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Abstract

This note addresses some issues that arise when using “normalized” CES
production functions, an approach that has become popular in the literature.
The results of Klump and de La Grandville (2000) provide a simple way to
calibrate the parameters of the CES production function when the necessary
data are available. But some of the other applications of normalized CES
production functions appear problematic, especially when used to argue that
productivity is increasing in the elasticity of substitution.
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1 Introduction

In recent years, the CES production technology has returned to centre-stage in

growth economics and short-run macroeconomics. There are many reasons for

this, including the observed variation in factor shares in advanced economies

(Blanchard 1997, Bentolila and Saint-Paul 2006); the tendency for empirical stud-

ies using single-country data or microeconomic data to estimate the elasticity of

substitution between capital and labor as well below unity (for example, Antràs

2004; for surveys see Chirinko 2008 and Klump et al. 2008); and cross-country

studies that reject a unitary elasticity of substitution (Duffy and Papageorgiou

2000). In growth models, the consideration of varying factor shares, and factor-

biased technical change and questions of appropriate technology, all require tech-

nologies more flexible than Cobb-Douglas (for example, Acemoglu 2003, and

Caselli and Coleman 2006). The wider use of CES technologies means that it

is increasingly common for studies of growth models to consider the effects of

variation in the elasticity of substitution (for example, Turnovsky 2002).

Although the CES production technology seems relatively straightforward, its

mathematical simplicity can be deceptive. de La Grandville (1989), Klump and de

La Grandville (2000) and Klump et al. (2008) have emphasized that the economic

interpretation of the CES production technology requires care. In particular, they

recommend “normalizing” CES technologies when analyzing the consequences

of variation in the elasticity of substitution.

It may seem odd that there is any normalization issue to raise at all. Perhaps

the easiest way to demonstrate the underlying problem is to imagine a produc-

tivity comparison between two firms, with production functions AF (K,L) and

BG(K,L) respectively. At first glance, the parameters A and B enter the produc-

tion functions symmetrically and have the same interpretation, as TFP parameters.

But since the production technologies differ, a comparison of the relative magni-

tudes of A and B has no economic meaning. The two are not on the same scale,
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and the mathematical symmetry is misleading about the economic content of the

comparison.

This is a simple illustration of a far more general problem, which emerges

especially clearly in the CES case. If the elasticity of substitution is allowed to

vary, this is rather like moving from one function F (K,L) to another, G(K,L).

This raises the issue of whether other technology parameters will retain the same

economic interpretation as before, and what it means, in economic terms, to vary

the elasticity of substitution while holding other parameters “constant”. Different

proposals for normalizing the CES technology are different proposals about what,

exactly, should be held constant as the elasticity of substitution is varied.

Most researchers have worked with the standard (ACMS) form, due to Arrow

et al. (1961):

Y = A (bKρ + (1− b)Lρ)
1
ρ

where Y , K and L are output, capital and labor respectively, and where the

elasticity of substitution σ = 1/(1 − ρ). Much of the discussion that follows

centres on assumptions about the TFP parameterA, and the distribution parameter

b, for which the admissible range is 0 < b < 1. de La Grandville (1989) and some

later authors argue that, when varying the elasticity of substitution, both A and

b should be considered functions of the elasticity of substitution. They derive

explicit relationships that can be used to normalize the function as the elasticity

of substitution varies.

The easiest interpretation of normalization is to view the inputs of capital and

labor as index numbers, so that each could be measured relative to arbitrarily-

chosen benchmark values. We can then write the CES production function in the

“calibrated share form” of Rutherford (1995):

Y = Y0

(
π0

(
K

K0

)ρ

+ (1− π0)

(
L

L0

)ρ) 1
ρ

(1)
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where the parameter π0 can be interpreted as the capital share that arises at a

benchmark capital-labor ratio K0/L0 and output per worker level Y0/L0, under

perfect competition and marginal productivity factor pricing. The ACMS form

can then be seen as normalizing the function so that the distribution parameter b

is the capital share that arises when the capital-labor ratio K0/L0 is unity.

It is well known that the distribution parameter cannot be defined indepen-

dently of the units of measurement of capital and labor, but the problem is deeper

than this. If we want to study the effect of varying the substitution parameter ρ,

the problem is that the function can be normalized using any benchmark capital-

labor ratio, and this arbitrary choice will influence how the production surface is

reshaped by changing the elasticity of substitution. For example, with the ACMS

form, an increase in the elasticity of substitution reduces the curvature of the iso-

quants, but the old and new isoquants are tangential at a capital-labor ratio of

unity (Kamien and Schwartz 1968, p.12). Not least because we can interpret the

measures of capital and labor as dimensionless index numbers, there is no reason

to privilege this capital-labor ratio over others, and therefore no inherent reason

to prefer one normalization of the CES production function to another. The cal-

ibrated share form (1) implies that the tangency of the old and new isoquants

will occur at the benchmark capital-labor ratio, rather than a capital-labor ratio of

unity.

