commonly the case in
practice when dealing with short-horizon returi®e ¥aR of a portfolio is simply a
constant multiple of the square root of variancéhefportfolio.
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pace, is still in its infancy. This is somewhatsiging considering that the crucial tools
employed date back a few decades. Indeed, a keyilmation by Diebold et al. (1998)
relies on the probability integral transformatioRIT) result in Rosenblatt (1952).
Diebold et al. point out that the correct densgiywieakly superior to all forecasts. This
suggests that forecasts should be evaluated instafmtheir correctness as this is
independent of the loss function. To this end, Diélet al. (1998) employ the PIT of the
univariate density forecasts which, if accurate,iad. standard uniform. They measure
the forecast accuracy by the distance betweenrtipgrieal distribution of the PITs and
the 45° line and argue that the visual inspectibthis distance may provide valuable
insights into the deficiencies of the model and svafyimproving it. Obviously, standard
goodness-of-fit tests (see Noceti et al., 2003af@omparison of the existing goodness-
of-fit tests) can be directly applied to the PIhsladditional tests have been proposed by
Anderson et al. (1994), Li (1996), Granger and Resé1999), Berkowitz (2001), Li and
Tkacz (2001), Hong (2001), Hong and Li (2003), B2003), Corradi and Swanson

(2006) and Hong et al. (2007).

The existing evaluation methods of the multidimenai density forecasts (MDF) rely on
the advances made in the univariate case. Dielh@l €999) extend the PIT idea to the
multivariate forecasts by factoring the multivagigirobability density function (PDF)
into its conditionals and computing the PIT for leaonditional. As in the univariate
case, the PIT of these forecasts.igl. uniform if the sequence of forecasts is correct.
Clements and Smith (2000, 2002) extend Dieboldl.&d mlea and propose two tests

based on the product and ratio of the conditioaald marginals. While the latter tests



perform well when there is correlation misspeciiima, they underperform the original
test by Diebold et al. (1999) when such misspedtibm is absent. However, both
approaches rely on the decomposition of each pdoogtasts into their conditionals
which may be impractical for some applications .(efgr numerical approximations of

density forecasts).

Other approaches concerning the evaluation of wauwltite density forecasts have been
proposed by Sarno and Valente (2004) and Chen and(Z006). They, however, are
concerned with superior predictive ability of twongpeting forecast models. The test
proposed by Sarno and Valente, which is the eqemtabf the test of Diebold and
Mariano (1995) in the context of density forecagtinelies on the integrated square
difference. Chen and Fan on the other hand, foreites joint densities via semi-
parametric copula models and employ the Kullbaciklee Information Criterion
(KLIC) to discriminate between them. Dick et al0(8) and Li and Xu (2009) employ

the KLIC framework to evaluate the forecasts ofjtet density of exchange rates.

Similar to Diebold et al. (1998, 1999) and Clemeantsl Smith (2000, 2002), this paper
assumes that the forecasting model is correct uth@enull hypothesis. This assumption
has important implications which impact upon thealeation tools employed (see
Corradi and Swanson, 2006). However, as the fotuki® paper is to relate our test to
similar tests, we ignore parameter estimation er@mmd potential dynamic

misspecification but acknowledge that these co@dnportant. Finally, we stress that



forecasts may vary over time making a forecastuatan based on the laws of large

numbers unfeasible.

The outline of the remainder of this paper is dto¥es. In Section 2, we discuss an
evaluation procedure for multinormal density fostsa Section 3 presents a test for
arbitrary continuous densities while Section 4 dsses the results of Monte Carlo
simulations and an empirical application for thevlyeproposed tests. Finally, Section 5

concludes.

