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Why might people in poor countries leave school earlier and invest less in learning on-the-

job than people in rich ones? How do these human capital decisions impact on inequality?

To give quantitative answers to these questions, I build an overlapping generations model

with optimal human capital accumulation and a given distribution of abilities. Variation in

mortality and population growth rates can generate large variability in schooling decisions,

earnings profiles and measures of inequality. High mortality and population growth rates are

shown to produce comparatively little investment in human capital, flat earnings profiles and

low inequality, both within and across cohorts.
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1 Introduction

Why do people in poor countries leave school a lot earlier than people in rich ones? Why should

we expect people in poor countries to invest less in learning on-the-job than people in rich ones?

How do these human capital decisions impact on inequality?

To address these questions, we build on Blanchard’s (1985) seminal contribution and develop

an overlapping generations framework with schooling and learning on-the-job decisions that can

be used to illuminate many issues. In this paper, we use the framework to argue that with fast

population growth, high mortality rates and high interest rates, there is little incentive to invest in

human capital, so people leave school early and their earnings profiles are relatively flat. We also

argue that differences in demographic factors, in conjunction with a stable distribution of abilities,

can account for large cross-country differences in inequality, both within and across cohorts.

Our learning-on-the job model is a contribution in its own right. We extend the famous Ben-

Porath (1967) human capital model to uncertain lifetimes by assuming that mortality rates do not

depend on age. As emphasized by Blanchard (1985), an age-invariable mortality rate is able to

capture the finite aspect of lives while at the same time making aggregation tractable. But this

assumption also has the unfortunate consequence that people of different ages have exactly the

same lifetime horizon. This led Blanchard (ibid., p. 224) to believe that his formulation was not

suitable to capture “the change in behavior over life”. Here we build a model of human capital

accumulation on-the-job that, despite the assumption of constant mortality rates, generates an

age-dependent human capital investment behaviour and a hump-shaped earnings profile like the

ones we observe in the data. This is achieved by assuming that, all else equal, an individual’s

ability to acquire more human capital on-the-job declines with age. This assumption turns out to

be well supported by empirical evidence. At the same time, because constancy of mortality rates

is preserved, aggregation across cohorts is still tractable, as in Blanchard (1985).

We attempt not only to quantify the extent to which low life expectancy and high population

growth rates may explain low investment rates in human capital, but also the impact of these

decisions on within-country inequality. Our explanation for inequality is essentially based on

demographic factors. It rests on two assumptions and one indisputable fact. We assume, first,

that there is a time-invariant distribution of abilities in the population, second, that there are

diminishing returns to schooling years but these set in faster for low ability people than for high

ability people. As for the fact, it is the large variability in mortality and population growth rates

that has been observed both across time and space.

The intuition for our results can be conveyed in a few paragraphs. Our model of the ini-

tial schooling choice is essentially the one proposed by Rosen (1977) and extended by Kalemli-

Ozcan, Ryder and Weil (2000) to account for uncertain lives: individuals choose schooling to

maximize the present value of (expected) lifetime earnings; at the margin, the return to schooling

must be equal to the effective discount rate, the latter being increasing in the interest rate and

the mortality rate. Once individuals enter the workforce, they may increase their human capital

through on-the-job learning. In this respect, the model is, as stated above, an extension of the

Ben-Porath (1967) model that incorporates uncertain lifetimes in a tractable manner. Individuals
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choose how to allocate their time between production and investment in human capital with the

objective of maximizing lifetime earnings.

High mortality and population growth rates lead to high effective discount rates, directly in the

case of mortality, indirectly for both via their effect on the interest rate. These demographic forces

mean that people rationally choose to invest little in formal education as well as in learning on-

the-job. Moreover, because of high discount rates, the dispersion in schooling decisions between

high ability individuals and low ability individuals is also small. This is turn generates a relatively

small dispersion of the human capital of new workers, and since these workers will invest little

on-the-job, experience effects on productivity will also be small. So the picture here is of a

relatively equal society in which very able and not so able individuals make similar human capital

investment decisions.

Consider what would happen if mortality and population growth rates fell. People would stay

longer in school and would also accumulate more human capital at work. Moreover, under some

plausible assumptions, the more able would react to these changes more strongly than the less

able. This in turn would generate larger variability in schooling choices, in the human capital

of new workers, and through the compounding effect of learning on-the-job, these effects could

significantly increase the dispersion of earnings in society.

In our model, decreases in mortality, population growth and interest rates should cause both

income per capita and inequality to rise. This is because the more able benefit more from the

same reduction in mortality and interest rates than the less able. Introducing the government

in this framework would allow us to analyze the impact of several redistribution policies. For

instance, governments that implement compulsory schooling laws might be able to reduce the

dispersion of schooling choices at the lower end of the distribution and reduce overall inequality.

The remainder of this paper is organized as follows. In Section 2 we focus on endogenous

investment in human capital while on-the-job. In Section 3 we endogenize the schooling decision.

We then proceed to aggregate productive human capital and physical capital (Section 4) and to

compute the general equilibrium of the economy (Section 5). Next we introduce heterogeneity

in ability and we briefly describe the small changes in the model that this modification entails

(Section 6). In Section 7, we calibrate this model to the U.S. balanced growth observations of the

second half of the twentieth century. We perform simulations in Section 8. Finally, we conclude

in Section 9.

2 On-the-job human capital accumulation

Consider a closed economy populated by a continuum of overlapping generations of agents. Each

generation is made of many agents who face a constant probability of death per unit of time.

Individuals go through two phases in their lives: first, they go to school for a certain number of

years, then they leave school voluntarily and work until they die. During this second phase, they

have to decide, at any point in time, how much to consume and how much time they should spend

acquiring additional human capital or working, taking as given current and future wage and rental
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rates. Each newborn is endowed with a certain amount of human capital but no financial assets.

Individuals are assumed to have no concerns for their descendants after their death. Finally, they

have perfect foresight about all economic variables, except for the fact that they do not know their

time of death, only the hazard rate.

In this section we abstract from endogenous schooling by assuming that all agents go to school

for the same, exogenously given, number of years. We focus instead on endogenous investment

in human capital while on-the-job. The point of departure is the Ben-Porath (1967) model as

developed by Heckman (1976). Under the latter’s formulation, the individual has to decide how

much to consume and how to allocate their time between leisure, work and investment in order to

maximize lifetime utility. Heckman (1976) avoids the analysis of corner solutions by assuming

that the optimal choice is given by interior solutions throughout the individual’s life; there is

no initial phase of full time education. His analysis therefore applies to the choices made by a

student, in high school or college say, that already works part-time.1 We build on Ben-Porath

(1967) in focusing on the labour-investment trade-off, but we follow Heckman (1976), first, in

including the choice of consumption and second, in dealing with interior solutions only.

A brief overview of the remainder of this section may prove useful to the reader. First, we set

out the formal problem which is solved by the typical agent. We also take some time to justify

the modifications we introduce to the Ben-Porath (1967) formulation. For expositional reasons,

we find it convenient to place the agent at the beginning of their working life. At each moment

in time, the agent has to decide how much to consume and how to allocate their time between

work and investment in human capital. Second, we solve for the optimality conditions of the

formal problem (Section 2.1). Among other things, we establish that optimality requires that the

marginal returns to time allocated to work and investment must be equal at all ages. Next, we turn

to the time paths of human assets and labour income (Section 2.2). Provided some reasonable

conditions are satisfied, we show that the profiles for human capital, for productive human capital

and for labour income will be hump-shaped. We also study how those time paths vary with the

interest rate, the mortality rate and the rate of technical change. Finally, we determine the profiles

for consumption and financial assets from birth (Section 2.3). As usual, consumption will grow

over time provided the real interest rate is greater than the subjective discount rate. On average

(since they can die at any point in time), individuals start out with zero financial assets, incur debt

at least until they leave formal education, but then eventually their earnings become bigger than

their consumption and interest payments on accumulated debt.

Let us then consider the problem faced by an individual, born at time j, who is about to start

their working life at time j0, after completing s years of formal education.2 Since they face an

uncertain life, they will maximize their expected lifetime utility, where the expectation is taken

with respect to the distribution of the duration of life. Yaari (1965) showed that it is possible to

write this objective function in the same way as the one under certain lives but with an altered

discount factor. Briefly stated, an uncertain life makes an individual discount future consumption

1In his words, “There is considerable evidence that the “representative” high school and college student works...one
could define a schooling period less arbitrarily as one in which hours of work are low...” (ibid., pp. S14-5)

2Hence, j0 = j + s.
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more heavily than the typical infinitely lived agent. If ρ is, as usual, the subjective discount rate,

m the instantaneous mortality rate, and the individual stands at time j0, then the discount factor

attached to the utility obtained at time v (v ≥ j0) will be equal to e−(ρ+m)(v−j0). Hence the

individual’s objective is to maximizeZ ∞

j0
e−(ρ+m)(v−j

0) c(j, v)
1−θ − 1

1− θ
dv, (1)

where θ is the inverse of the intertemporal elasticity of substitution, θ > 0; and c(j, v) denotes

consumption at time v for an individual born at time j (j ≤ v). 3

Let w(v) and r stand, respectively, for the wage per unit of human capital and the riskless

rate of interest at time v. We drop the time argument associated with r from the start because we

focus exclusively on balanced growth paths, henceforth BGPs. More specifically, we assume the

flow Y (t) of final output at t is given by Y (t) = K(t)α [A(t)Hy(t)]
1−α, where α ∈ (0, 1); A(t)

is an index of labour augmenting technical progress which grows at the rate g; K(t) is physical

capital and Hy(t) is the stock of human capital allocated to production (productive human capital

for short). In equilibrium, terms K(t) and A(t)Hy(t) will grow at the same rate and both factors

will be paid their marginal products, so r will be constant while w(v) will grow at the rate g per

unit of time.

Let h(j, v), y(j, v) and a(j, v) stand, respectively, for human capital, labour income, and (real)

financial assets; si(j, v) for the fraction of time spent investing in human capital; and hi(j, v) for

the number of efficiency units of human capital used in its production, invested human capital for

short. By normalizing the time available at each moment to unity, we have that

hi(j, v) = si(j, v)h(j, v) y(j, v) = w(v)h(j, v)(1− si(j, v))

The individual accumulates financial assets a(j, v) according to an almost standard equation:

d

dv
a(j, v) = y(j, v)− c(j, v) + (r +m)a(j, v) (2)

The only difference between a standard equation and this one is the real rate of return that

individuals can obtain on their financial wealth. Here the rate of return is the sum of the riskless

rate of interest and the probability of death. This assumes that individuals have no concerns for

their descendants after their death; that perfect markets for loans and annuities secured by life

insurance exist; and that the number of individuals of each cohort is so large that there is no

aggregate uncertainty regarding the size of surviving cohorts.4

The individual is also able to accumulate human capital on-the-job according to

d

dv
h(j, v) = E(j, v)1−bhi(j, v)b − δh(j, v) (3)

3More generally, x(j, v) stands for the value of the variable x at time v for an individual born at time j, in the main
text.

