
 
 

Dynamic Density Forecasts for 
Multivariate Asset Returns 

 
 
 

Arnold Polanski 
Evarist Stoja 

 
 
 

September 2009 
 
 
 
 
 

0B0BDiscussion Paper No. 09/616 
 
 

 
 

Department of Economics 
University of Bristol 
8 Woodland Road 
Bristol BS8 1TN 



Electronic copy available at: http://ssrn.com/abstract=1655767

Dynamic Density Forecasts for Multivariate Asset Returns  

 

Arnold Polanski, Queen's University Belfast 

Evarist Stoja, University of Bristol 

 

September 2009 

 

 

Abstract 

 

We propose a simple and flexible framework for forecasting the joint density of asset 

returns. The multinormal distribution is augmented with a polynomial in (time-varying) 

non-central co-moments of assets. We estimate the coefficients of the polynomial via the 

Method of Moments for a carefully selected set of co-moments. In an extensive empirical 

study, we compare the proposed model with a range of other models widely used in the 

literature. Employing a recently proposed technique to evaluate multivariate forecasts, we 

conclude that the augmented joint density provides highly accurate forecasts of the 

negative tail of the joint distribution.  
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1. Introduction 

 

The finance literature is replete with models and applications of point forecasts. For 

example, the celebrated ARCH model of Engle (1982) projects the next period’s level of 

volatility as a function of current and lagged squared returns. However, the amount of 

information contained and exploited in point forecasts is considerably lower than in the 

case of interval or density forecasting (see, for example, Christoffersen, 1998). A density 

forecast is an estimate of the probability distribution of the possible realizations of a 

variable, thereby providing a full description of the uncertainty associated with the 

forecast. This contrasts sharply with the point forecast which, by definition, provides no 

such information. This simple observation in itself provides a strong case for density 

forecasting. Moreover, the recent prominence of the risk management industry which 

heavily relies on density forecasting has strengthened this approach. Indeed, financial 

companies such as Reuters, Bloomberg, J.P. Morgan regularly provide density forecasts 

for their clients. The aim of this practice is to provide the user with a procedure which 

generates density forecasts of tailored portfolio returns over a specified horizon. One 

example is the Standard Portfolio Analysis of Risk (SPAN) framework which has 

become an industry standard for calculating margin requirements for customers and 

clearing house members. SPAN is essentially a mixture of stress tests performed on each 

underlying asset in the portfolio (see, for example, Artzner et al., 1999). Moreover, 

density forecasts are also of particular interest to regulators where the obvious example is 

Value-at-Risk (VaR), which since its adoption by the Basle Committee on Banking 
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Supervision (1996) has become the most widely used risk measurement tool in the 

banking sector. 

 

As already pointed out, the ARCH model is mainly concerned with point forecasting. 

Under certain circumstances, it is possible to construct density forecasts with the 

volatility estimate obtained from an ARCH model and , hence, it could be argued that the 

former stems from the latter. Indeed, under normal or, more generally, ell iptical 

distributions, one can obtain a forecast for the entire distribution from a volatility 

forecast. The simplifying assumption of elliptically distributed returns (in some cases 

augmented with a time-varying variance), which ensures tractability, is paramount in 

finance with wide ranging applications in risk management, asset and option pricing and  

portfolio decisions. There is however, increasing evidence that asset returns are not 

elliptically distributed. For example, Singleton and Wingender (1986) find evidence of 

skewness in the distribution of stock returns. Simkowitz and Beedles (1978) show that 

the degree of skewness preference of investors will impact on the extent of their 

diversification since the higher the degree of skewness, the fewer assets investors will 

hold given that diversification reduces the skewness of a portfolio, while Cotner (1991) 

documents the  impact of asymmetries on option prices. More recent evidence on non-

normality of return distribution is provided i.a. by Bae et al. (2003), Bali and Weinbaum 

(2007), and Polanski and Stoja (2009a). When the normality assumption is violated then 

a specification and forecast of the entire conditional joint distribution is necessary. More 

generally, decision making under uncertainty with asymmetric loss function and non-
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Gaussian variables involves density forecasts. Applications of density forecasting in 

finance and economics are surveyed and discussed in Tay and Wallis (2000).  