2. Evaluation Procedurefor Multinor mal Density For ecasts

Rosenblatt (1952) showed that for the cumulatiridiution function (CDF)F, (PDF
f.), which correctly forecasts the true data genegatprocess (DGP)F, of the

observationx,, i.e., for whichF, (x,)= F,(x), the PIT

2= [ fWdu=F(x)

is i.i.d. according toU [0]1] . Therefore, the adequacy of forecasts can beyeasluated

by examining thez, series for violations of independence and unifeymi

The PIT idea is extended to the multivariate cageDlebold et al. (1999). Their test

procedure (D-test hereafter) factors each period-Miio the product of the conditionals

i (% Yoo Xie) = oo Ot X0 X e Xy ) Ty (% | %) 3 (%)
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and obtain the PIT for each conditional distribnfiproducing a set oN z series, which

areiid. U[0]] individually and as a whole whenever the MDF isrect.” Rejecting the
null of i.i.d. U[01] for any, as well as the combinet] series implies that the MDF is

misspecified. Clements and Smith (2000, 2002) peptwo tests (CS-tests hereafter)

based on the product (CS1) and the ratio (CS2)Td Br the conditionals and marginals,

where theN dimensional vector of scores has typical elements= z, [y and

z) = 73, 1 2]} respectively.

For a multinormal density forecast, we describeoweh test (MN-test hereafter) that
avoids the possibly cumbersome factorization of keF. Instead, we transform the
coordinate system according to a linear transfaonatomposed of a translation and a
rotation and compute the PITs for each marginatridigion. Note that the standard
multinormality tests (e.g., Cox and Small, 1978;itBnand Jain, 1988) do not apply for

time varying distributions.

Specifically, let X, =(X,...,Xy,) represent anmN-dimensional multinormal random
variable with meany, and the variance-covariance matrk . The null hypothesis

assumes that the MDF_, is the same as the true distributi&p of X, and we do not
distinguish between these functions in what followsis well known that the random

variable >Zt =R (X, -4, ) whereR is the matrix of eigenvectors af,, is multinormal

? There areN! different ways to factor the joint density forstaﬁ(&’t_l,...,xN’t_l), giving
us a wealth ofz series with which to evaluate the forecast.
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with mean zero and a diagonal variance-covariana&rixns, = R>.R". Since X, is
multinormal, X, is a collection of independent univariate varigblith marginal

distributions F, 'EN,t! IEH O N(O,itq,i)). Moreover, the null hypothesis that the

RS ERRR]

observationsx, are drawn fromF,_, is equivalent to the hypothesis that the transéafm
observationsX, = R (X, — 4,) are drawn from)Zt. From the results in Rosenblatt (1952)

and by the independence of the components)&pf follows then, that the scores

zi,t:ﬁ]t(iu), i=1..,N, are independently and uniformlydistributed on [0,1}

individually and as a whole. As the scores are aget from N independent marginals,
their computation simplifies to the multiplicatiosf N unidimensional PITs, with the
important implication that the computation timergases only linearly itN. In the next
section, we show that linear transformations rergmas a useful tool in a test that does

not rely on the normality of the forecasts.

3. Evaluation Procedurefor Arbitrary Continuous MDFs

The test introduced in this section (Q-test heezpafulfils two purposes. On the one hand,
it is a simple, ready-to-use procedure to evalaaterbitrary (continuous) MDF. On the
other hand, it allows for focusing on a specifigiom of the MDF instead of examining it
over its entire domain. As we shall explain latethis section, existing tests can then be

used to verify the region-specific accuracy of foeecasts. The latter application is

% This will be the case when all variables)ﬁn are not degenerated. Otherwise, we use
only variables with positive variance to compute $icores.

7



particularly interesting from a risk-managementspective. Risknanagers and regulators
are interested, generally, in the likelihood ofgkarlosses, i.e. in a specific tail of the
distribution. If this is the case, then, a modgbesior in forecasting the central part of the
distribution will be eschewed in favor of anotheodel which accurately forecasts the tails.
This objective motivates the censored likelihoodt tef Berkowitz (2001), in which the
observations not falling into the negative tail tbe distribution (with cut-off point being

decided by the user’s requirements) are truncated.