4For the pioneering paper, see Yaari (1965). For textbook expositions assuming a constant mortality rate see, for
instance, Blanchard and Fischer (1989, pp. 115-26) or Barro and Sala-i-Martin (2004, pp. 179-86).
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where E(j, v) is an age-varying efficiency term that is beyond the agent’s control from the

moment they start working onwards; b is a parameter strictly between zero and one to ensure

the gross production function is strictly concave with respect to hi(j, v); and δ is the rate of

depreciation of human capital. Notice how, for simplicity, we are abstracting from the direct costs

of acquiring human capital: the only cost of investment in human capital is lost labour income.

If we had instead of term E(j, v)1−b a constant, EBP say, then equation (3) would amount

to the Ben-Porath (1967) formulation: dh(j, v)/dv = EBPhi(j, v)
b − δh(j, v), where EBP is an

efficiency parameter that can be interpreted as a person’s ability to learn. It is plausible, however,

to allow EBP to vary positively with the level of schooling as for instance Heckman, Lochner and

Taber (1998) have done. This is because formal education may not only increase one’s starting

productivity but also permanently increase one’s ability to acquire additional human capital on-

the-job. The latter effect will arise if education equips a person with learning methods say that

are only, or at least more effectively, acquired in school.

We capture this effect of education on learning efficiency and introduce a new one associated

with age – hence the arguments j and v – by assuming that the E(j, v) term of equation (3) takes

the following form:

E(j, v) =
£
φh(j, j0)

¤
e−λ(v−j

0). (4)

where φ < 1 and λ > 0. The term in equation (4) in square brackets captures the permanent

effect of schooling, the exponential term the effect of age. We therefore propose that one’s ability

to learn, all else equal, declines with age at the exponential rate λ.

There is a great amount of evidence to back the assumption that people’s ability declines with

age. Studies in psychology, physiology, neurophysiology, neuroscience, gerontology, ageing,

motor behaviour and so on discuss and measure through batteries of tests the extent to which

people age, both physically and mentally. That physical ability declines with age from early

adulthood is beyond dispute. That the same phenomenon happens to cognitive abilities, the ones

that are most relevant for modern economies, may be less obvious but no less real. Naturally,

the extent to which people’s mental abilities deteriorate is not uniform at all across their brains’

functions or capabilities. For example, it has been found that verbal fluency seems to increase

until the mid-fifties and that its decline from its peak onwards takes place at very mild rates.

By contrast, a person’s memory, or the ability to perform mathematical computations, to engage

in several activities at the same time, to reason quickly or to perform new tasks, all start an

inexorable decline from the early twenties onwards. For more on this issue, see for instance

Avolio and Waldman (1994).

Summing up, most learning activities from early adulthood onwards have to make use of abil-

ities that, after controlling for other factors such as initial human capital, will inevitably decline

with age. From this it follows naturally that, once again taking other factors as given, the ef-

ficiency with which a person acquires more human capital must decline with age. This is the

crucial modification to the standard Ben-Porath (1967) model that allows us to generate realistic

hump-shaped profiles despite age-invariant death rates.

The individual’s intertemporal problem at time j0 is therefore to maximize (1) by choosing
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profiles for c and si subject to the accumulation constraints (2) and (3), to initial levels of financial

assets a(j, j0) and human capital h(j, j0), and to the following standard transversality conditions

lim
v→∞a(j, v)Λa(j, v) = 0 (5)

lim
v→∞h(j, v)Λh(j, v) = 0, (6)

where Λa(j, v) is the shadow price of one unit of financial assets and Λh(j, v) is the shadow price

of one unit of human capital.

2.1 Optimality conditions

As stated in the Introduction, we focus on an interior solution. Letting H stand for the present-

value Hamiltonian function of this control problem,

H = e−(ρ+m)j
0 ³
c(j, v)1−θ − 1

´
/(1− θ) + Λh(j, v)

n
E(j, v)1−b [si(j, v)h(j, v)]b − δh(j, v)

o
+Λa(j, v) {w(v)h(j, v) (1− si(j, v))− c(j, v) + (r +m)a(j, v)} ,

the necessary and sufficient conditions are5 (a) optimal choice of controls: ∂H/∂c = 0, and

∂H/∂si = 0; (b) flow eqs.: dΛa(j, v)/dv = −∂H/∂a(j, v) and dΛh(j, v)/dv = −∂H/∂h(j, v);
(c) boundary conditions: a(j, j0) and h(j, j0) given, and (5) and (6).

Regarding the choice of controls, we have for all v ≥ j0,

e−(ρ+m)(v−j
0)c(j, v)−θ = Λa(j, v) (7)

Λh(j, v)bE(j, v)
1−bhi(j, v)b−1h(j, v) = Λa(j, v)w(v)h(j, v). (8)

Condition (7) says that, for a person born at time j and alive at time j0, consumption at each future

point in time should be such that its discounted marginal utility is equal to the marginal utility of

income. The only difference in relation to the certainty case is that utility is discounted not only

because consumers are assumed to have a positive subjective discount rate but also because they

take into account that they may not reach time v. Condition (8) equalizes the value of the marginal

return to time invested in human capital (l.h.s.) to the value of the marginal return to time at work

(r.h.s.).

Turning to the flow equations, the first is just dΛa(j, v)/dv = −(r + m)Λa(j, v), and its

solution is immediate: Λa(j, v) = Λa(j, j0)e−(r+m)(v−j
0). Using equation (8), the second flow

equation simplifies to dΛh(j, v)/dv = δΛh(j, v)−w(v)Λa(j, v). Now, if the economy is moving

along a BGP, w(v) can always be written as w(v) = w(j0)eg(v−j0), where g stands, as stated

previously, for the instantaneous growth rate of wages which must be equal to the rate of labour

5It is well known that the Maximum principle only provides necessary conditions for optimality. But it is easy to
show that this problem verifies the so-called Arrow sufficiency condition – see Seierstad and Sydsaeter (1987, pp.
107-8). The same cannot be said of other natural formulations, see McCabe (1983) for details.
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augmenting technical progress. Define the following discount rates:

R = r +m− g + δ (9)bR = r +m− g + λ (10)

Then it is easy to show that the relationship that follows is imposed by the transversality

condition for human capital:6

Λh(j, v)

Λa(j, v)
=

w(v)

R
(11)

We can attempt to provide an intuitive explanation for this condition. Recalling that Λh(j, v)

andΛa(j, v) are shadow prices and are measured in units of utility, the l.h.s. of equation (11) gives

the value, in utils, of an additional unit of human capital relative to the value of an additional unit

of financial assets. As for the r.h.s., it gives the return per period, in real terms, of an additional

unit of human capital relative to the return of an additional unit of financial assets. Notice that R

takes into account not only that financial assets earn interest r +m but also that human capital

depreciates at the rate δ and becomes more valuable over time at the rate g. Hence, the condition

given in equation (11) says that optimality requires that relative returns in units of utility must be

equal to relative returns in real units.

Moreover, it is also straightforward to show that in addition to (11), the transversality condi-

tion for human capital imposes that R > 0 and bR > 0. Both inequalities amount to lower bounds

on r and using the definitions of R and bR given in (9) and (10) they may be written as follows.

Condition 1 Two lower bounds on r: (i) r > g −m− δ and (ii) r > g −m− λ.

Now, substituting (11) into the first order condition (8) yields an equality with an intuitive

interpretation:7

bE(j, v)1−bhi(j, v)b−1w(v)h(j, v)
R

= w(v)h(j, v) (12)

The numerator of the l.h.s. of (12) is the product of the human capital generated by the

marginal unit of time invested in its production and the wage rate. Dividing this by the discount

rate R yields the discounted present value of the infinite stream of future labour income earned

with that marginal unit of human capital. The r.h.s. of (12) is simply the additional income

generated by the marginal unit of time spent working. Therefore, what equation (12) says is that

the two marginal returns to time allocation must be equalized at all ages.

2.2 Human assets and labour income

Solving equation (12) for invested human capital we obtain

hi(j, v) = E(j, v)(b/R)
1
1−b = h(j, j0)e−λ(v−j

0)si(R), (13)

6All derivations involving more than a couple of steps of algebra are omitted from the main text for brevity. Please
see the technical appendix for details.

7We believe intuition is better provided if we do not cancel the common term w(v)h(j, v) which appears on both
sides of the equation.
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where si(R) stands for the fraction of time that a new worker invests in human capital and is

given by

si(R) = φ(b/R)
1

1−b (14)

From equation (13) we can see that the amount of human capital invested while on-the-job

decreases monotonically at the rate λ per period over a person’s working life. Also, for a given

age, this amount depends positively on a person’s starting human capital h(j, j0), on φ and on b,

but negatively on R. Given the definition of R – see equation (9) – we can say that, for a given

age, the number of efficiency units of human capital invested depends positively on the growth

rate of wages g, but negatively on the interest rate, the mortality rate and the depreciation rate of

human capital (r, m and δ).

Substituting equation (13) in equation (3) and solving it gives

h(j, v) = h(j, j0)
h
e−δ(v−j

0) + si(R)
R

b(δ−λ)
³
e−λ(v−j

0) − e−δ(v−j
0)
´i

. (15)

The first term inside the square brackets on the r.h.s. of equation (15) accounts for the fact

that human capital depreciates at the rate δ per instant of time while the second term accounts

for the effect of investment in human capital. By dividing equation (13) by equation (15) we can

determine the share of time which is spent acquiring human capital along a BGP, i.e., si(j, v) =

hi(j, v)/h(j, v). Finally, the number of efficiency units of human capital spent producing final

output, or for short, productive human capital, is obtained by subtracting hi(j, v) from h(j, v),

hy(j, v) = h(j, j0)
h
e−δ(v−j

0) + si(R)
n³

R
b(δ−λ) − 1

´
e−λ(v−j

0) − R
b(δ−λ)e

−δ(v−j0)
oi

, (16)

while labour income y(j, v) is simply obtained by multiplying hy(j, v) by the wage-rate per

unit of human capital w(v).

The human capital and the productive human capital profiles given in equations (15) and

(16) allow for a wide range of theoretical cases. We now show that by imposing two reasonable

conditions on parameters we generate human capital profiles h(j, v) and productive human capital

profiles hy(j, v) that are always hump-shaped.

Condition 2 Interior solution for si(R): 1 > φ(b/R)
1

1−b > 0.

Condition 3 h(j, v) grows at the beginning of an agent’s working-life: φ(b/R)
b

1−b > δ.

Condition 4 δ > λ > 0

A few comments regarding these conditions are in order. Notice that the part of Condition 2

which reads si(R) > 0 is trivially guaranteed since we have assumed above that R > 0 – see

Condition 1. As for Condition 3, it has been derived by evaluating equation (3) at the beginning

of an individual’s working-life, when v = j0, and then forcing the derived expression to take a

positive value. As for the part of Condition 4 which reads δ > λ, it is not necessary at all to obtain

hump-shaped profiles but imposing it halves the number of cases that we need to examine. More-

over, as will be discussed in Section 7, the empirical evidence clearly supports this assumption.
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Finally, imposing a positive rate of depreciation of human capital, δ > 0, is necessary to obtain

hump-shaped profiles.

The Ben-Porath (1967) model also produces profiles which are very similar to the ones above.