 

The literature on modeling the entire density of a random variable is more limited. 

Gallant et al. (1991) employ a semi-parametric framework to forecast the density which 

relies on a series expansion of the normal.  Hansen (1994) proposes the auto regressive 

conditional density model which employs a skewed student-t conditional distribution.  

Other approaches to modelling the conditional density of returns include the exponential 

generalized beta of McDonald and Xu (1995) and skewed generalized-t distribution of 

Theodossiou (1998). Another strand of literature on density forecasting originates in the 

seminal contribution of Breeden and Litzenberger (1978) and relies on extracting the 

implied density from the option prices via the Black-Scholes pricing model (see, for 

example, Fackler and King, 1990; Jackwerth and Rubinstein, 1996; Bahra, 1997). 

 

The cited literature is exclusively focused on modeling the univariate density of returns. 

However, financial decision making usually involves more than one risky asset. The 

standard practice here, as in the early univariate density literature, is to assume that the 

density is multinormal with a possibly time-varying covariance matrix (see Diebold et al., 

1999). In this case, the correlation coefficient adequately captures the dependence 

between assets. However, joint normality is not supported by empirical evidence (see, for 

example, Guidolin and Timmermann, 2006). Moreover, correlation is only a measure of 

linear dependence and suffers from a number of limitations (see Embrechts et al., 2002). 

For example, Patton (2004) argues that the dependence between assets is stronger during 
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market downturns than during market upturns while Polanski and Stoja (2009a) show that 

the probability of extreme events, as measured by the tail thickness, varies over time. 

These findings imply that results obtained via the standard elliptical distributions would 

generally be invalid.  

 

To address this shortcoming, Patton (2007)  advocates the copula approach in which the 

multivariate density is modelled as the product of the marginal densities of variables and 

the copula function which captures the dependence between the variables. The copula 

technique is flexible as the marginal densities can all be different from each other (and 

from the copula). However, in the finance literature it is mainly employed in the bivariate 

case. Recent attempts to generalise it to the multivariate case turned out to be technically 

and computationally demanding which detracts somewhat from their usefulness (see, for 

example, Aas et al., 2009). 

 

In this paper, we propose a novel technique to modelling the multivariate density of asset 

returns. We approximate the joint density as the product of a multivariate normal and a 

polynomial which adjusts it for the estimated time-varying (co-)moments of the variables 

of interest. We estimate the coefficients of the polynomial via the Method of Moments 

(MM).  This approach provides a flexible tool for modelling the empirical joint 

distribution of financial data, which in addition to volatility, exhibits time-varying higher 

(co-)moments. While our method maintains the simplicity of the multivariate normal 

distribution, it can be easily adapted to more complex distribution functions  and 

generalized moments. Furthermore, we extend the extant literature by employing the 
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MM-estimated augmented joint density (AJD) to forecast multivariate VaR (MVaR). 

Similar to its univariate counterpart, MVaR determines the probability of extreme losses 

for two or more assets. 

 

Our analysis employs daily returns of highly traded stock indices and exchange rates. The 

results suggest that the time-varying conditional (co-)moments are very important in 

characterising the joint return distributions and yield significant improvements in the 

forecasting of MVaR. While a specifically developed test shows that our density 

forecasts cannot adequately approximate the distribution over the entire domain, they are 

successful in approximating the negative tail of the joint distribution of returns which is 

the focus of risk management. 

 

The outline of the remainder of this paper is as follows. In Section 2 we discuss the  

theoretical framework for the MM multivariate density forecasting. Section 3 describes 

the statistical evaluation method. Section 4 presents the data and the empirical results 

while Section 5 concludes. 