As the Q-test is based on the PIT computation,vesvdirst in a simple example that for a

correct MDF F_,, the PITsF_(x) are not necessarily uniformly distributed. For the
standard binormalft_l(xt), it is straightforward to compute that the proligbmass of the
contour area{yOR®: Ift_l(y) <0.025 }is 0.117. Thus, under this distribution, the
probability of obtaining a scorg = Ifl_l(xt 9 0.025 is 0.117 rather than 0.025 as would be

the case ifz, were uniformly distributed. It follows that, geadly, the multidimensional

extension of the PIT does not produce uniformlytrdistes scores. However, a simple

modification in the PIT computation restores thé&ammity. First, we transform the series

x={x}, into x"= Maxx,,..X}L...) and then compute the scores

M

zZ" =F,_(x"). Instead of the original observation, we use for the computation of the

PIT the projection of the largest coordinate»fon the main diagonal along the vector

perpendicular to the corresponding axis (see FigyreNote that for unidimensional
forecasts, our procedure reduces to the traditi®h@l In the appendix, we prove the

following result.



Proposition 1: If {F}_, is the DGP for the sequende.} ., then{z" =F (x")}.,,

X" =MaxXy,.... %y} (L....1) , is i.id. according to the uniform distributidn[0]1] .

The proposition leads to a simple test for the Mi2Euracy that verifies the uniformity of

the z" -scores (see Noceti et al., 2003). For an intuitérthe proof, we focus on two-

dimensional orthants (quadrant§(v,v))={yOR?:y<(v,v)}, vOR, as illustrated by

the dark gray rectangle in Figuré The crucial observation is that for any poiqtinside
(outside) of the quadrar®((v,v)), x" also lies also inside (outside) Qf((v,Vv)). In other
words, x, < (v,v) implies x <(v,v) and x,, >v for at least one implies x"" > (v,v).
As a consequence, the probability of obtainingaese” =F,_ (x" ) below F,_ ((v,v)) is

equivalent to the probability of, lying in Q((v,v)), i.e., it is equal taF,_, ((v,V)).

[Figure 1]

The proposed procedure effectively transforms atidiolensional MDF F_, into a
unidimensional random variab®" =F,_(X"), X"= Ma¥X,,,....Xy} {L....1) . Due
to the Max{.} operator, each realizatiar}' of zZ" exploits the information in the entire

multidimensional observatior,. ForecastF, , is deemed correct whenever the proportion

* Strictly speaking, the se®((v,...,v))= {yOR":y<(v,..,v)} is an orthant in the
coordinate system centred @t...,v). Due to the importance of orthants (quadrants), w
call our procedure the Q-test



of observations that fall into each ortha®€(v,...,v approximates the probability of this
orthant underF_,. In particular, the Q-test allows for assessing #ttcuracy of the

forecasts in the “negative tail” of the distributjaas illustrated in the following application

to risk management.

Multidimensional Value at Risk

In a market withN assets, an investor is interested in the elgghit the random return of
each asset falls below a certain valu&quipped with the forecadt ,, the investor can

computev, such thatF_,((v,....,)) =a, i.e., such that the evehtis expected to occur
with probability a. If the value ofy, is negative, the investor can compute the losstalue

the event for any portfolio of long positions.