But his model differ from ours in two respects. He has an age-invariant constant EBP instead of

our E(j, v)1−b term and he posits that people live with certainty until a given, known age T . With

our notation, his solution to hi(j, v) may be written as follows:

hi,BP (j, v) = EBP (1− eR(v−j−T ))
1
1−b (b/R)

1
1−b , (17)

where in this case R = r−g+δ. From equation (17) it is clear that it is the fact that a person’s

lifetime horizon decreases over time that generates an optimal investment plan in human capital

that consists of accumulating most of it at young ages in order to be able to reap its benefits – in

this case higher earnings – later on. As a matter of fact, if people could live until very old ages,

then the term eR(v−j−T ) of (17) would be close to 0 throughout most of a person’s life and as a

consequence hi,BP (j, v) would be approximately constant throughout the same period.

By contrast, in our framework, individuals face a constant probability of death. A person who

has been lucky enough to survive until age 80 say has exactly the same life-expectancy than a

person who has just left school. Now, if λ were 0, i.e., without declining ability, this old person

should behave just like a teenager as far as hi(j, v) is concerned: from equation (13) we can see

that the best they can do is to set aside an age-invariant amount of efficiency units of human capital

for investment purposes. But this behaviour would have the following consequence: a person’s

human capital would either always be increasing or decreasing, depending on whether Condition

3 were verified or not – see equation (15). There would be no way of generating a hump-shaped

profile.

There is another difference between the two formulations which is worth pointing out. By

including the starting human capital h(j, j0) in the efficiency termE(j, v)we derived log-earnings

experience profiles which are parallel across schooling levels, as in Mincer (1974). In other

words, the annual growth rate of labour income is independent of an individual’s education. This

implication of the model is desirable on its own since it has been broadly corroborated by the data

– see for instance Murphy and Welch (1990, p. 207, fig. 2) for the U.S. case. Had we not included

h(j, j0) in the E(j, v) term, then the profile for hi(j, v) would be the same irrespective of a new

worker’s starting human capital. Because of this, individuals who went to school for more and

more years should expect their human capital profiles to become flatter and flatter and ultimately

be decreasing in experience.8

8Note also that the fraction of discretionary time invested in human capital, si(j, v), is independent of h(j, j0): it
starts at si(R) and then decreases monotonically to b(δ − λ)/R.
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Figure 1: The impact of discount rates on individual earnings.

A case of comparative dynamics of interest to what lies ahead is the following. How do these

profiles change with the discount factor R, δ held constant? For simplicity, let agents facing

different discount factors start their working lives with the same human capital h(j, j0).Using

∂

∂R
hy(j, v)|δ =

h(j, j0)si(R)
(1− b)

"
e−λ(v−j0)

R
− e−λ(v−j0) − e−δ(v−j0)

(δ − λ)

#
,

it is straightforward to show that their respective hy(j, v) profiles can only cross once, at the

experience level 1
δ−λ ln(R/ bR). To the left of this point, agents facing high discount factors will

have a productive human capital higher than agents facing low discount factors; to the right of
1

δ−λ ln(R/ bR), the opposite will be true. This point is illustrated in Figure 1, where earnings as

a function of years of working experience were obtained by multiplying each hy(j, v) profile by

the wage rate per unit of human capital.

2.3 Consumption and financial assets

Substituting the solution for the shadow price of financial assets into the first order condition with

respect to consumption gives the solution to its time profile:

c(j, v) = c(j, j0)eθ
−1(r−ρ)(v−j0), (18)

where c(j, j0) = Λa(j, j0)−1/θ is the choice of consumption of the new worker. First, notice

that, as first emphasized by Yaari (1965), when life insurance is available, the growth rate of con-

sumption over time is independent of mortality patterns, although the consumption profile under

uncertainty may differ markedly from the one under certainty due to different initial consumption

choices.

Second, it is well known that with perfect capital markets and no credit constraints, our op-

timizing problem allows for the complete separation of the consumption/savings decision from

investment decisions. This means that the c(j, j0) term which appears in equation (18) may in turn

10



be written as being equal to c(j, j)eθ
−1(r−ρ)(j0−j), where c(j, j) is consumption at birth. Hence,

the solution to the agent’s lifetime consumption path can be written as

c(j, v) = c(j, j)eθ
−1(r−ρ)(v−j). (19)

What is still unknown in equation (19) is c(j, j). Therefore, we now turn to the determination

of this value as well as the profiles for financial assets. During the agent’s first s years of life,

since they have no labour income, their assets must evolve according to da(j, v)/dv = −c(j, v)+
(r +m)a(j, v). The solution for a(j, v), valid for v ∈ [j, j0], is then obtained by making use of

equation (19) and condition a(j, j) = 0.9

On the other hand, by making use of the transversality condition for financial assets – see

expression (5) – in the solution of equation (2), valid for v > j0, we obtain an equality between the

present value of consumption (l.h.s.) and the present value of wealth (r.h.s.), from the perspective

of an agent placed at time j0:10

Z ∞

j0
e−(r+m)(x−j

0)c(j, x)dx = a(j, j0) +
Z ∞

j0
e−(r+m)(x−j

0)y(j, x)dx. (20)

Now, since a(j, j) = 0, the value at birth of lifetime labour income is also equal to an agent’s

wealth, which we denote ωT (j, j), ωT (j, j) =
R∞
j0 e−(r+m)(x−j)y(j, x)dx, where the lower limit

of integration takes into account that the agent only starts working at time j0 (j + s). Using

w(x) = w(j)eg(x−j) plus the solution for hy(j, v) given in equation (16), and integrating we

obtain

ωT (j, j) = e−(r+m)sw(j0)h(j, j0)
h
1
R +

si(R)bR 1−b
b

i
. (21)

It is straightforward to see from equation (21) that wealth at birth is increasing in g, but

decreasing in r and m. As expected, the detrimental effect that high rates of interest (r), high

mortality rates (m) and low rates of technical change (g) have on the incentives to accumulate

human capital on-the-job, also causes a reduction in wealth at birth. Using (19), the solution for

financial assets when v = j0, and (21) in the lifetime constraint (20) gives

c(j, j) = [r +m− θ−1(r − ρ)]ωT (j, j), (22)

where the following condition must be true:

Condition 5 Bounded utility: r +m > θ−1(r − ρ).

Condition 5 states that the rate of consumption growth cannot be higher than the rate of return

obtained on financial assets. If this condition were not verified the consumer would be able to

9The solution is a(j, v) = c(j,j)

r+m−θ−1(r−ρ)

h
eθ
−1(r−ρ)(v−j) − e(r+m)(v−j)

i
, v ∈ [j, j0].

10The difference between this resource constraint and the standard one is due to uncertain lifetimes. It is easy to
show that one can rewrite equation (20) explicitly in terms of the discounted expected values of consumption and
income.
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achieve unbounded utility in finite time.11 Notice that the term in square brackets on the r.h.s.

of equation (22) is the (marginal) propensity to consume out of wealth. Moreover, although this

equation has been set to time j, it is valid for any time t, i.e., c(j, t) = [r+m−θ−1(r−ρ)]ωT (j, t)
for t ≥ j.12

Finally, we can use these solutions to get the explicit paths for individual assets a(j, v), before

joining the workforce (v ≤ j0), and after it (v > j0). These expressions are necessary when

seeking to obtain the aggregate supply of financial resources in the economy.

3 The schooling decision

In this section we make the schooling decision endogenous. Human capital accumulation through

formal education may be at least as important as learning on-the-job. To give an example, if the

average rate of return to one year of schooling is about 8 percent, a person that spends 12 years in

formal education will see their human capital increase approximately 2.5 times. Since this paper

focuses on the determinants of human capital accumulation and inequality, it is important to be

able to also explain the schooling decision. We do this by drawing on the simple schooling model

proposed by Rosen (1977, section 4), as Kalemli-Ozcan et al. (2000) did.13

Let us begin the analysis by stating a few assumptions and facts established in Section 2. First,

individuals derive utility uniquely from consumption. Second, the growth rate of consumption

is equal to θ−1(r − ρ), while consumption at birth, c(j, j), is proportional to lifetime wealth,

ωT (j, j), a value which is for convenience rewritten below,

ωT (j, j) = e−Rssw(j)h(j, j + s)
h
1
R +

si(R)bR 1−b
b

i
, (23)

with j0 substituted for j + s, w(j + s) for w(j)egs and where Rs is defined as

Rs = r +m− g.

The rate Rs can be considered as the effective discount rate associated with the schooling decision,

hence the subscript s. If for simplicity we ignore the direct costs of education by assuming they

are always zero, then the schooling decision turns out to be a very simple one: s is chosen to

maximize the lifetime wealth ωT (j, j) which was given above. By maximizing lifetime wealth,

the agent is implicitly maximizing consumption at birth and hence attainable consumption (and

utility) c(j, v) at each point in time.

So, let the human capital acquired by a person who spent s years in formal education be given

by

h(j, j + s) = h(j, j)ef(s),

11Similar conditions are found in the context of infinitely-lived representative agents models (where m equals zero),
see for instance Barro (1990, p. S106, eq. 7).

12This can be seen by looking at eq. (20): substitute j0 for t, denote the r.h.s. by ωT (j, t) and solve the integral on
the l.h.s.

13The Rosen model is also presented in a survey on wage determinants by Willis (1986, section 3.3). For a similar
approach which also allows for training, as we do, see Dupor, Lochner, Taber and Wittekind (1996).
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with f 0(s) > 0 and f 00(s) < 0. The function f measures the total return to s years of educa-

tion. Notice that a negative f 00(s) assumes there are diminishing returns to years of education.14

A function that captures this is the exponential specification posited by Bils and Klenow (2000)

and used in Kalemli-Ozcan et al. (2000): f(s) = π1
1−π2 s

1−π2 , with π1 > 0 and π2 ∈ (0, 1). As

will be discussed in Section 7, this specification can produce implausible responses of schooling

choices to changes in Rs, especially for low levels of Rs. Because of this, we use the following

quadratic specification instead, f(s) = σs − s2/2ψ, with σ,ψ > 0 and s < ψσ. The quadratic

term s2/2ψ controls the extent to which returns to education differ from the linear Mincerian

specification.

By taking the partial derivative of ωT (j, j) with respect to s and equalizing it to zero we get

the optimal choice of education: f 0(s) =Rs. This condition simply says that optimality requires

equalizing the marginal return to schooling (l.h.s.) to the effective discount rate (r.h.s.). Solving

explicitly for s gives

s∗ = ψ(σ − Rs), (24)

where we assume σ >Rs and the asterisk is used to denote an optimal choice. The optimal

choice of education depends positively on the initial return to schooling, σ, and the rate of techni-

cal change, negatively on the interest rate and the mortality rate. Moreover, s∗ depends positively

on ψ since a higher ψ reduces the extent to which the returns to schooling deviate from the linear

Mincerian model.

4 Aggregation

In this section we do the following. First, we sum individual productive human capital across

cohorts to obtain the aggregate supply of productive human capital Hs
y(t). We proceed similarly

for individual financial assets to obtain the aggregate supply of financial resources in the economy

Ks(t). Finally, taking for simplicity the interest rate as exogenous, we briefly discuss two results

that can be obtained with the analytical expression for Hs
y(t). The first result says that, under

favorable conditions such as low interest rates and low mortality rates, learning on-the-job may

more than double the basic productive human capital that results from schooling decisions; the

second says that, provided r is greater than the sum of the rate of population growth (n) and the

rate of technical change (g), Hy(t) will be decreasing in r but increasing in g.