 

2. Theoretical Framework  

 

We approximate the multivariate distribution of a vector X = ),...,( 1 nXX  of returns by a 

polynomially-adjusted multinormal probability density function (pdf) )( xf
)

. If f(x;µ,S) 

is the n-dimensional normal pdf with mean µ and the variance-covariance matrix S, then 

the AJD )(xf
)

 is the product of f(x;µ,S) and a polynomial in x= ),...,( 1 nxx , 
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∑Σ=
s

2s
n

s
1 )...)(,(x;(x) n1 xxf sλµϕ

)
      (1) 

 

where ),...,( 1 nsss = nN∈  is a vector of exponents and sλ  is the coefficient of the term 

n1 s
n

s
1 ...xx . Note that the polynomial, and hence the pdf )( xf

)
, assumes only non-negative 

values. We estimate the coefficients sλ  via the MM procedure. From historical returns 

x = ),...,( 1 nxx , where ix  is the return vector of asset ),...,1( ni = , we compute the co-

moment estimates ]...[ n1 v
n

v
1 xxE

)
 for a set V  of exponent vectors v= ),...,( 1 nvv nN∈  and  

then solve the multivariate quadratic system,  

 

]...[]...[ n1n1 v
n

v
1

v
n

v
1 xxEXXE f

)
) =    for all  v ∈ V ,     (2)  

 

for the coefficients sλ , where [.]fE )  is the expectation operator with respect to f
)

. Since 

solving quadratic equations is in general an NP-hard problem (with several applications 

in cryptography), we can approximate the solution to (2) for a large number of assets by 

minimizing the weighted sum of squared deviations, 

 

∑ −
v fv xxEXXE 2v

n
v
1

v
n

v
1 ])...[]...[( n1n1

)
)ω ,         (2a)  
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with respect to the coefficients sλ , where vω  is the weight of the co-moment 

corresponding to v .  Note that for a sufficiently high weight vω  for v  = (0,…,0),  )(xf
)

 

integrates to one, 

 

↑↓−=− ∫ vRvfv asdrrfxxEXXE
n

ωωω 0)1)((])...[]...[( 220
n

0
1

0
n

0
1

))
)   

 

The estimation of )(xf
)

 requires, therefore, a set of non-central co-moments, each 

defined by a vector of exponents v . In the empirical applications  of Section 4, each co-

moment vector v  in (2) is also used as a co-moment vector s  in the polynomial part of 

(1) and vice versa. The co-moments employed in the MM estimation (2) mirror, 

therefore, the polynomial terms in the forecast (1), although this is not a necessary 

condition for the applicability of our model.  

 

The AJD (1) provides a flexible modelling framework. Interestingly, by including in it 

higher co-moments, the multinormal distribution can be tailored to the specific features 

of financial data such as fat tails, jo int asymmetry and – in a slightly modified version – 

asymmetric dependence among assets.1 

 

                                                 
1 For example, the AJD (1) could be modified to capture the higher dependence among 

assets during market downturns than during market upturns. To this end, we would 

include a term which is activated whenever all returns are nega tive as illustrated in the 

bivariate density forecast )( xf
)

= 2
21211121 ...)0)&0I()(...;.,( +<<⋅+ xxxxxx λϕ . 
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The model allows also for the incorporation of time-varying co-moments into dynamic 

forecasts. For example, the exponentially weighted moving average (EWMA) specifies 

the next period’s thk  moment 1, +tku  of the portfolio return to be a weighted average of 

the current thk  moment tku ,  and the current actual return tx , raised to the power of k , 

 

∑∞

=+ =
0i i-tkk

k
tktk,k1tk, )-(1)x-(1+u=u ki xγγγγ     (3) 

 

Therefore, an EWMA moment can be interpreted as a weighted average of past returns , 

raised to the appropriate power, encapsulating information from all past shocks with 

exponentially declining importance attached. This can be extended to n assets and non-

central co-moments defined by a vector of exponents ),...,( 1 nvvv = nN∈ , 

 

∑∞

=++ ==
0i i-tn,i-t1,tn,t1,tn,t1,1tn,1t1, ....xx)-(1....x)x-(1+....uu....uu 1111 nnnn vvi

vv
vv

v
vv

v
vv γγγγ      (4) 