The rationale in this example lies at the heathefconcept of Value at Risk (VaR) which
is now one of the most widely used risk measurergmaractitioners, largely due to its
adoption by the Basel Committee on Banking Reguiafl 996) for the assessment of the

risk of the proprietary trading books of banks #@&adise in setting risk capital requirements

(see Jorion, 2000). For the unidimensional CBE, the VaR at the coverage levellis

the quantilev, for which F_ (v,) =a . Generalizing this definition to the MDF,_,, we

require that the multidimensional VaR (MVaR|v,,...,v,) satisfies the condition
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F.((v,...,)) =a .°> From the definitionz" = F_ (x) follows immediately thatz" is
less thana whenever all components of the observatigre (x,,,...,X,, fal) below

(exceed) the critical value ,

M H-
z' <a - x,<yforali=1,..N

The latter property has important consequences \@hsessing the MVaR forecasts (the

density forecasts for an ortha®@((v,,...,v, ).))For a sufficiently large number of

observations, we can compute the proportion ofescdhat exceed the MVaR (the

proportion of observations that fall in@Q((v,,...,v; )))and compare this number to the

nominal significance levetr . We refer to this procedure as unconditional asxyrOn
the other hand, the conditional accuracy requines the number of scores that exceed
the MVaR forecast should be unpredictable when itongéd on the available
information (i.e., the MVaR violations should beialty uncorrelated). To assess both
types of accuracy, we can resort to the unconditiancuracy test of Kupiec (1995) and
the conditional accuracy test of Christoffersen9g)9 which have been developed for
testing the VaR accuracy. Although both tests asghed for univariate densities, they
still apply for our purposes because the Q-testcéffely converts a MDF into a

univariate score variable.

° Asymmetric specifications of MVaRE, , ((Vy,,...Vy,)) =@, wherev,, #...v,, are

also possible and can be evaluated with the Qhuteatsuitably transformed coordinate
system.
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In the context of the last example, the MVaR isiigable instrument of risk measurement
for situations of joint losses incurred by long ifioss in N assets. If, however, the
investor contemplates also (some) short positishe,will be interested in the joint risk
of negative and positive returns. In other wordh® investor will be interested in the
appropriate orthant which combines negative retfwnshe long positions and positive
returns for the short positions. The accuracy efdbnsity forecasts for areas other than

the “negative orthant” can be assessed by trangigrthe canonical coordinate system.

In order to compute the -scores in the transformed system, we have to expie
observationsx, and the arguments in the MDF;, in the new coordinates. Specifically,
for a translation vectoy, and a rotation matribR , we computeX. = R (x, =), X" =
Max(%,, ... %) (L...) and Z¥= F(X")= F (R™X™ +4). Note that under this

transformation,F, is a CDF and th&" -scores aré.i.d. U[01] when F_, is the true

DGP. The orthanQ((v,,...,v,)) in the transformed system corresponds then téfereint

area of the originaF,_, domain and the accuracy of tie, in this area can be tested by
the same means as in the canonical system. Figsine\#s the example dfl =2 assets
with means zero and the MDF,_,. The rotation of the coordinates clockwise by 90°

relocates the south-east orthant (a positive antegative return) in the canonical

coordinates to the south-west orthant (two negatigurns). The investor can,
consequently, assess the MvVaR unBgy for a portfolio composed of a short position in

the first asset and a long position in the seceséta

[Figure 2]
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The possibility of generating scores in differeabiinate systems allows, potentially, for
gathering abundant information on the tested MDRliKg the D-test and CS-tests, where
various independent score series can be genertitedscores in the Q-test are not
independent across transformations. Figure 3 sliosvscatter plot of the scores computed
under the standard binormal in the canonical (®)aand in the 90°-rotated system (y-axis)

are highly dependent. For example, both scoresdarkess than 0.2 simultaneously.

[Figure 3]

On the other hand, the use of only one score seigss the question of the transformation
that maximizes the power of the test. A simpledfarmation that, arguably, comes closest

to this goal, projects the largest component frbom grincipal component analysis of the

covariance matrixz, of F_, on the main diagonal. This transformation can drestructed

by rotating the demeanefg_, firstly by the matrix of eigenvectors &, and then by the

matrix that rotates the axis with the largest vas@to the main diagonal.

4. Monte Carlo Simulations and Empirical Results

Although a comprehensive study of the statisticapprties of the proposed tests is beyond

the scope of this work, we performed Monte Canowations, in which we compared the

performance of four test procedures (D-test, C&t€¥test and MN-test).