Let us assume, first, that new individuals are born in each period and second, that the age

structure of the population is stable over time. Letting eb (eb > 0) stand for the fraction of the

population which consists of newborns at each instant of time, and n for the rate of population

growth per instant of time, in equilibrium it must be the case that eb = m+ n.15.

14Evidence for this can be found in Psacharopoulos (1994) or Psacharopoulos and Patrinos (2004).
15Let the population at time zero be normalized to 1 and let us assume it has been growing at the rate n ever since.

Then the number of newborns at time t will be equal to ebent. On the other hand, given an age-independent mortality
rate, ment individuals will also die at that instant. Hence the net growth of the population at t must be equal to
(eb − m)ent and this renders eb −m = n, as stated in the main text. Notice also that we are allowing for declining
populations, but in those cases the assumption eb > 0 imposes that |n| < m.
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Let L(j, t) stand for the number of people born at time j who are still alive at time t and

L(t) = ent stand for the population at time t. SinceL(j, j) = (m+n)enj and since the probability

that a person born at time j is still alive at time t is e−m(t−j), we can write

L(j, t) = (m+ n)e−m(t−j)+nj . (25)

Under the assumption that the human capital levels of different workers are perfect substitutes

in production, aggregate human capital used for production purposes is given by

Hy(t) =

Z t−s

−∞
hy(j, t)L(j, t)dj. (26)

Now, define the following discount rates,

∆1 = m+ n+ δ ∆2 = m+ n+ λ

R0 = m+ n+ g + θ−1(ρ− r),

term z(R) = φ
σ−λ(b/R)

b
1−b , and for convenience, let us rewrite equation (16) as follows

hy(j, t) = ef(s)
h
{z(R)− si(R)} e−λ(t−j−s) + {1− z(R)}−δ(t−j−s)

i
, (27)

with v substituted for t, j0 for j + s and h(j, j0) for ef(s). Then Hy(t) can be obtained by

substituting equations (25) and (27) into equation (26), and integrating. Aggregating physical

capital proceeds along the same lines but it involves more complex expressions since we have to

make a distinction between those agents alive at t that are yet to join the workforce and the others.

Straightforward algebra produces the following expressions for Hy(t) and K(t):16

Hy(t) = h(t, t)L(t, t)e−(m+n)s+f(s)
h
1
∆1
+ si(R)

∆2

³
R
b∆1
− 1
´i

(28)

K(t) = w(t)h(t, t)L(t, t)e−(m+n)s+f(s) {Ψ1(r)Ψ2(r)−Ψ3(r)} (29)

where R0 > 0 is necessary in order to guarantee that aggregate physical capital at time t takes

a finite value and Ψ1(r), Ψ2(r) and Ψ3(r) are functions of r as well as other parameters and

endogenous variables.17 Since previous conditions guarantee that Ψ1(r),Ψ3(r) > 0, aggregate

physical capital will only be positive if Ψ2(r) > 0. The condition on R0 amounts to an upper

bound on r. It is also possible to show that when δ > λ, then r > θ(g− λ) + ρ. We rewrite these

two bounds below as two conditions:
16We do not use superscripts (s, for supply) in Hy(t) and K(t) since this should not cause any confusion to the

reader.
17Their expressions are

Ψ1(r) =
h
1
R +

si(R)bR 1−b
b

i
Ψ2(r) =

h
e(n+g−r)s

³
1
R0 − 1

n+g−r
´
+ 1

n+g−r
i

Ψ3(r) =
h

1
R∆1

+ si(R)
∆2

³
1bR 1−b

b
+ 1

b∆1

´i
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Condition 6 Upper bound on r: r < ρ+ θ(m+ n+ g).

Condition 7 Another lower bound on r: r > θ(g − λ) + ρ.

Notice that Condition 6 coincides with Ψ2(r) > 0 whenever s = 0, while Condition 7

will in many cases be more stringent than the one imposed by Condition 1 (ii). Before we

proceed to determine the equilibrium of this economy, we briefly discuss two partial equilibrium

results that are easily obtained by making use of the analytical expression for Hy(t) given above

and assuming, for simplicity, that r is exogenously given. The first relates to the importance

of learning on-the-job in human capital formation. Under favorable circumstances (e.g., low

rates of interest and low mortality rates), learning on-the-job may double or more than double

the basic productive human capital that results from schooling decisions; while in less favorable

circumstances, it may play a relatively small role in accounting for the level of Hy(t).18

The second result is obtained by differentiating Hy(t) with respect to (r − g). First notice,

that everything else equal, the choice of schooling years that maximizes society’s Hy(t) is given

by f 0(s) = m+n. Provided the interest rate is above n+g, the optimal schooling choice made by

each individual, s∗, will always lie to the left of that maximum. But since s∗ depends negatively

on r − g (see Section 3), this means that increases in the interest rate r or decreases in the rate of

technical change g will reduce Hy(t) via lower schooling choices. Moreover, and again as long

as r > n+ g, this reduction in Hy(t) will be made more severe by lower investments in learning

on-the-job as well.

5 Equilibrium

This section is structured as follows. We begin by solving for the demand for factors Hd
y (t) and

Kd(t) by the typical firm. Then we proceed to compute the steady-state general equilibrium of

this economy. We define equilibrium as an interest rate r∗; an allocation {Kd(t), Hd
y (t), Y (t)}

for the typical firm; a set of allocations {c(j, t), a(j, t)} for the typical individual not in the labour

force, j ∈ (t-s, t); and a set of allocations {c(j, t), si(j, t), a(j, t), hy(j, t)} for the typical worker,

j ≤ t-s such that, for all time t: (a) firms maximize profits given prices; (b) individuals maximize

expected lifetime utility subject to human capital and financial assets constraints at given prices;
(c) the schooling choice s and the population structure are constant; (d) all markets clear, Hd

y (t) =

Hs
y(t), K

d(t) = Ks(t), C(t) + I(t) = Y (t).

But since the equation that determines the equilibrium interest rate is highly nonlinear and

can in principle have many solutions, we next develop a diagrammatic exposition that shows that

equilibrium is unique for reasonable parameter configurations and can be seen as the intersection

point of two curves, as in the phase diagrams of the Ramsey-Cass-Koopmans model (henceforth

simply Ramsey model) and the Blanchard model. Then, to gain intuition for general equilibrium

18The effect of learning on-the-job is captured by term si(R)
∆2

³
R
b∆1

− 1
´

on the r.h.s. of equation (28). For example,

when m + n = .02; δ = .04; λ = .01; R = .1; b = .5; si(R) = .25, this term is 19.4 whereas the term 1/∆1

associated with schooling is 16.6; increasing m+n to .04 and decreasing si(R) to .20 reduces the learning on-the-job
term to 6 and the 1/∆1 term to 12.5.
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effects and comparative statics results, we present two special cases of it. In Section 5.1 we

focus on the impact of n, m, g, ρ and θ on r∗ when there is no endogenous human capital

accumulation (the Blanchard model). In Section 5.2, first, we introduce schooling effects, by

making the schooling choice s exogenous (basic extension of the Blanchard model), then by

making s endogenous (the Kalemli-Ozcan-Ryder-Weil model, henceforth KRW model); second,

we introduce learning on-the-job effects.

As mentioned in Section 2, the flow of final output at t is produced with a Cobb-Douglas

production function, Y (t) = K(t)α [A(t)Hy(t)]
1−α, where we recall that A(t) is an index of

labour augmenting technical progress which grows at rate g;K(t) is physical capital, which must

be in equilibrium equal to aggregate financial assets; and Hy(t) is the economy’s stock of human

capital that is allocated to production.

Suppose the economy is moving along a BGP. Then each firm pays w(t) per unit of human

capital and r + δk per unit of rented physical capital, where r stands for the riskless market rate

of interest and δk is the rate of depreciation of physical capital. Since the typical firm faces no

adjustment costs, and given that we assume it operates under perfect competition, it will maximize

its profits by equalizing at each point in time the marginal rate of technical substitution between

K(t) and Hy(t) to the ratio of their prices. This condition can be written as

αw(t)Hy(t) = (1− α)(r + δk)K(t)

By substituting equations (28) and (29) into the previous expression, we obtain an equation in

r only. This equation is not particularly instructive and must, in general, be solved numerically.

This is why we now turn to a diagrammatic exposition.19 Let bx(t) denote aggregate variable

X(t) expressed in efficiency units of productive human capital, i.e., bx(t) = X(t)/ [A(t)Hy(t)].

Equilibrium may then be obtained as the intersection point of two curves on the space (bk,bc), as in

the Ramsey model and the Blanchard model. There is a major difference though: the expressions

that follow are only valid along a BGP and should not be seen as isoclines of a phase diagram on

the space (bk,bc), since Hy(t) is endogenous. 20

First, we have the economy’s resource constraint, which says that (gross) output must be equal

to consumption plus (gross) investment. In the steady state,
.bk = 0 and this implies the following

relationship between bc and bk:

bc = bkα − (n+ g + δk)bk = [(r + δk)/α− (n+ g + δk)] bk. (30)

This constraint is the same as the one found in the Ramsey model: on the space (bk,bc), the

19Notice that an equilibrium with interior solutions, reasonable earnings profiles, etc., is not guaranteed for unre-
stricted configurations of parameters. For example, we cannot be sure whether or not si(R), the time spent acquiring
human capital, lies in the unit interval. This issue arises in many similar models. See for instance Benhabib and Perli
(1994) for a study of the restrictions on parameter values that deliver a unique interior solution in the Lucas (1988)
model.

20When one assumes that human capital accumulation decisions, from schooling to the fraction of time used to learn
more on-the-job, are exogenously determined, by the government say, then the expressions given in main text can be
interpreted as isoclines.
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curve defined by
.bk = 0 is concave, starts at 0 and reaches a maximum when f 0(bk) = n+ g + δk

(golden rule). So what makes our model differ from the Ramsey model must be solely attributed

to the
.bc = 0 constraint, to which we now turn. Differentiating aggregate consumption, C(t) =R t

−∞ c(j, t)L(j, t)dj, with respect to time gives:

.
C(t) = θ−1(r − ρ)C(t)−mC(t) + c(t, t)L(t, t), (31)

The first term on the r.h.s. of equation (31) captures the fact that individual consumption for

those already alive grows at the rate θ−1(r − ρ) per unit of time; the second that a fraction m of

the population dies per unit of time; the third that L(t, t) agents are newly born at every instant

of time and each one of them consumes c(t, t). It can be shown that the term c(t, t)L(t, t) can

be expressed as a function of aggregate variables C(t) and K(t). Using this result in the last

equation and writing it in efficiency units, one obtains another relationship between bc and bk along

the BGP (where
.bc = 0):

bc = £
r +m− θ−1(r − ρ)

¤ bk
1−R0

£
e(r−n−g)sΨ3(r)Ψ1(r)−1 + (e(r−n−g)s − 1)/(r − n− g)

¤ (32)

Recall that s is a one-to-one function of r and r is, in turn, a one-to-one function of bk, so bc in

equation (32) is a function of bk only.21 Equilibrium on the space (bk,bc) is given by the intersection

of the two curves defined by equations (30) and (32). We now proceed to discuss special cases of

this general model in order to gain intuition for its general equilibrium properties.