 

The forecast nvv
1tn,1t1, ....uu 1

++  can then be employed as the co-moment estimate 

]...[ n1 v
n

v
1 xxE

)
 in the MM optimization (2). The polynomial coefficients that minimize 

(2), together with the estimates of the mean and variance of the multinormal part in (1), 

fully define the density forecast f
)

. Note that the forecasts are dynamic in the sense that 

they evolve over time. In the next section, we discuss the evaluation of multidimensional 

density forecasts. 
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3. Statistical Evaluation Method 

 

A correct density forecast should be unconditionally and conditionally accurate. 

Unconditional accuracy of a continuous univariate (time-varying) density forecast tf
)

 

implies that the frequency of observations tx , for which the probability integral 

transformation (PIT) )Pr()(: ttttt xXxFz <==
)

 is less than ]1,0[∈α , approaches α  as the 

sample size T increases (Rosenblatt, 1952). In other words, the PIT sequence T
ttz 1}{ = , 

computed from observations T
ttx 1}{ = , must be uniformly distributed on the unit interval 

when the forecasts are correct. Polanski and Stoja (2009b) showed that this criterion does 

not generalize directly to multivariate density forecasts. The PIT sequence 

tz = )),...,(( ,,1 tnttt xxxF =
)

 from multidimensional density forecasts tf
)

 is not necessarily 

uniform even when the forecasts are correct. However, a simple modification in the PIT 

computation restores the uniformity of the scores. First, each observation ),...,( ,,1 tntt xxx =  

is transformed into a vector M
tx := )1,....,1(*),...,( ,,1 tnt xxMax  and then the score 

M
tz = )( M

tt xF
)

 is computed. Note that for unidimensional forecasts, M
tz  and the standard PIT 

tz  are identical. Polanski and Stoja (2009b) proved that the scores M
tz  are ... dii  according 

to the uniform distribution U[0,1] if the AJDs tf
)

 are correct.  

 

Testing the conditional accuracy of forecasts entails the proof that the current score M
tz  

does not convey any information on the score in the next period or, alternatively, that the 

scores M
tz  are distributed independently across the time. The unconditional and conditional 
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accuracy can be, therefore, tested with the usual goodness-of-fit tests (see Noceti et al., 

2003 for a comparison of the existing tests) and serial independence tests (e.g., 

portmanteau test) on M
tz -scores.  

 

From the latter scores, we can also compute the exceedance rates for the MVaR. For a 

unidimensional cdf tF
)

, the VaR at the 1-α  coverage level is defined as (the negative of) 

the quantile α
tq  for which αα =)( tt qF

)
. By analogy, for an n-dimensional cdf tF

)
, we 

require that the MVaR ),...,( αα
tt qq  satisfies the condition ααα =)),...,(( ttt qqF

)
. Then, 

from the definition M
tz = )( M

tt xF
)

 it can be deduced that M
tz  is less than α  whenever all 

components of the observation ),...,( ,,1 tntt xxx =  exceed the critical value α
tq , 

 

M
tz  < α  ⇔  tx  < ),...,( αα

tt qq . 

 

As in the univariate case, the assessment of MVaR forecasts is inherently difficult. Since 

the actual MVaR is not observable, the accuracy of the forecasted MVaR cannot be 

directly evaluated. One can, however, compute the proportion of observations, which 

exceed the MVaR forecast and compare this number with a required significance level. 

We refer to this procedure as unconditional accuracy. On the other hand, the conditional 

accuracy requires that the number of observations that exceed the MVaR forecast should 

be unpredictable when conditioned on the available information. To assess both types of 

accuracy, we employ the unconditional accuracy test of Kupiec (1995) and the 

conditional accuracy test of Christoffersen (1998). Although both tests are designed for 
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univariate densities, they still apply for joint distributions, because the score computation 

has effectively converted a multivariate problem into a univariate one. Indeed, as the 

exceedence of the MVaR at level α  is equivalent to M
tz <α , the test statistics for both 

tests can be computed directly from the M
tz -scores. 