There is considerable room for misunderstanding here. This note aims to dis-

tinguish between instances where it is useful to normalize a CES production func-

tion in the way that Klump and de La Grandville (2000) recommend, and instances

where the idea could be misused. For simplicity, the discussion will assume there

are just two inputs, capital and labor, and constant returns to scale.
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2 The uses of normalization

Consider the problem faced by a researcher studying the transitional dynamics of

a growth model which includes a CES production function, written in the ACMS

form. How should the researcher choose the distribution parameter b? Conven-

tionally, it is interpreted as the capital share that would arise when the elasticity

of substitution is unity, but this is not much use if the researcher is primarily in-

terested in other cases. More generally, we have seen that the ACMS distribution

parameter can be interpreted as the capital share that will arise when the capital-

labor ratio is unity. But this relationship is not much help, since the researcher will

rarely be able to gauge a sensible magnitude for the capital share at that point.

If the researcher has multiple observations on factor shares and factor ratios,

the distribution and substitution parameters can be estimated from the data using

standard methods. Since the substitution parameter is treated as a fixed constant

to be estimated from the data, no issue of normalization arises. Alternatively, if

the researcher has just one observation on the capital share, corresponding to par-

ticular (known) values of the capital-output ratio and output per worker, then the

following expressions can be used to calibrate the TFP and distribution parameters

in the ACMS form:

A = ((1− π0)(Y0/L0)
ρ + π0(Y0/K0)

ρ)
1
ρ (2)

b = π0(Y0/K0)
ρA−ρ (3)

These expressions are equivalent to alternative forms in Klump and de La Grandville

(2000) and Klump and Saam (2008), and also imply the calibrated share form (1).

In this light, normalizing the function is no more than using data to pin down key

parameters, and is closer to calibration than normalization.

The conceptual problems are more significant when there are no data avail-

able to pin down the parameters. For example, a researcher might want to study

the transition dynamics of the Solow model in the CES case. Here, one natu-
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ral approach would be to think about the capital share believed to apply in the

steady-state. The capital-output ratio in the Solow model is a simple function of

the saving rate, and the rates of population growth, technical progress and the

depreciation rate. Hence the capital-output ratio can be calculated independently

of the production function parameters, and used in equations (2) and (3) together

with the researcher’s best guess of the capital share that will obtain asymptotically.

Alternatively, the researcher could guess the marginal product of capital that will

obtain in the steady-state.

But things get especially complicated when the researcher wants to simulate

the growth model for distinct values of the elasticity of substitution, and compare

the outcomes, in the absence of data that could pin down parameter values. The

traditional approach would be to hold the distribution parameter fixed and vary

the elasticity of substitution. This will imply different factor shares apply at any

given capital-output ratio, and different levels of output per worker apply at any

given capital-labor ratio. More fundamentally, however, we have already seen

that the economic interpretation of holding the distribution parameter fixed is not

straightforward. As noted above, there are many ways of normalizing the CES

production function, and the precise choice affects how the production surface is

reshaped by variation in the elasticity of substitution.

With this in mind, de La Grandville (1989), Klump and de La Grandville

(2000) and Klump and Preissler (2000) argue that the choices of the elasticity

of substitution, TFP parameter and the distribution parameter are best seen as

interdependent. If the researcher simulating a growth model varies the elasticity

of substitution, they should also vary the TFP and distribution parameters. Their

recommendation is to express the TFP parameter and the distribution parameter

as functions of the elasticity of substitution so that, as the elasticity is varied,

the production function always yields the same output per worker and marginal

rate of technical substitution at a specific capital-labor ratio. Put differently, the

procedure forces production surfaces that differ in the elasticity of substitution to
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be tangent to one another along a particular ray K = k0L where k0 is a baseline

capital-labor ratio. The resulting “normalized” production function can then be

written in a number of ways, with equation (8) in Klump and de La Grandville

(2000) as one of the simplest:

Y

L
=
Y0

K0

(π0

π

) 1
ρ K

L
(4)

using the same notation as before. Hence, if the researcher knows the capital

share which applies at a particular capital-output ratio, the above equation can be

used to eliminate any role for the TFP and distribution parameters. This ensures

that experiments which vary the elasticity of the substitution are always consistent

with the known data.

But if there are not enough data to pin down Y0/K0 and π0 in equation (4),

the TFP and distribution parameters remain “free” parameters, and the useful-

ness of (4) is less clear. Klump and de La Grandville (2000) clearly intend that

the normalized production function should allow comparison between economies

that differ “only” in the elasticity of substitution. This exercise does not seem

conceptually straightforward: since the original production function has three pa-

rameters, it would be surprising if the variation across technologies could be re-

duced to a one-dimensional parameter space. It is clear that, instead of reducing

the number of dimensions, normalization replaces the variation in the distribution

parameter with variation in the benchmark capital-labor ratio, a quantity that is

even harder to interpret.