5.1 The Blanchard model

We start with the seminal Blanchard (1985) model, where it is assumed there is no investment in

human capital and the population consists only of workers, so Hy(t) = H(t). For expositional

reasons, we set δ = 0. In this special case, equation (32) simplifies to22

bc = ¡
r +m− θ−1(r − ρ)

¢
1−R0/∆1

bk = ¡
r +m− θ−1(r − ρ)

¢
1−R0/(m+ n)

bk. (33)

Figure 2 illustrates on the space (bk,bc) how the Blanchard equilibrium differs from the Ramsey

one (with zero population growth). Equilibrium in the Ramsey model, at point ER, is given by

the intersection of the concave
.bk = 0 curve with a vertical

.bcR = 0 curve. By contrast, when

θ ≥ 1 (the relevant case according to the empirical evidence, see Section 7), the
.bcB = 0 curve of

the Blanchard model is convex, starting at the origin and then gradually approaching the vertical

asymptote that corresponds to the higher bound for bk. However, only points which lie to the right

of the lower bound for bk (bk in the figure) should be considered as candidates for equilibrium. In

Figure 2, the Blanchard equilibrium is represented by point EB.

21We do not make this dependence explicit in what follows to avoid cumbersome notation.
22Set to zero the following values: si(R), λ, and s.
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Figure 2: The impact of the arrival of new families (point EB) and students (point EK) on the Ramsey equilibrium

(point ER).

As for comparative statics, inspection of equations (30) and (33) shows that increases in n,

and g shift the
.bk = 0 curve downward; while increases in n, g, m, ρ and θ shift the

.bcB = 0 curve

upward. Hence, the equilibrium interest rate in the Blanchard model depends positively on the

following parameters: n, m, g, ρ and θ.

The way parameters g, ρ, θ impact on the equilibrium interest rate is qualitatively similar in

the Ramsey model and the Blanchard model. This statement can be made more precise once the

equation of motion for bc of the Blanchard model is written explicitly:

.bc = ¡θ−1(r − ρ)− g
¢bc− (m+ n)

¡
r +m− θ−1(r − ρ)

¢bk (34)

The rate of arrival of consumers per unit of time is equal to the birth rate m+n. As this arrival

rate tends to zero, the Blanchard model converges to a Ramsey model since the last equation

then simplifies to
.bc = £θ−1(r − ρ)− g

¤ bc.23 Therefore, for very low birth rates, the two models

produce essentially the same results.

As the arrival rate of consumers moves away from zero, so grows the importance of mortality

and population growth rates in the determination of the Blanchard equilibrium. This can be seen

by looking at the bk-term on the r.h.s. of equation (34). On the one hand, new consumers arrive

in the economy at the rate m+ n per unit of time. On the other hand, the marginal propensity to

consume out of wealth for any individual, including newborns, is given by r +m− θ−1(r − ρ).

So what this bk-term captures is the depressing effect that these new consumers, born without any

financial wealth, have on the growth of bc. This is why, for a given capital stock bk,
.bcB = 0 requires

23Recall that we have shown above that the equation of motion for bk (the economy’s resource constraint) is identical
in the two models. The insight that what is crucial for this equivalence is that m+ n→ 0 is due to Weil (1989).
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consumption per effective worker to increase with mortality and population growth rates: a higher

m increases both the arrival rate of new consumers and their propensity to consume; a higher n

increases the arrival rate of new consumers. Both effects shift the
.bcB = 0 curve upward.24

5.2 Schooling and learning on-the-job effects

To gain intuition for the effects of schooling, consider first what might be called a KRW model

with exogenous schooling. That is, relax the assumption that the economy is inhabited by workers

only and assume instead that s is positive, although exogenously determined. Now, term R0/∆1
of equation (33) should be substituted by a new term that turns out to be increasing in s. The

qualitative impact on equilibrium of exogenous schooling is also illustrated in figure 2. Curve
.bcK = 0 of this KRW model with exogenous schooling lies, for all admissible values for bk,

everywhere above the
.bcB = 0 curve of the Blanchard model. This is what we should expect:

for a given capital per effective worker,
.bc = 0 now requires consumption per effective worker

to increase with the fraction of people not in the labour force since students, by drawing their

consumption from existing resources, exert downward pressure on the growth of bc.25 Equilibrium

in this KRW model with exogenous schooling is represented by point EK in figure 2.

What happens when schooling is endogenous? We have just shown that the equilibrium inter-

est rate in a KRW model with exogenous schooling is an increasing function of s. Let us denote

this relationship by r1(s). On the other hand, optimality in the KRW model of schooling choice

requires equalization of the marginal return to schooling and the effective discount rate, .i.e.,

f 0(s) =Rs.
26 But this equation makes the optimal choice of schooling years a negative function

of the interest rate. Denoting the inverse of this last relationship by r2(s), one can see that the

general equilibrium of the KRW model can be represented by the point {s∗, r∗} where the two

curves r1(s) and r2(s) cross.

Figures 3 to 5 show three cases of comparative statics in the KRW model which are also

relevant to our more complex model.27 For all of them, we have used the quadratic specification

for f(s) that we proposed in Section 3, i.e., f(s) = σs − s2/2ψ. Hence r2(s) is simply a line,

r2(s) = σ + g −m− s/ψ, that shifts rightward as the learning technology improves (higher σ’s

and ψ’s), as technical progress accelerates, and as mortality declines.

Figure 3 illustrates the impact of a higher mortality rate on the long run equilibrium in the

KRW model. Initially the economy is at point E. A higher m has a direct negative impact on

each individual’s choice of schooling since it directly affects their effective discount rate. This

is represented by a downward shift of curve r2(s). But, for a given rate of population growth, a

higher m must translate into a higher birth rate (recall that b =m+n) and a younger population.

24Notice, however, that it is not true that changes in m must have a larger impact on r∗ than changes in n: although

an increase in m has a double upward impact on the
.bcB = 0 curve, it does not change the

.bk = 0 curve, whereas an

increase in n has a downward impact on the
.bk = 0 curve as well as an upward impact on the

.bcB = 0 curve.
25However, the difference between term R0/∆1 and the new term tends to zero as r approaches its upper bound,

i.e., as R0 → 0 (this is equivalent to bk → bk).
26See Section 3.
27Kalemli-Ozcan et al. (2000) do not present a diagrammatic exposition of their model but they do provide an

algebraic proof of the existence and uniqueness of the steady-state when f(s) = ln(s) (ibid, Appendix A, pp. 19-20).
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Figure 3: The direct and indirect impact of a higher mortality rate on the KRW equilibrium.

For a given s, the effect of these additional arrivals of young people in the economy is to put

upward pressure on the interest rate. This is represented by the upward shift of curve r1(s). The

economy will ultimately converge to the new equilibrium point En, with lower schooling than

before (s∗n < s∗). However, in theory at least, one cannot say whether or not the new rate of

interest lies above (as in the figure) or below the old one.

Figure 4: The indirect impact of a higher population growth rate on the KRW equilibrium.

Figure 4 illustrates the impact of a higher population growth rate. A higher n does not have

a direct impact on schooling choices, hence r2(s) does not shift. The negative impact of a higher

n on schooling is entirely accounted for by its upward pressure on the economy’s interest rate.

In the new equilibrium, schooling years will be lower than before because the equilibrium rate of

interest has gone up.

Figure 5 illustrates the impact of an improvement in the learning technology as captured by an

increase in σ. In the new equilibrium, both schooling years and the rate of interest will be bigger

than before.
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Figure 5: The positive direct effect of a better learning technology on the KRW equilibrium.

We now turn to endogenous learning on-the-job effects. Assume the population consists en-

tirely of workers, so that s = 0. It is possible to show that equilibrium in this economy will be

unique for all reasonable parameter configurations by using a similar diagram to the ones given

in figures 3 to 5. Notice that the crucial human capital decision in this case is si(R), the fraction

of time that a new worker invests in human capital. Now, on the one hand, r∗ is an increasing

function of the fraction of exogenously given investment si(R) because of the following: when

investment on-the-job increases, there is an additional fraction of existing human capital that is

not producing but still consuming; this puts downward pressure on the growth of consumption

per effective worker, so now the
.bc = 0 curve will lie, once again for all admissible values for bk,

everywhere above the
.bcB = 0 of the simple Blanchard model. On the other hand, the optimal

choice of si(R) is a negative function of the interest rate. So equilibrium is given by the inter-

section point of these two relationships on the space {si(R), r}. Moreover, a higher m will have

both a direct and an indirect negative impact on on the optimal choice of si(R), whereas a higher

n will only have an indirect negative impact on it.

Finally, we summarize this discussion by briefly commenting on a few characteristics of the

model with endogenous schooling and learning on-the-job. First, the ways mortality rates and

population growth rates impact on equilibrium in this model and the Blanchard one are very simi-

lar. Increases in these rates translate into higher arrival rates of consumers in the economy per unit

of time. These new consumers, born without any financial wealth, will use resources that could

have been used to increase capital per effective worker. Moreover, the lower the lifetime horizon

(high mortality rates), the stronger this depressing effect on capital per effective worker, since

new consumers will have higher marginal propensities to consume. Second, increases in school-

ing and/or learning on-the-job following an (exogenous) increase in the efficiency of learning will

be partially crowded out by higher interest rates.

6 Heterogeneous ability

While the importance of the number of years of formal education and working experience as

predictors of earnings was the focus of Mincer (1974, ch. 5), there is now a voluminous literature

that extends his human capital earnings function to take into account other factors. The reasons for
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this are well known: individuals that are apparently equivalent in terms of education, experience,

occupation may earn very different amounts. It is also widely agreed that this residual variability

in earnings may to some extent be explained by differences in cognitive skills (e.g., IQ or aptitude

test scores) and family background (e.g., education of a parent or sibling). Here, we aggregate

these differences into one index which we call ability and we take differences in this ability index

as being exogenously determined. We also assume that individuals learn their ability at birth.

Let a person’s ability ε be a random draw from a time-invariant distribution Gε(ε) with sup-

port [εL, εH ] on R and probability density function gε(ε). Regarding the impact of ability on

schooling, we assume that ψ is a positive function of ability, i.e., f(s, ε) = σs− s2/2ψ(ε), with

ψ0(ε) > 0. This gives s∗(ε) = ψ(ε)(σ−Rs). This formulation implies that the change in s∗ in

response to a change in the effective discount rate Rs is increasing in ability while at the same time

the elasticity of s∗ to Rs is invariant to ability: if Rs increases by 1 percent, the schooling choice

of both low and high ability people will decrease by −Rs/(σ−Rs) percent. For transparency, we

rewrite the crucial condition below:

Condition 8 Spence-Mirrlees condition: ψ0(ε) > 0.