13



In the first experiment, we generated observatamtording to a mixture of two binormal
distributions, i.e., at each timgan observation was drawn from one of the distidins
according to the probability weights in the mixtuidote that this experiment can be
interpreted as emulating a time-varying DGP thdbrecasted correctly by time-varying
densities. Specifically, we used two mixturesy2N((-3,-9),1) +¥2N((J,d), 1) and
%N((0,0)((1,0/2),(-0/2,1))) + %N((0,0)((1,0/2),(6/2,1), whered is interpreted as
the deviation from the null hypothesis. The scafilets of the representative data are

reproduced in Figure 4 and Figure 5, respectively.
[Figure 4 and 5]

For both mixtures, we tested the null hypotheset thhe observations came from a

binormal with meanu and varianceZ , both estimated from the relevant sample. In

order to compute the test statistic in the D-testl ahe CS-tests, we factor the

multinormal pdf f (x; 4,%) into a product of two multinormal pdfs (a conditd and a
marginal),
FOGCLZ) = 10 Mg » Zp) T (03 £, 250) 1)

where,

X=04,%), M=t 1) Z{Z“Z”J
’ ' ’ Z21222

My, = Hy, + leZZZ_(Xz - Xl)’ Zx1|x2 =2~ lezglzzzl-
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In our bivariate case, we computed one score ®nthrginal f (x,; 1,,Z,,) and another

for the conditionalf (x; 4, ,,,Z,,) Pdf for each observatio(x,,,x,,) . When the null is

%%,
true, these scores areéd. U[01] (Diebold et al., 1999). Two mutually independent
scores can be also obtained from another factasizain which x, and x, are swapped
but they are not independent from the scores ofdaim the first factorization. Therefore,
we use one pair of independent scores per obsenviatithe evaluation of the D-test and
the CS-tests. For the Q-test, only one indepensieme series can be generated. For the
reasons discussed at the end of Section 3, we demihe scores under the
transformation that projects the largest compofrem the principal component analysis
of the covariance matrixz on the main diagonal. Finally, the MN-test prodsjcky

construction, two independent score series.

Table 1 reports the results of the experimentvar data generating processes (mixture 1

and 2) and different values of the parametehe table contains the p-values of the
Pearson's goodness-of-fif -statistic for all tests that is computed from 2%@@a points

under the null of binormality with the parametestiraated from the sample.

[Table 1]

The performance of all tests, with the exceptiothef CS2-test and — to a lesser extent —

the D-test, is comparable for the first mixture giesthe fact that the Q-test uses only

half of the scores relative to the other tests.tRersecond mixture, however, the Q-test

15



and CS-tests clearly outperform their competifoFeie comparative disadvantage of the
latter is due to the fact that the covariance roas;i estimated from the samples, are close
to the identity matrix. In this case, the null httpesis takes the form of the standard
binormal. The D-test and the MN-test verify therhether the marginal distributions
follow the univariate standard normal and ignore torrelation between the variables.
The Q-test and the CS-tests, on the contrary, amnihe information from both
variables, which allows for a sharper detection aofdeviation from binormality.
Furthermore, we found in this experiment that tleefgrmance of the Q-test does not

deteriorate essentially in the canonical coordisgttem.