To give a specific example, Klump and Saam (2008) study the dependence

of the convergence rate on the elasticity of substitution. In their Table 1, they

report a range of values for the convergence rate, which vary not only with the

elasticity of substitution but also with the “baseline capital intensity” k0. They

write (p. 258) that “The effect a given rise in the elasticity of substitution has

on the speed of convergence depends on the relative magnitude of baseline and

steady state capital intensity”. The last column of their Table 1 makes clear that
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a higher elasticity of substitution either lowers or raises the rate of convergence,

depending on the baseline capital-labor ratio. Since the latter can be arbitrarily

chosen by a researcher, the economic meaning of this variation is unclear.

3 The misuses of normalization

The discussion above regards the normalization of CES production functions as a

useful way of calibrating TFP and distribution parameters when the factor shares

(or alternatively, the marginal product of capital, or even the marginal rate of

technical substitution) are observed at a particular, known capital-output ratio and

level of output per worker. Alternatively, a researcher may have a strong prior

about the factor shares that are expected to hold in a long-run steady-state. But

for researchers who lack data or priors with which to calibrate CES production

functions, perhaps when simulating a dynamic model or carrying out a theoretical

analysis, the use of normalization does not eliminate the multi-dimensional nature

of the parameter space, and may risk obscuring it.

The associated problems are most serious when normalization is used to derive

theoretical results. It has been argued, especially in Klump and de La Grandville

(2000), that normalization increases the usefulness of CES production functions

for growth theorists, and this has led to its use in subsequent work such as Miyagiwa

and Papageorgiou (2007) and Papageorgiou and Saam (2008). In their paper,

Klump and de La Grandville prove two theorems which essentially state that, for

two economies with constant-returns CES production functions “differing only in

the elasticity of substitution”, and sharing common values for the initial capital-

labor ratio, population growth and investment rate, the economy with a higher

elasticity of substitution will have a higher level of per capita income at other

capital-labor ratios, and will have a higher capital intensity and income per capita

in the long-run steady-state.

Some have taken this to mean that the elasticity of substitution can be reinter-

8



preted as an index of technology: as economies become more advanced, perhaps

their elasticity of substitution increases, and with it their productivity. If true, this

would be a surprising and important claim. It is not guaranteed that labor pro-

ductivity should be monotonically increasing (or decreasing) in the elasticity of

substitution. Arrow et al. (1961) pointed out that the elasticity of substitution may

vary with the level of development, but there is no reason to expect productivity

to respond in a straightforward way to such a change, or to expect that a rising

elasticity of substitution can be the “engine of growth” implied by Klump and de

La Grandville (2000, p. 287).

To see this, consider the much simpler case of two countries that differ in

their Cobb-Douglas production functions. In country A, output is equal to Y =

AKθL1−θ and in country B, output is equal to Y = BKµL1−µ where µ 6= θ. A

quick calculation will show that the two production surfaces intersect: for some

capital-labor ratios, output per worker will be higher in country A, and for others,

it will be higher in country B. It is easy to show that there will be a threshold value

for the capital-labor ratio, with the identity of the more productive country chang-

ing as this threshold is crossed. This brief example shows that productivity is not

uniformly increasing in the output-capital elasticity, and accordingly, increases in

the latter would rarely be considered an engine of growth.1

With the above discussion in mind, it is clear that we may not be able to derive

a monotonic relationship between productivity and the elasticity of substitution,

contrary to Theorem 1 in Klump and de La Grandville (2000). And examining

that theorem more closely raises significant problems of interpretation. A higher

elasticity of substitution is said to ensure that a country will have a higher level

of productivity “at any stage in its development” (at any capital-labor ratio). But

1This is not to say that other comparative static results are ruled out. In the Cobb-Douglas
version of the Solow model, for example, it is possible to derive the effect of the output-capital
elasticity on steady-state output per capita, and on the convergence rate in the vicinity of the
steady-state. What the example shows, however, is that simple relationships between productivity
levels and specific technology parameters do not always exist.
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the normalization procedure implies, by construction, that the productivity level is

unchanged at the benchmark capital-labor ratio used to normalize the production

function as the elasticity of substitution varies. Moreover, precisely because the

different production surfaces are tangent at the benchmark capital-labor ratio, the

posited increase in productivity will be very small in the vicinity of the benchmark

capital-labor ratio. This is clear, for example, from figure 1 in Klump and de La

Grandville (2000).