The name given to the condition reflects the fact that the marginal return to education is

increasing in ability (∂2f(s, ε)/∂s∂ε > 0). We posit the simplest possible function for ψ(ε),

ψ(ε) = ψε, with ψ > 0. With this specification, optimal schooling turns out to be linear in

ability:

s∗(ε) = ψ(σ − Rs)ε (35)

Moreover, the total return to s∗(ε) years of education is also linear in ability, f(s∗(ε)) =
ψ
2 (σ

2−R2s)ε. So the starting human capital of the new worker with ability ε, h(j, j + s∗(ε)) =
h(j, j)ef(s

∗(ε)), may be seen as a r. v., denoted H∗ for short, which is a monotonically increasing

function of the r. v. ε. Likewise, wealth at birth for an individual with ability ε may be seen as

a r. v., denoted ω∗T say, which is a function of the r. v. ε. It is easy to show that we can obtain

expressions for the densities of H∗ and ω∗T from the density of ε.

We now turn to the changes to the model that result from heterogeneity. In a nutshell, they

are minimal. First, the analyses of Sections 2 and 3 should be seen as applying to a type-ε indi-

vidual. To reflect this, a new argument should be added to several variables, such as in h(j, v, ε),

hy(j, v, ε) or a(j, v, ε). For example,

hy(j, v, ε) =

h(j, j)ef(s
∗(ε))

h
e−δ(v−j

0(ε)) + si(R)
n³

R
b(δ−λ) − 1

´
e−λ(v−j

0(ε)) − R
b(δ−λ)e

−δ(v−j0(ε))
oi

,

with j0(ε) = j + s∗(ε). Second, aggregation must be done across ages and ability levels.

Since we have assumed the distribution Gε(ε) and therefore its density gε(ε) are stable over time,

the number of type-ε individuals born at time j who are still alive at time time t is given by
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L(j, t, ε) = L(j, t)gε(ε). So, for instance, aggregate productive human capital is

Hy(t) =

Z εH

εL

gε(ε)

Z t−s∗(ε)

−∞
hy(j, t, ε)L(j, t)djdε,

where the inside integral is identical to the Hy(t) of equation (28), except that s should be

substituted by s∗(ε).

7 Calibration

In this section, we calibrate the model with heterogeneous agents for the U.S. growth observations

of the second half of the twentieth century. Tables 1 to 3 give the values chosen for each parameter:

Table 1 presents general/macro parameters; Table 2 focuses on the parameters associated with

learning on-the-job; while Table 3 covers the parameters associated with the schooling decision

as well as with heterogeneous ability.28

Turning to Table 1, we rely on the King and Rebelo (1999, pp. 953-4) calibration of the basic

real business cycle model for the parameters r, g, α, and δk. There is no consensus as to the ap-

propriate value for θ. Surveying many microeconomic studies, Browning, Hansen and Heckman

(1999, p. 552) conclude that if constancy of this elasticity is imposed across the population, then

there is no strong evidence against the view that θ is slightly above 1. We therefore use logarith-

mic utility (θ = 1) and θ = 2.29 As for ρ, the subjective discount rate, it is a free parameter. It is

the last value to be set and it is chosen to ensure the model produces the interest rate given above.

The two values given in the table correspond to the two values for θ.

Parameter Description Value

r interest rate .065

n population growth rate .012

m mortality rate 1/70

g rate of technical change .016

θ inverse of the elasticity of substitution 1; 2

ρ subjective discount rate .0335; .002

α share of income received by physical capital 1/3

δk depreciation rate of physical capital .1

Table 1: Calibration - General Parameters

As for demographics, the U.S. population was about 157.8 million in 1950 and 285 million

in 2000. Assuming continuous compounding, n solves 285 = 157.8e50n. The other parameter

value that we have to determine is the mortality rate. Given that a constant mortality rate implies

a life expectancy of 1/m, we can use our knowledge of the latter to calculate the former. The

28A more detailed discussion of the calibration procedure is available from the author upon request.
29The value 2 has been used several times as the benchmark case – see Trostel (1993, p. 336, note 10) for references.
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chosen value reflects the fact that our model ignores pre-schooling years.30

Choosing the parameter values of the human capital production function – see Table 2 –

requires some judgement. Firstly, there are no estimates of our model since it includes an age

effect through λ which has never been taken into account as well as permanent effect of schooling

through φh(j, j0) – see equation (4). There are a few estimates though of the simpler specification

dh(j, v)/dv = EBPhi(j, v)
b − δh(j, v) in a partial equilibrium setting which also estimate the

interest rate – see Heckman (1976, p. S33, Table 1), Haley (1976, p. 1233, Table III) and the U.S.

Bureau of the Census 1960 study reported in Browning et al. (1999, p. 585, Table 2.3). Secondly,

the chosen parameterization must allow the discount rate R to change within a reasonable range

without generating implausible human capital profiles. A value for b of .5 accomplishes this while

still being very close to the lower estimate for b found in Haley (1976, p. 1233, Table III) as well

as the estimate of the U.S. Bureau of the Census as reported by Browning et al. (1999, p. 585,

Table 2.3). The value for δ is set as in Trostel (1993).

Parameter Description Value

b captures the extent of diminishing returns to hi(j, v) .5

δ depreciation rate of human capital .04

λ rate that captures the effect of ageing on learning ability .01

φ efficiency parameter associated with learning .01497

Table 2: Calibration - Learning on-the-job Parameters

As for λ, we draw on the work of Avolio and Waldman (1994) on variations on ability across

the working life span that may be related to factors such as race, education and occupational

type. Avolio and Waldman (1994) present in a table and figures the mean General Aptitude Test

Battery scores (collected from 1970 to 1984) on nine ability factors for black, hispanic and white

Americans by six age groupings. This produces twenty-seven age ability profiles. The major

conclusion that we can draw from their study is that ability factors start declining from the early

twenties onwards but they do so at mild rates. Using the above mentioned profiles, we obtained 1

percent per year as a rough estimate for λ.

The only variable that remains to be determined in order to produce human capital profiles

is φ. We draw on estimates by Krueger and Pischke (1992) that use the March 1989 Current

Population Survey (CPS) to obtain a value for φ for two reasons. First, their estimates produce

profiles which are broadly similar to the actual profiles calculated by Murphy and Welch (1990)

using CPS’s from 1964 to 1988, second, Krueger and Pischke (1992) also produce estimates of

the return to schooling, a number which we also make use of in this exercise.

These authors estimate a standard Mincerian earnings regression of the type ln y = α1 +

α2s+γ1x+γ22x+η, where y is weekly earnings, s is the number of years in full-time education,

x is the number of potential years of working experience, and η is an error term.31 Their point

30Life expectancy at birth for the U.S. was 68.2 years in 1950 and 77 years in 2000. The round number we have
chosen is approximately equal to life expectancy at ages 5 or 6 for the period from the mid-80s onwards – see Arias
(2004, p. 22, Table 12).

31They also add a dummy indicating gender but that is immaterial for this discussion (ibid., Table 2a, column 5).
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estimates are α1 = .093, γ1 = .032 and γ2 = −.00048. A value for φ equal to .01497 was

found to be the one which produced both a peak age and peak value closer to those implied by the

quadratic estimates of Krueger and Pischke (1992).32

Turning to the education parameters – see Table 3. As an estimate of the average number

of school years of the typical American we use, for consistency, the median value for the year

1989, the same year used to estimate the experience earnings profile, hence s = 12.7.33 As for ψ

and σ, first, let ε stand for the average ability of the American population and set it, without any

loss of generality, to unity. Then if we take the s schooling years given above as resulting from

equalizing f 0(s) to Rs, as shown in Section 3, we must have σ − s∗/ψ =Rs. This amounts to one

equation in two unknowns, ψ and σ. The way we proceeded was to draw on the estimates of Bils

and Klenow (2000) to obtain a reasonable value for ψ and then we used it in the last equation to

get the value of σ.

Parameter Description Value

σ rate of return to the first schooling year .1264

ψ captures the extent to which returns to edu. decrease with y. of school. 200

s average years of school completed by a worker 12.7

ε average ability 1

εL lowest ability .5

εH highest ability 1.5

κ1 coefficient of ε2 in the density function of ability g(ε) −6
κ2 coefficient of ε in g(ε) 12

κ3 constant term in g(ε) −4.5
Table 3: Calibration - Schooling and Ability Parameters

Figure 6 represents the same optimal schooling choice under our specification and the Bils

and Klenow (2000) one. The horizontal line gives the value of Rs; the black downward sloping

line shows the relationship between the number of schooling years and the marginal return to

schooling implied by our specification, f 0(s) = .1264−s/200; while the dashed curve shows the

one implied by a Bils and Klenow (2000) specification, f 0(s) = .276s−.58. It should be obvious

from the graph that, at low levels of Rs, the second specification implies schooling responses to

changes in Rs that may be implausible.

32In order to see whether or not the year 1989 was representative of the calibration period, we also used the estimates
for γ1 (.042) and γ2 (.00061) which Krueger and Pischke (1992, Table 2b) obtained for a sample of men only. The
men’s profile peaks at about the same x (33.6) as the two-sexes’ profile given above but it reaches a higher value for
hy(x

∗), about 2. By inspection of the profiles obtained in the Murphy and Welch (1990, p. 207, fig. 2) study of (white)
men, we conclude that our estimate is reasonable.

33This is not significantly different from the mean. Calculations by Jones (2002, p. 225) produce a mean of 12.5
years for 1993.
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Figure 6: Optimal schooling choice with the exponential specification and the quadratic specification.

As for the extreme values for ability, εH is chosen to produce an optimal s of 19 years, the

doctoral level say. This gives εH ≈ 1.5. Then we impose symmetry around average ability (ε =

1), so that εL ≈ .5. The resulting optimal schooling choice for εL is 6.35 years. For simplicity,

we posit a quadratic in ε: g(ε) = κ1ε
2 + κ2ε + κ3.34 This function has to verify the following

conditions:(i) g(ε) ≥ 0 for all ε ∈ [εL, εH ] and
R εH
εL

g(ε)dε = 1; (ii) ε =
R εH
εL

εg(ε)dε = 1; (iii)
g(εH) = 0. Condition (i) guarantees that g(ε) is a density, condition (ii) that average ability is

the one arbitrarily chosen, while condition (iii) captures the idea that the percentage of people

close to the extremes of the distribution should be small. The three together pin down the values

of κ1, κ3 and κ3.

8 Simulations

In this section we analyze the impact of demographic factors on levels of endogenous variables as

well as on measures of inequality along the BGP. Tables 4 and 5 report the effects of, respectively,

mortality rates and population growth rates. The notation of the first column of each table requires

a few explanations. We assume throughout that we stand at time t = 0, so A(t), the index of

technical change, is equal to 1, and we drop term t in the expressions below. Recall also that

the population at time 0 has been normalized to unity. Variables hy, k and y are, respectively,

productive human capital, physical capital and output, all in per worker terms. The next four

variables have already been introduced before: S
∗ is the average school attainment; s∗i (R) is the

fraction of time that a new worker invests in human capital; H∗y is the average productive human

capital of a new worker and ω∗T is their corresponding wealth at birth.35 Finally, SD stands

for standard deviation, while CV stands for the coefficient of variation (standard deviation over

mean), a measure of inequality that is Lorenz-consistent – see for instance Ray (1998, ch. 6).

34Positing a density function g(ε) which is a polynomial in ε makes integration across ability straightforward:
calculations amount to integrating a function of the type eaεg(ε) with respect to ε (a being a constant).