 

4. Empirical Study  

Data 

To evaluate the performance of our model, we tested out-of-sample the forecasts for the 

joint distribution of the daily returns of S&P500, Dow Jones and Nasdaq  equity indices 

as well as the forecasts for the joint distribution of the exchange rates of GBP, CHF and 

JPY measured against the USD. We investigated also the performance of our model in 

the inter-temporal dependence context by modelling the joint distribution of returns of an 

asset over five consecutive business days. 

 

Table 1 (Panel A) presents summary statistics for the continuously compounded daily  

return series of equity indices computed from the raw prices. The mean returns  are almost 

identical for all series, and close to zero. The ARCH(4) portmanteau test for up to fourth 

order serial correlation in squared returns shows that all returns display significant 

volatility clustering and are highly leptokurtic (which is consistent with the existence of 

time-varying volatility). The returns for Dow Jones are slightly negatively skewed while 

for the remaining two series the returns are positively skewed. The three return series are 

relatively strongly correlated, with the highest correlation between S&P500 and Dow 

Jones, and the lowest between Dow Jones and Nasdaq. In line with previous evidence for 
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daily returns, the null hypothesis of normality is strongly rejected by the Bera-Jarque 

statistic. Panel B in Table 1 reports the same  summary statistics for the exchange rates, 

where, with the exception of the correlation coefficients which are significantly lower, 

similar observations apply. In particular, the null hypothesis of normality is again 

strongly rejected for the exchange rates. 

 

[Table 1]  

 

The joint distribution of the log returns of n assets, 

 

tx = ),...,( ,,1 tnt xx = 100 ))/ln(),...,/(ln( 1,,1,1,1 −− tntntt pppp , 

 

where tip ,  is the closing price at date t, were forecasted according to three models.  

 

In the basic model N, the forecast 1+tf
)

 at date t+1 was simply the multinormal pdf with 

zero mean and the variance-covariance matrix estimated from the historical returns in the 

moving window ),...,( tTt rr − .  

 

Model N2 used the EWMA specification (4) to forecast the second (co-)moments, 

 

nnn vv
tv

vv
tv

vv
tn,t1,,tn,t1,,1tn,1t1, ....x)x-(1+....uu....uu 111 γγ=++    (5) 
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for all vectors )...,,( n1 vvv =  such  that n1 +... vv + = 2 and with the parameters tv ,γ  in 

(5) set to minimize the squared sum of the historical forecast errors in the moving 

window ),...,( tTt xx − ,2 

 

∑ −=
−

t

Tts
vvvv nn 2

sn,s1,sn,s1, )....xx....uu( 11       (6) 

 

The forecasted latter moments were used to construct the variance-covariance matrix 1+Σ t  

for the AJD 1+tf
)

= N(0, 1+Σ t ). N2 corresponds, therefore, to the EWMA-multinormal 

model (see Diebold et al., 1999). 

 

Finally, in the model N24, the forecasted multinormal pdf from N2 was multiplied by the 

polynomial term,  

 

∑v
vv

v
nxx 2

n1 )...( 1λ  for all )...,,( n1 vvv =  such that  }4,2,0{∈iv , }4,0{+... n1 ∈+ vv    (7)  

 

that included the fourth (co-)moments.3 The coefficients νλ  in the polynomial (7) were 

estimated by MM with the moment forecasts (5) for the vectors  of exponents v  from (7). 

                                                 
2 Polanski and Stoja (2009a) show that this procedure is equivalent to the ML estimation 

of tv ,γ . 
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As in N2, the parameters tv ,γ  in (5) were set to minimize the squared sum of historical 

errors (6). 