These points immediately call into question the ambitious interpretation of the

elasticity of substitution as a meaningful index of productivity or the level of tech-

nology. It is an unusual index of technology which, when it increases, does not

raise productivity at all capital-labor ratios; and, more seriously, which raises pro-

ductivity by varying amounts depending on a benchmark capital-labor ratio that

is arbitrarily chosen. It would be hard to use this index to quantify the associated

effect on productivity. To clarify just how odd the interpretation becomes, we

can make the discussion more concrete by translating it into a slightly different

context. Here is an imaginary conversation between a company engineer and the

company’s manager:

Engineer: I have changed our production process so that it now has a

higher elasticity of substitution.

Manager: Excellent. I understand that this will lower our unit costs, at

any given ratio of inputs?

Engineer: Not exactly. It will lower them at all input ratios except one,

and in the vicinity of that exception, the reduction in unit costs will be modest.

Manager: And what is the input ratio at which unit costs remain the same

as before?

Engineer: That depends, and in principle, it could be any of them.

Translating the problem into such concrete terms makes clear that normalizing

the production function, by ensuring that different production surfaces are tangent

at a particular input ratio, raises significant problems of interpretation. The nor-
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malization ultimately fails to resolve the underlying difficulty, namely that when a

production technology changes form, the economic interpretation of all the tech-

nology parameters is likely to be altered. As a result, it is hard to interpret com-

parative static results for a parameter such as the elasticity of substitution.

These problems are especially serious when the normalization is used to derive

theoretical results that contrast outcomes associated with the different surfaces.

To be clear, the issue raised here does not concern the logical or mathematical

consistency of the proofs given in Klump and de La Grandville (2000) but rather

their economic interpretation. In particular, it is not clear what it means to say that

these alternative economies are “differing only by their elasticity of substitution”,

and to assume that such a statement is unambiguous carries significant risks.

In interpreting such theorems, precision in language is everything. Given the

discussion above, an appropriate restatement of their Theorem 1 would be “If

the parameters of the CES production functions of two different economies are

calibrated so that both functions yield the same capital share at a specific level

of output per worker and capital per worker, then the economy with the higher

elasticity of substitution will be predicted to have higher output per worker at all

other values of the capital-labor ratio”. This claim seems internally consistent, but

it is a claim about what happens when CES production functions are calibrated to

match specific quantities. It does not imply that the elasticity of substitution can be

interpreted as an index of productivity, or that economies with a higher elasticity

of substitution are more productive, or that we should expect higher levels of

economic development to be associated with higher elasticities of substitution.

Instead, the theorem tells us how production surfaces are reshaped by changes in

the elasticity of substitution, when the old and new surfaces are constrained to

match certain quantities at a particular benchmark point.

A more general lesson is that, if a researcher thinks that the elasticity of substi-

tution may vary, or that it can be an engine of growth, the analysis will probably

need to be located within an explicit structural model in which the production
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technology is endogenously determined. Such a model could then relate the pa-

rameters of the technology to a set of invariant (“deep”) structural parameters. In

that case, because the appropriate variation of the technology parameters can be

deduced from the structure of the model, the issue of normalization does not arise.

4 Conclusions

The above discussion of normalizing CES production functions can be summa-

rized as follows. The various recent papers on this topic have rightly drawn at-

tention to the potential importance of CES technologies. They have also helped

to show that, when a researcher simulates a model using a CES technology, hold-

ing the distribution parameter fixed while varying the elasticity of substitution is

not innocuous. If one technology parameter varies, the interpretation of others is

likely to vary. A sensitivity analysis then needs to be carried out in several di-

mensions, not one. Alternatively, when a researcher knows the factor shares that

obtain at a particular capital-output ratio, or that might hold in a steady-state equi-

librium, the normalization literature provides a straightforward way to calibrate

the distribution parameter so that it remains consistent with the data as the elastic-

ity of substitution varies. These are all useful contributions to our understanding

of CES technologies, which should have a significant impact on the future devel-

opment of the literature.

There is a danger, however, that the literature on normalization has moved too

far beyond this. In particular, normalizing CES technologies does not reduce the

dimension of the underlying parameter space without raising significant problems

of interpretation. The normalization approach is not enough to allow a meaning-

ful comparison of economies that differ “only” in the elasticity of substitution,

nor to permit the claim that labor productivity is increasing in the elasticity of

substitution, nor that increases in the elasticity will inevitably form an engine of

growth.
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A final conclusion is that, if theoretical claims are to be made in a model where

the elasticity of substitution can vary, ideally these claims should be made within a

structural model that relates all the CES technology parameters to invariant struc-

tural parameters. Comparative statics can then be carried out with respect to the

structural parameters, avoiding the need for normalization, or the arbitrary choice

of a benchmark point at which a family of surfaces are required to be tangential

to one another. The use of a structural model seems the only way to eliminate the

problem rightly identified by the normalization literature, which is that changing

the value of one parameter within a production technology will typically alter the

economic interpretation of others.
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