35We use an asterisk to indicate that these variables relate to optimal decisions.
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We begin with the impact of mortality rates – see table 4. The values shown in the second

column are those obtained for the calibrated U.S. economy. The values reported in the third and

fourth columns, respectively, are the new equilibrium values resulting from mortality rates of 1/55

and 1/40, respectively, when θ = 1. The numbers in parenthesis measure changes in relation to

the benchmark economy (second column). So, for instance, a value for y equal to −10 shown in

parenthesis means that income per worker in this case is 10% lower than the one of the calibrated

U.S. economy. The fifth and sixth columns repeat the simulations of the same mortality changes

for the case θ = 2.

Variable θ = 1 θ = 2

m : 1
70

1
55

1
40

1
55

1
40

r .065 .0673 (+4) .0708 (+9) .0695 (+7) .0758 (+17)

Rs .063 .0695(+10) .0798 (+27) .0717 (+14) .0848 (+35)

hy 3.18 2.89 (−9) 2.43 (−24) 2.79 (−12) 2.21 (−31)
k 9.12 8.13 (−11) 6.62 (−27) 7.68 (−16) 5.78 (−36)
y 4.51 4.08 (−10) 3.39 (−25) 3.91 (−13) 3.05 (−32)
S
∗ 12.7 11.5 (−9) 9.4 (−26) 11 (−13) 8.4 (−34)
s∗i (R) .35 .31 (−11) .26 (−26) .30 (−14) .24 (−31)
H∗y 2.25 2.19 (−3) 2 (−11) 2.15 (−4) 1.88 (−16)
ω∗T 21.75 18.19 (−16) 14.04 (−35) 17.14 (−21) 12.59 (−42)
SD(S∗) 2.84 2.56 (−10) 2.1 (−26) 2.46 (−13) 1.88 (−34)
CV (S∗) .22 .22 (0) .22 (0) .22 (0) .22 (0)

SD(H∗y) .61 .55 (−10) .43 (−30) .53 (−13) .37 (−39)
CV (H∗y) .27 .25 (−7) .22 (−19) .24 (−11) .20 (−26)
SD(ω∗T ) 1.96 1.34 (−32) .69 (−65) 1.17 (−43) .50 (−74)
CV (ω∗T ) .09 .07 (−22) .05 (−44) .068 (−24) .04 (−56)
SD(hy) 1.05 .87 (−17) .61 (−42) .815 (−22) .51 (−51)
CV (hy) .33 .30 (−9) .25 (−24) .29 (−12) .23 (−30)

Table 4: The impact of mortality on human capital decisions and inequality

The first thing to notice about table 4 is that the effective discount rate Rs increases signif-

icantly with mortality rates. This arises because m impacts on Rs both directly, and indirectly

through the equilibrium interest rate. This explains why Rs when m equals 1/40 is about 30

percent higher than in the benchmark case. Second, these differences translate into significant

differences in schooling and investment on-the-job choices. For instance, for the case θ = 2, a
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reduction in life expectancy of 30 years (from 70 to 40 years) reduces average school attainment

by 34 percent or 4.3 years in absolute terms; it also reduces the fraction of time that new workers

spend investing in their human capital by 31 percent. Third, high mortality rates have a strong

negative impact on output per worker because they reduce both productive human capital and

physical capital per worker.

We now turn to the impact of mortality rates on inequality within cohorts. Recall that the

schooling choices of high ability individuals are more responsive (in absolute terms, not in per-

centage terms) to changes in the effective discount rate than those of low ability individuals. It

follows that the standard deviation of S∗, for a given cohort, is decreasing in Rs. This effect is

illustrated in Figure 7. The three downward sloping lines represent the marginal returns to years

of schooling of the lowest ability (L), median ability (M) and highest ability individuals (H) in

the economy, whereas the two horizontal dashed lines show the effective discount rates that they

would face under conditions of high mortality (High Rs) and low mortality (Low Rs).

As can be seen from the picture, high mortality rates, by increasing Rs, reduce inequality in

schooling choices. This demographic effect on inequality is large in our simulations. For example,

when life expectancy drops to 40 years, SD(S∗) decreases by 26 percent (case θ = 1) or 34

percent (case θ = 2). But if we compute the unit free measureCV (S∗), mortality changes turn out

to have no impact on inequality. This is because our specification implies that CV (S∗) = CV (ε)

and the distribution of ability is unchanged.

Figure 7: The impact of high mortality rates on inequality in terms of years of schooling.

However, both the SD and the CV of the productive human capital of new workers H∗y as well

as of their wealth at birth ω∗T decrease significantly with mortality rates. When these are high,

the dispersion in S∗ is relatively small. Since high ability individuals make schooling choices that

are not very different from those made by low ability individuals, the dispersion in their starting

productive human capital is also relatively small. This explains why high mortality reduces in-

equality in H∗y. High mortality has an even stronger impact on inequality in wealth at birth because

cash-flows earned at different stages in a person’s life are now more heavily discounted.

Earnings inequality across cohorts also decreases considerably with mortality rates – see the
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last two rows of table 4. There are two main reasons for this. First, as stated above, high mortality

reduces the dispersion in H∗y. Second, high mortality reduces directly, and indirectly through its

effect on r, the incentives to invest in learning on-the-job. Consequently, it reduces the impact of

working experience on productivity.

Variable θ = 1 θ = 2

n : .012 0 .024 0 .024

r .065 .0575 (−12) .0717 (+10) .0496 (−24) .0781 (+20)

Rs .063 .056 (−12) .07 (+10) .048 (76− 24) .076 (+20)

hy 3.18 3.27 (+3) 2.87 (−10) 3.69 (+16) 2.58 (−19)
k 9.12 10.08 (+11) 7.77 (−15) 12.28 (+35) 6.61 (−28)
y 4.51 4.76 (+6) 4 (−11) 5.51 (+22) 3.53 (−22)
S
∗ 12.7 14.2 (+12) 11.36 (−11) 15.78 (+24) 10.08 (−21)
s∗i (R) .35 .41 (+17) .31 (−11) .48 (+37) .28 (−20)
H∗y 2.25 2.26 (0) 2.18 (−3) 2.14 (−5) 2.07 (−8)
ω∗T 21.75 27.7 (+27) 17.94 (−18) 37.17 (+71) 15.23 (−30)
SD(S∗) 2.84 3.18 (+12) 2.54 (−11) 3.53 (+24) 2.25 (−21)
CV (S∗) .22 .22 (0) .22 (0) .22 (0) .22 (0)

SD(H∗y) .61 .65 (+7) .54 (−11) .66 (+8) .47 (−23)
CV (H∗y) .27 .29 (+7) .25 (−7) .31 (+15) .23 (−15)
SD(ω∗T ) 1.96 3.12 (+59) 1.29 (−34) 5.18 (+164) .87 (−56)
CV (ω∗T ) .09 .11 (+22) .07 (−22) .14 (+56) .06 (−33)
SD(hy) 1.05 1.45 (+38) .83 (−21) 1.7 (+62) .68 (−35)
CV (hy) .33 .44 (+33) .29 (−12) .46 (+39) .26 (−21)

Table 5: The impact of population growth on human capital decisions and inequality

The effects of population growth are presented in table 5. For clarity, the second column

reproduces the benchmark values already shown in table 4. The third column considers a zero

population growth scenario, while the fourth column doubles the growth rate of population rela-

tive to the benchmark case. The last two columns repeat these simulations for θ = 2. The first

point we make is that the impact of fast population growth is somewhat less severe than the im-

pact of high mortality rates. This reflects the fact that population growth has a negative impact

on human capital decisions indirectly only, via the interest rate. Compare for instance the high

mortality scenario of table 4 (when m = 1/40) with the high population growth scenario of table

5 (n = .024): although r is very similar in the two cases, Rs is almost 1 percentage point higher
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in the first scenario. Still, the negative impact of a fast growing population on human capital de-

cisions and inequality is quite large. For example, for the case θ = 2, a doubling of n decreases

average school attainment by 21 percent or 2.6 years in absolute terms; it also reduces earnings

inequality as measured by SD(hy) by 35 percent.

The second point we make is that the impact of lower population growth on human capital

decisions and inequality measures is higher when n starts at a lower value. So, for instance, for

the case θ = 2, decreasing n from 2.4 percent to 1.2 percent results in an increase in S
∗ of about

2.6 years; but decreasing it from 1.2 percent to 0 percent results in an increase in S
∗ of about 3.1

years. What is happening here is that the effect of n on r is nonlinear. The same effect is also

responsible for the larger increases in inequality measures that take place when n goes from 1.2

percent to 0 in comparison to those arising when n goes from 2.4 percent to 1.2 percent.

For clarity, the simulation results reported in tables 4 and 5 only change a demographic vari-

able at a time. It should be obvious that, in terms of human capital accumulations decisions,

the worst possible combination is high mortality and high population growth rates. For instance,

for the case θ = 2, when m = 1/40 and n = 2.4 percent, average school attainment drops 49

percent, while s∗i (R) drops 40 percent, in relation to the benchmark economy.36

9 Concluding remarks

In this paper we constructed an overlapping generations model of a closed economy which as-

sumes, as in Becker (1964)’s pioneering analysis, that economic agents make human capital in-

vestment decisions in the same way that firms make their investment decisions: agents compare

the monetary cost of an investment today with the discounted value of the future cash-flows that

their decision will produce. Not surprisingly, mortality rates and the economy’s interest rate,

which can both be seen as intertemporal prices, turn out to be crucial factors in their choice. Pop-

ulation growth rates, to the extent that they have an impact on the equilibrium interest rate, also

affect human capital decisions.

Moreover, by positing the existence of a time-invariant distribution of abilities in the popula-

tion and that diminishing returns to schooling years set in faster for low ability people than for

high ability people, we offered a new mechanism by which mortality rates, population growth

rates and interest rates may impact on inequality, both within and across cohorts.

For simplicity, there are no frictions in this model economy. We assume the existence of

perfect credit markets. Agents may differ in their endowment of ability, but they are all born with

zero assets and are all free to incur debt for at least the duration of their studies. This assumption

is certainly not realistic, as most poor families that are credit constrained, because they lack

collateral, can testify. But it helps us to focus on the connection between demographic variables

and human capital only.

The model can easily be adapted or extended to consider many other issues. For example, we

have used an open economy version of it with realistic age-specific mortality rates to study the

36Space constraints preclude the discussion of the way other exogenous variables may interact in nonlinear ways
with mortality and fertility in the determination of human capital and inequality.
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impact on income and expected lifetime utility of technological shocks and demographic shocks

such as the HIV-AIDS epidemic.
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A Technical Appendix

A.1 Derivation of eq. (11) and Condition 1

From the first order condition with respect to si – eq. (8) – we obtain the optimal quantity of

efficiency units of human capital used for investment:

hi(j, v) = b1/(1−b)E(j, v)
h

Λh(j,v)
w(v)Λa(j,v)

i1/(1−b)
(36)

Using the solutionΛa(j, v) = Λa(j, t)e−(r+m)(v−t) where v ≥ t ≥ j0, andw(v) = w(t)eg(v−t)

in the second flow eq. dΛh(j, v)/dv = δΛh(j, v) − w(v)Λa(j, v), we get, after defining

R = r +m+ δ − g and assuming that R 6= 0,

Λh(j, v) = eδ(v−t)
µ
Λh(j, t)−w(t)Λa(j, t)

Z v

t
e−(r+m+δ−g)(s−t)ds

¶
= eδ(v−t)

³h
Λh(j, t)− w(t)Λa(j,t)

R

i
+ e−R(v−t)w(t)Λa(j,t)R

´
On the other hand, the solution for human capital is

h(j, v) = e−δ(v−t)
µ
h(j, t) +

Z v

t
Ψ(j, s)eδ(s−t)ds

¶
with Ψ(j, s) = E(j, s)1−bhi(j, s)b. Hence,

h(j, v)Λh(j, v) =

h(j, t) + Z v

t
Ψ(j, s)eδ(s−t)ds

(I)

×
Ãh
Λh(j, t)− w(t)Λa(j,t)

R

i
+ e−R(v−t)w(t)Λa(j,t)R

(II)

!
(37)

Now, term (I) of eq. (37) is always positive because the integral is a sum of positive terms.