 

 Results 

The out-of-sample evaluation of density forecasts was based on the scores M
tz = )( M

tt xF
)

, 

where  M
tx = )1,....,1(*),...,( ,,1 tnt xxMax . For all three models and for all data sets under 

study, the Pearson’s 2χ  test strictly rejected the null of uniform distribution of M
tz -

scores with the resulting p-values virtually equal to zero in each case. None of the models 

generates, therefore, an acceptable forecast for the multivariate distribution of returns 

over the whole domain. However, risk managers and regulators are interested generally in 

the likelihood of large losses. If this is the case, then a model which accurately describes 

the extreme events while failing in the interior of the distribution will not be rejected. In 

other words, a model superior in forecasting the central part of the distribution will be 

eschewed in favour of another model which accurately forecasts the negative tail. This 

objective motivates the censored likelihood test of Berkowitz (2001), in which the 

observations not falling into the negative tail of the distribution (with cut-off point being 

decided by the user’s requirements) are truncated. 

 

                                                                                                                                                 
3 We also experimented with a polynomial including the odd co-moments, but in our 

datasets they were found to have little impact on the negative tail of the joint density 

which was our main focus. 
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Henceforth, we focus only on the  negative tail of the distribution which is the relevant 

part of the distribution for risk management purposes. We observed that the MVaR 

forecasts from N24 were accurate for relatively low values of the nominal level α  in all 

data sets under study. Note that the latter MVaR are of particular importance for the 

assessment of the joint risk of financial assets of interest. 

 

In Table 2, we report the actual MVaR exceedance rates for different nominal levels α , 

together with Kupiec’s (1995) unconditional ( ut ) and Christoffersen’s (1998) conditional 

( cLR ) test statistics for the joint density of S&P500, Dow Jones and Nasdaq indices. The 

simple constant-higher-moments N and N2 models perform poorly, conditionally and 

unconditionally, with exception rates often higher than twice the nominal exception level.  

In sharp contrast to N and N2, the inclusion of the fourth co-moments in the specification 

of N24 dramatically improves the quality of the forecasts both conditionally and 

unconditionally. Similar conclusions can be drawn from Table 3, where we report the 

same statistics for the joint density of GBP, CHF and JPY exchange rates. These findings 

confirm the importance of (even) higher (co-)moments in the density forecasting of 

financial data as observed previously fo r unidimensional variables (Polanski and Stoja, 

2009a). 

 

[Table 2 and 3] 

 

In addition to the joint density of returns on different assets, financial institutions may be 

interested in the joint density of extreme losses on the same asset over consecutive  



 17

business days. Table 4 presents the actual MVaR exceedance rates for different nominal 

levels α , together with Kupiec’s (1995) unconditional ( ut ) and Christoffersen’s (1998) 

conditional ( cLR ) test statistics for the joint density of returns on five consecutive 

business days for Dow Jones. The out-of-sample period is 09/12/1976 to 07/09/2005 

(7500 daily observations were used to construct a sequence of 1500 quintuple 

observations). Although for high α  the improvements on MVaR forecasts are not 

significant, for lower levels of α  the dominance of the AJD over its simpler counterparts 

is overwhelming both conditionally and unconditionally . This illust rates that 

incorporating higher co-moments in the joint density of returns yields significant 

improvements in MVaR forecasting, not only cross-sectionally but also in an 

intertemporal context. 

 

[Table 4]  

 

5. Summary and Conclusion 

 

We propose a simple and flexible framework for forecasting the joint density of asset 

returns. The multinormal distribution is augmented with a polynomial in time-varying 

higher co-moments, where the coefficients of the polynomial are MM estimated for a 

carefully selected set of co-moments. In an empirical study, we compare the proposed  

model with a range of other models widely used in the literature. Although a recently 

proposed goodness-of-fit test (Polanski & Stoja, 2009b) shows that none of the models 

examined  provides an accurate description of the entire joint distribution of returns, the 
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AJD performs well in the negative tail of the distribution. By focusing on the negative 

tail, which relates to the probability of joint extreme losses, we keep with the standard 

risk management practice. In spite of its conceptual and computational simplicity, our 

framework appears to deliver a highly accurate forecast of the joint risk. 