Regarding the effect of the dimensidbhon the power of the tests, we investigated in
another simulation the extent to which the testfesfrom the curse of dimensionality. For

this purpose, we generalized the mixture 1 from theevious example to
VN(=0/VN,...~0/IN), 1) + %N((3/VN,...0//N),1) . In this mixture, & is the
Euclidean distance between the origin of the coatgis and the means
(iJ/\/N,...,iJ/\/W) of the DGP. This distance remains constant fordatiensionsN

which makes the test results comparable acrossngiones,

d((0/VN ,...,8/JN),0,..,0)) = d(€ d/VN ..., /N ),(0,..,0)) ={(d//N)2N =3

® These results confirm the findings in Clements Snuith (2002) for the CS-tests and
the D-test.
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As in the previous experiment, the scores were coegpunder the null of multinormality
with parameters estimated from the relevant sampt@. reasons of computational
efficiency, the scores in the Q-test were obtaimethe coordinate system rotated by the
matrix of the eigenvectors of the estimated covexeamatrix. As the hypothesised function
becomes then a product df marginal PDFs, the computation simplifies to the
multiplication of N PITs of these marginals. This operation can béopeed efficiently in
higher dimensions. For the evaluation of the MN;te® stacked thil-dimensional scores
into a single vector. Additionally, in an unidimémsal version of the MN-test (MN1-test
hereafter), we examined the vector of MN scores ¢haresponded to the rotated variable
with the largest variance (the first principal campnt). The N vectors of scores in the D-
test were obtained from the repeated applicationthef factorization (1) to the N-

dimensional forecast. One score per observatiop...,x,, wag then computed for each

of the independent factors. Table 2 reports thalpes of the Pearson’g® -statistic for the

tests Q/MN1/MN/D as computed from a sample of 280B8ervations drawn from the

above mixture for each value ofandN.

[Table 2]

The MN1-test is by far the most powerful amongttiree contenders and seems to retain
power in higher dimensions, at least for the patamgpace under study. Interestingly,
the tests MN and D are the worst performing onespite of exploitingN-1 additional
independent score series relative to the tests Nl Q. Further analysis of the MN

scores showed that the information on the true O§&FRoncentrated in the scores

17



corresponding to the first principal component. Tidusion of other scores dilutes this
information and leads to the loss of power. ForDhiest, none of the N individual score
vectors is consistently superior to any other othe stacked vectors. Finally, the Q-test
performs worse than MN1-test but is clearly morev@dul than the tests MN and D,

although its power appears to decrease somehowhigttierN.

Finally, in an empirical study, we tested the hyyasis of multinormal distribution for
the daily returns of S&P500, Dow Jones and Nasdpdgtye indices. Table 3 presents
summary statistics for the continuously compoundity return series of equity indices
computed from the raw priceShe mean returns are almost identical for all seaed

close to zero. In line with previous evidence, tligribution of daily returns is heavily
leptokurtic and the hypothesis of univariate noitypas strongly rejected for each equity

index.

[Table 3]

In light of the individual results for the threadines, it comes as no surprise that the null
of multinormality, where the parameters are eswuatrom the sample, is strongly
rejected by all three tests with the p-values @f Brearson’sy”-test virtually equal to
zero! More interesting are the insights offered by tberes computed by the Q-test. As
explained in Section 3, these scores allow forfykig the accuracy of the forecasted

density in specific areas. For the Q-test in theoo&al system, the scores contain

’ For brevity, the detailed results are not preskrifaey are available from the authors
upon request.
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information on the forecast accuracy in the “negatrthants” of the distribution. Table

4 contains the proportion of scores that fell itlte orthantQ((v,,...,v, )) whereyv, is
defined bylft_l((vt,...,vt)) =a for the nominal significance levets= 0.005, 0.01, 0.015,

0.02 and 0.025. By the results presented in Se@jothis proportion is equal to the
exceedence rate of the MVaR at the correspondiugrage level la. These proportions
(exceedence rates) are consistently higher thandimnal levelsa which means that the
number of observations far in the negative tailshigher than that implied by a
multinormal distribution. The stylized fact of fetils in financial time series seems to be

valid also in the multidimensional context.

[Table 4]

5. Summary and Conclusion

The focus of the forecasting literature has regestiifted to interval and density
forecasts. This shift has been motivated by apjptioa in finance and economics as well
as the realization that density and interval fosec@onvey more information that point
estimates. Density forecasts naturally raise thestion of evaluation. While efficient
evaluation techniques for the univariate case hadexeloped rapidly, the literature on
multivariate density forecast evaluation remaingtid. Indeed, the Diebold et al. (1999)
PIT test remains the main reference with extensfmoeposed by Clements and Smith
(2000, 2002). A drawback of these approaches istiieg rely on the PDF factorization

into conditionals and marginals which may provellelnging even for simple functions.
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In this paper, we provide flexible and intuitivdeathative tests of multivariate forecast
accuracy that rely on the univariate PIT idea araichithe cumbersome decomposition into
conditionals and marginals. We performed Monte &aiulations and an empirical case
study that exemplified the applications of bothgadures. Finally, regarding the sources of
forecast errors, we expect the parameter estimatimertainty to be of second-order
importance when compared to dynamic misspecifinati@hatfield, 1993). However,

shedding light on the power of the proposed testhi presence forecast inaccuracy

requires formal investigation which may suggesbssible avenue for future research.

6. Appendix

Proof of Proposition 1:

For a series of observationsx={x};, X =(Xy,....Xy,) Of random variable§ X},
with continuous distributiongF}[,, we define the series of transformed values
{z" =F ("} L, where x" = Maxx,,....X,} [(L... 1), and the corresponding random

variablesz" = F (X"} = F(MaXX,,,.... X} OL...0)).

We observe that i belongs to the orthar®((v....,v)) ={y0OR" :y<(v,...,v)}, VOR,
then x" also belongs ta@)((v,...,v)) . This follows from the fact thax,, <v fori=1,...N
implies Max{ X, ,....,Xy ;} £Vv.On the other hand, ik _does not belong tQ((v,...,v)) then

there must exisk , >v and, hencex 0 Q((v,...,v)) . Therefore,
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Ox 0Q((v...v)), R(x)<F(X")<F((v..v)), (Al

Ox O0Q((v...), R (") > R ((v...V).

In order to prove tha" is uniformly distributed ovetJ[0,1], we have to show that
Pr(z" < a) = a. From (A1) follows thatz" = F(x") < a = F((v,...,v)) whenever
X, 0Q((v,...,v)). The probability of the latter event is equal te tdensity mass over

Q((v,...,v)), i.e., equal toF, ((v,...,v F a.

Finally, since Z" 0J[0,1] for any CDFF,, the distribution ofZ" is independent of the

distribution ofz!" for any st.
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Table 1 The performance of Q/MN/D/CS1L/CS2 in a Monte Carlo Simulation

Mixturel
%N((-0,-9),1)

Mixture2
%N((0,0),((1,6/2),(8/2,1)))

5 + 1N(B, 8),1) +14 N((0,0),((1,8/2),(5/2,1)))
0.60 1430/.253/.308/.321/.961 .834/.242/.356/.340.
0.80 .072/.006/.251/.092/.545 .632/.702/.481/. 586 .
1.00 .003/.002/.197/.000/.728 .181/.093/.199/. 733
1.20 .000/.000/.128/.000/.535 .017/.349/.284/.CROAY.
1.40 .000/.000/.000/.000/.130 .000/.432/.391/.008.
1.60 .000/.000/.000/.000/.094 .000/.000/.432/.000.

Notes: The table reports the p-values of the Pemgd-test for the tests

Q/MN/D/CS1/CS2, respectively, under the nullpNE) with parametersu and X
estimated from 2500 realizations of the correspamypdnixture. The test statistic was
computed from 5000 stacked scores (499 degreesaddm) for MN/D/C1/C2 and from
2500 scores (249 degrees of freedom) for the Q-test
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Table 2 The performance of Q/MNL/MN/D in a Monte Carlo Simulation