 

A consequence of the conceptual simplicity and flexibility is its intuitive appeal. The co-

moments, used in the MM estimation, relate directly to the shape of the joint distribution. 

Furthermore, the structure of density forecasts is the same for an arbitrary number of 

assets. Regarding the computational cost, we note that the estimation of multi-

dimensional functions can be limited by specifying only a few co-moments in the 

objective function (2) whereas each forecast is evaluated by computing a single 

multidimensional integral. Possible extensions of the basic model could include the 

asymmetric dependence of returns on joint positive and negative shocks and/or 

augment ing other functions than the standard normal. 
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Table 1 Summary Statistics 
 

Panel A: Equity Indices 
 

Returns 
 

 S&P500 Dow Jones Nasdaq 
    

Mean (%) 0.008 0.014 0.012 
Stand Dev (%) 0.011 0.010 0.018 

Skewness 0.051 -0.064 0.116 
Kurtosis 4.984 6.004 6.614 

B-J 413.509 946.749 1372.523 
ARCH(4) 658.680 635.390 721.279 

    
Correlations  

    
 S&P500 Dow Jones Nasdaq 
    

S&P500 1.000 0.945 0.855 
Dow Jones  1.000 0.718 

Nasdaq   1.000 
 
 
Notes: The table reports the mean, standard deviation, skewness, kurtosis, Bera-Jarque 
statistic, ARCH(4) statistic and correlation for log returns for S&P500, Dow Jones and 
Nasdaq for the sample period 15/09/2000 to 29/08/08 (2000 daily observations). The five 
percent critical values of the B-J and ARCH(4) statistics are 5.99 and 9.49, respectively. 
 

 

 

 

 

 

 

 

 

 

 



 23

 

Table 1 Summary Statistics (continued) 
 

Panel B: Foreign Exchange  
 

Returns  
 

 GBP CHF JPY 
    

Mean (%) 0.001 -0.003 -0.007 
Stand Dev (%) 0.589 0.715 0.689 

Skewness -0.180 -0.619 -0.135 
Kurtosis 6.111 8.443 4.616 

B-J 662.268 763.295 839.624 
ARCH(4) 727.058 759.304 854.435 

    
Correlations  

    
 GBP CHF JPY 
    

GBP 1.000 0.010 0.006 
CHF  1.000 -0.010 
JPY   1.000 

 

Notes: The table reports the mean, standard deviation, skewness, kurtosis, Bera-Jarque 
statistic, ARCH(4) statistic and correlation for log returns for GBP, CHF and JPY against 
USD for the sample period 6/12/1988 to 6/08/1996 (2000 daily observations). The five 
percent critical values of the B-J and ARCH(4) statistics are 5.99 and 9.49, respectively. 
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Table 2:  MVaR Forecast Accuracy Results for Equity Indices 

 

 %5.0=α  %1=α  %5.1=α  
Models  %x ut  cLR  %x ut  cLR  %x ut  cLR  

  
N 0.014 3.554 0.851 0.023 3.878 0.702 0.026 3.091 0.286 

N2 0.010 2.247 0.402 0.018 2.821 1.754 0.027 3.310 1.336 
N24 0.006 0.579 0.143 0.013 1.184 0.683 0.018 1.009 1.318 

        
 %2=α  %5.2=α  %5=α  

N 0.031 2.838 0.003 0.036 2.537 0.092 0.059 1.708 2.289 
N2 0.032 2.944 0.482 0.034 2.220 1.096 0.064 2.558 0.427 

N24 0.020 -0.161 0.071 0.025 -0.144 0.469 0.05 0.000 0.795 
 
 

Notes: The table details the results for 2000 daily observations (15/09/2000 to 29/08/08) 
on triplets S&P500, Dow Jones and Nasdaq. It reports the percentage of M

tz -scores that 
are less than the  nominal level α  (i.e., observations that exceed the α -MVaR), the 
Kupiec’s t-statistic to test the unconditional accuracy and the Christoffersen’s likelihood 
ratio statistic to test conditional accuracy for different nominal levels. 
Model N is the normal distribution with zero mean and the variance-covariance matrix 
estimated for each t in the window [t-T, t] for T=498 and t=1,…,2000. Model N2 is 
normal distribution with zero mean and the variance-covariance matrix estimated 
according to EMWA (5). Model N24 is normal distribution with zero mean and the 
variance-covariance matrix and all 4th moments estimated according to EMWA (5).  
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Table 3:  M VaR Forecast Accuracy Results for Exchange Rates 