0 N

2 3 4 5 6 7 8 9 01
1.0 |.025 122 071 277 423 501 514 .697 .329
.004 .007 .233 .020 .197 .007 .021 .200 .010
.073 245 779 092 774 931 707 435 217
.604 A73 329 749 231 793 .893 .583 .438
1.2 |.008 .015 .065 .245 558 .321 .195 .078 .291
.000 .000 .000 .002 .010 .000 .005 .000 .0O07
.036 .065 .269 .129 671 .727 342 812 .775
.543 139 891 .393 551 173 515 .741 .116
1.4 |.000 .015 295 .074 .039 .347 412 .358 .060
.000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .001 .413 .708 .299 .387 .047 551 .214
373 569 298 905 542 259 233 972 491
1.6 |.000 .000 .000 .000 .002 .020 .139 .002 .098
.000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .000 .002 .312 .249 551 .003 .191 .606
.148 631 721 337 612 .638 .914 .285 .733
1.8 |.000 .000 .000 .000 .000 .000 .000 .091 .037
.000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .000 .017 .064 .143 .194 .248 .124 .322
.004 120 .348 573 940 .341 .089 .777 .483

Notes: The p-values of the Pearsgn®sstatistic for the tests Q/MN1/MN/D, respectively,
under the null of multinormality with the parametesstimated in the sample of 2580
dimensional observations, drawn from the mixtutéN((—J/\/N,...,—JI\/N), ) +

VzN((d/\/N,...,d/\/N),I) . The x?-statistics were computed from 2500 scores (249

degrees of freedom) for the tests Q and MN1 ana £2600"N scores (2508-1 degrees of
freedom) for the tests MN and D.
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Table3 Summary Statistics

Statistics S& P500 Dow Jones Nasdaq
Mean (%) 0.0083 0.0147 0.0128
Stand Dev (%) 1.1389 1.0919 1.8163
Skewness 0.051 -0.064 0.116
Kurtosis 4.984 6.004 6.614
X -stat (df=249) 433.5(0) 378.1(0) 514.8(0)

Notes: The table reports the mean, standard demjaskewness, kurtosis and the
Pearson’'y? statistic (p-values in parenthesis) under the ofilhormality for the log

returns for S&P500, Dow Jones and Nasdaq for thmapka period 25/09/1998 to
29/08/08 (2498 daily observations).
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Table4 MVaR Unconditional Forecast Accuracy for the Multinor mal Density

Nominal
Significance %X L,
a=05% 0.881 2.037
a=1% 1.361 1.558
a=15% 1.962 1.664
a=2% 2.562 1.778
a=25% 3.163 1.892

Notes: The table reports the percentage of exaeptat of 2498 daily observations (i.e.,
the proportion of times the forecasted MVaR is exiesl) and the Kupiectsstatistic to
test the null hypothesis of unconditional accurdey different nominal significance
levels.
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Figure 1: The contour aregyOR?*:F_(y)<0.025 }gray) and the quadrant
Q((-1-1)) ={yOR?:y<(-1-1)} (dark gray) for the standard binormd¥ . For

observations (black dots) lying inside (outsideXid quadranQ((-1,-1)), the “highest”
of the projections on the main diagonal along thlesalies also inside (outside) of

Q((-1-1).

=

Figure 2: After the rotation of the canonical systelockwise by 90°, the south-east
orthant Qse moves to the south-west position Q$w.dashed lines are the main diagonals
in the original and the rotated system while thadsfd ellipse is the contour areafef, .
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Figure 3: A scatter plot of scores generated frdd@0lstandard binormal observations
under the null N((0,0),1). The x-axis (y-axis) aponds to the scores computed in the
canonical (90°-rotated) system.
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Figure 4: A sample of 1000 observations from thetane 1: Y2 N((8,-0),1) + ¥2N((5,9),1))
for 6=1.4.
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Figure 5: A sample of 1000 observations from thetane 2: ¥2N((0,0),((1&/2), (9/2,1)))
+ %N((0,0), ((15/2),(d/2,1))) ford=1.
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