 

 %5.0=α  %1=α  %5.1=α  
Models  %x ut  cLR  %x ut  cLR  %x ut  cLR  

  
N 0.004 -0.874 0.175 0.006 -2.969 0.436 0.010 -3.377 1.049 

N2 0.004 -0.002 0.249 0.008 -1.414 0.676 0.012 -1.525 0.050 
N24 0.005 0.744 0.336 0.010 0.000 0.396 0.014 -0.854 0.006 

        
 %2=α  %5.2=α  %5=α  

N 0.013 -4.058 0.011 0.016 -4.511 1.408 0.035 -5.404 0.056 
N2 0.016 -2.132 0.083 0.020 -1.977 0.270 0.023 -3.092 0.537 

N24 0.018 -1.406 0.204 0.022 -1.759 0.210 0.041 -3.288 0.241 
 

Notes: The table details the results for 2000 daily observations (6/12/1988 to 6/08/1996) 
on triplets GBP, CHF and JPY against USD. It reports the percentage of M

tz -scores that 
are less than the nominal level α  (i.e., observations that exceed the α -MVaR), the 
Kupiec’s t-statistic to test the unconditional accuracy and the Christoffersen’s likelihood 
ratio statistic to test the conditional accuracy for different nominal levels. 
Model N is the normal distribution with zero mean and the variance-covariance matrix 
estimated for each t in the window [t-T, t] for T=498 and t=1,…,2000. Model N2 is 
normal distribution with zero mean and the variance-covariance matrix estimated 
according to EMWA (5). Model N24 is normal distribution with zero mean and the 
variance-covariance matrix and all 4th moments estimated according to EMWA (5).  
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Table 4: Intertemporal M VaR Forecast Accuracy Results for Dow Jones 

 

 %5.0=α  %1=α  %5.1=α  
Models  %x ut  cLR  %x ut  cLR  %x ut  cLR  

  
N 0.002 -2.600 0.011 0.007 -1.586 0.132 0.008 -3.043 0.192 

N2 0.003 -1.752 0.020 0.008 -0.869 0.192 0.011 -1.341 0.388 
N24 0.003 -1.119 0.032 0.009 -0.557 0.225 0.012 -1.341 0.388 

        
 %2=α  %5.2=α  %5=α  

N 0.011 -3.171 0.388 0.018 -1.812 1.064 0.051 0.118 0.006 
N2 0.013 -2.251 0.539 0.019 -1.811 1.064 0.043 -1.268 0.012 

N24 0.015 -1.718 0.653 0.019 -1.811 1.064 0.048 -0.362 0.089 
 

Notes: The table details the results for 1500 quintuple observations on Dow Jones returns 
(i.e., each quintuple contains Dow Jones returns on five consecutive working days). It 
covers the period of 7500 days (09/12/1976 to 07/09/2005). The table reports the 
percentage of M

tz -scores that are less than the nominal level α  (i.e., observations that 
exceed the α -MVaR), the Kupiec’s t-statistic to test the null hypothesis of the 
unconditional accuracy and the Christoffersen’s likelihood ratio statistic to test the null 
hypothesis of conditional accuracy for different nominal levels.  
Model N is the normal distribution with zero mean and the variance-covariance matrix 
estimated for each t in the window [t-T, t] for T=300 and t=1,…,1500. Model N2 is 
normal distribution with zero mean and the variance-covariance matrix estimated 
according to EMWA (5). Model N24 is normal distribution with zero mean and the 
variance-covariance matrix and all 4th moments estimated according to EMWA (5). 
 
 
 