If the integral in (I) converges as v → ∞, this first term (in parenthesis) of eq. (37) will

tend to a positive constant, otherwise it will explode to infinity. Necessary conditions for

lim
v→∞h(j, v)Λh(j, v) = 0 are then:37

Λh(j, t) = R−1w(t)Λa(j, t) (38)

R > 0 (39)

Eq. (38) is eq. (11) given in main text, with t substituted for v; eq. (39) is Condition 1(i).

However, these conditions are not sufficient because it is still possible for the integral of

term (I) of eq. (37) to grow faster than its term (II) converges to 0. In order to deal with

sufficiency, we need to compute the integral of term (I). Given condition (38) and eq. (36), we

37When R = 0, this product would not converge either as v →∞.
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have Ψ(j, s) = E(j, s)(b/R)b/(1−b). Finally, assuming that E(j, s) = φh(j, j)e−λ(s−j), eq. (37)

may be rewritten as

h(j, v)Λh(j, v) = e−R(v−t)Λh(j, t)

"
h(j, t)− φh(j, j)(b/R)b/(1−b)e−λ(t−j)

δ − λ

#

+e− bR(v−t)Λh(j, t)φh(j, j)(b/R)b/(1−b)e−λ(t−j)
δ − λ

where bR = r +m + λ − g, and we assume bR 6= 0. Now, as v → ∞, the first term of the

previous expression will tend to zero because of condition (39); but the second term will only

converge to zero if bR > 0, and this is Condition 1(ii).

A.2 Derivation of K(t)

A prerequisite to aggregation is to have the expressions for individual assets. In footnote (9) we

gave the expression for a(j, v) when v ≤ j0:

a(j, v) = c(j,j)

r+m−θ−1(r−ρ)
h
eθ
−1(r−ρ)(v−j) − e(r+m)(v−j)

i
(40)

By rewriting the last eq. using eqs. (21) and (22), we have, for v ≤ j0,

a(j, v) = w(j0)h(j, j0)
h
1
R +

si(R)bR 1−b
b

i h
e−(r+m)s+θ

−1(r−ρ)(v−j) − e(r+m)(v−j
0)
i
. (41)

On the other hand, solving eq. (2) for v > j0 gives

a(j, v) = a(j, j0)e(r+m)(v−j
0) −

Z v

j0
e(r+m)(v−x)c(j, x)dx+

Z v

j0
e(r+m)(v−x)y(j, x)dx.

Now compute the first two terms of the last eq. using eqs. (19), (40) and (22):

a(j, v) = ωT (j, j)
h
eθ
−1(r−ρ)(v−j) − e(r+m)(v−j)

i
+

Z v

j0
e(r+m)(v−x)y(j, x)dx (42)

Now, y(j, x) = w(x)hy(j, x). Substituting w(x) for w(j0)eg(x−j0) and using eq. (16), with v

substituted for x, we have:

y(j, x) = w(j0)h(j, j0)
h
e(g−δ)(x−j

0) + si(R)
n³

R
b(δ−λ) − 1

´
e(g−λ)(x−j

0) − R
b(δ−λ)e

(g−δ)(x−j0)
oi

,

hence,Z v

j0
e(r+m)(v−x)y(j, x)dx = w(j0)h(j, j0)×Z v

j0
e(r+m)(v−x)

h
e(g−δ)(x−j

0) + si(R)
n³

R
b(δ−λ) − 1

´
e(g−λ)(x−j

0) − R
b(δ−λ)e

(g−δ)(x−j0)
oi

dx,
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or, after integrating,Z v

j0
e(r+m)(v−x)y(j, x)dx = w(j0)h(j, j0)×

e(r+m)(v−j0) − e(g−δ)(v−j0)

R

+si(R)

(³
R

b(δ−λ) − 1
´ e(r+m)(v−j0) − e(g−λ)(v−j0)bR − R

b(δ−λ)
e(r+m)(v−j0) − e(g−δ)(v−j0)

R

)
 ,

which can be rearranged to giveZ v

j0
e(r+m)(v−x)y(j, x)dx = w(j0)h(j, j0)×nh

1
R +

si(R)bR 1−b
b

i
e(r+m)(v−j

0) +
h
si(R)
b(δ−λ) − 1

R

i
e(g−δ)(v−j

0) −
h
si(R)bR

³
R

b(δ−λ) − 1
´i

e(g−λ)(v−j
0)
o
.

Finally, substitute the last eq. and eq. (21) into eq. (42) to obtain, for v > j0,

a(j, v) = w(j0)h(j, j0)


h
1
R +

si(R)bR 1−b
b

i
e−(r+m)s+θ

−1(r−ρ)(v−j)

+
h
si(R)
b(δ−λ) − 1

R

i
e(g−δ)(v−j0) −

h
si(R)bR

³
R

b(δ−λ) − 1
´i

e(g−λ)(v−j0)

 .

(43)

We now proceed to aggregate these individual assets. We have to make a distinction between

those agents alive at t that are yet to join the workforce and the others. Hence, aggregate physical

capital is

K(t) =

Z t−s

−∞
a(j, t)L(j, t)dj +

Z t

t−s
a(j, t)L(j, t)dj

Using eqs. (41) and (43), with v substituted for t, j0 for j + s, and term w(j0)h(j, j0) substi-

tuted for w(0)eg(j+s)+f(s), we have:

K(t)emt

m+ n
=

Z t

−∞
w(0)e(m+n+g)j+f(s)

h
1
R +

si(R)bR 1−b
b

i
e(g−r−m)s+θ

−1(r−ρ)(t−j)dj

+

Z t−s

−∞
w(0)e(m+n+g)j+gs+f(s)×nh

si(R)
b(δ−λ) − 1

R

i
e(g−δ)(t−j−s) −

h
si(R)bR

³
R

b(δ−λ) − 1
´i

e(g−λ)(t−j−s)
o
dj

−
Z t

t−z−s
w(0)e(m+n+g)j+f(s)

h
1
R +

si(R)bR 1−b
b

i
e(r+m)(t−j)+(g−r−m)sdj,

Defining R0 = m+ n+ g + θ−1(ρ− r) and imposing R0 > 0 to guarantee that K(t) takes a
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finite value, the last expression may be integrated to give38

K(t)

(m+ n)w(0)e(n+g)t
= 1

R0 e
(g−r−m)s+f(s)

h
1
R +

si(R)bR 1−b
b

i
+ e−(m+n)s+f(s)

n
1
∆1

h
si(R)
b(δ−λ) − 1

R

i
− 1

∆2

h
si(R)bR

³
R

b(δ−λ) − 1
´io

− e(g−r−m)s+f(s) 1
n+g−r

h
1
R +

si(R)bR 1−b
b

i h
1− e(r−n−g)s

i
,

or, substituting (m+ n)w(0)e(n+g)t for w(t)h(t, t)L(t, t), and rearranging

K(t) = w(t)h(t, t)L(t, t)e(g−r−m)sef(s)
h
1
R +

si(R)bR 1−b
b

i h
1
R0 − 1

n+g−r +
e(r−n−g)s
n+g−r

i
−w(t)h(t, t)L(t, t)e−(m+n)sef(s)

h
1

R∆1
+ si(R)

∆2

³
1bR 1−b

b + 1
b∆1

´i
= w(t)h(t, t)L(t, t)e−(m+n)s+f(s) {Ψ1(r)Ψ2(r)−Ψ3(r)} ,

with Ψ1(r), Ψ2(r) and Ψ3(r) given below – and also in footnote (17):

Ψ1(r) =
h
1
R +

si(R)bR 1−b
b

i
Ψ2(r) =

h
e(n+g−r)s

³
1
R0 − 1

n+g−r
´
+ 1

n+g−r
i

Ψ3(r) =
h

1
R∆1

+ si(R)
∆2

³
1bR 1−b

b + 1
b∆1

´i
A.3 Derivation of Condition 7

In the main text, we have established that those agents alive at t that are yet to join the workforce

will all have negative financial wealth. But this means that the agents who work must, in the

aggregate, have positive financial assets, otherwise K(t) would necessarily be negative. Let us

then compute the financial assets of the working population. In what follows, we will use the first

four conditions given in main text. They are R > 0 and bR > 0; 0 > si(R) > 1; eφ(b/R)
b

1−b > δ

and δ > λ > 0.

Use (43) with v substituted for t, j0 for j+s, and the productw(j0)h(j, j0) forw(0)egj+gs+f(s),

plus eq. (25) to get

Z t−s

−∞
a(j, t)L(j, t)dj = (m+ n)e−mt

Z t−s

−∞
w(0)e(g+m+n)j+gs+f(s)×

h
1
R +

si(R)bR 1−b
b

i
e−(r+m)s+θ

−1(r−ρ)(t−j)

+
h
si(R)
b(δ−λ) − 1

R

i
e(g−δ)(t−j−s) −

h
si(R)bR

³
R

b(δ−λ) − 1
´i

e(g−λ)(t−j−s)

dj,

38We assume that r 6= n+ g just to avoid having to deal with two cases.
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or, integrating and then substituting (m+ n)w(0)e(n+g)t for w(t)h(t, t)L(t, t),Z t−s

−∞
a(j, t)L(j, t)dj = w(t)h(t, t)L(t, t)e−(m+n)s+f(s)×

1
R0

h
1
R +

si(R)bR 1−b
b

i
e−[r+m−θ

−1(r−ρ)]s

+ 1
∆1

h
si(R)
b(δ−λ) − 1

R

i
− 1

∆2

h
si(R)bR

³
R

b(δ−λ) − 1
´i

 (44)

We know that the expression in eq. (44) inside the curly brackets must be positive, otherwise

the whole integral will be negative. But because of Condition 5, which reads r+m > θ−1(r−ρ),
the exponential term in the first line of the expression inside the curly brackets must necessarily be

less than one. Hence, the expression inside the curly brackets has to be smaller than the following

term39

z = 1
R0

h
1
R +

si(R)bR 1−b
b

i
+ 1

∆1

h
si(R)
b(δ−λ) − 1

R

i
− 1

∆2

h
si(R)bR

³
R

b(δ−λ) − 1
´i

,

which can be rearranged and simplified to give40

z = 1
R

h
1
R0 − 1

∆1

i
| {z }

(A)

+ si(R)

1−bb 1bR
h
1
R0 − 1

∆2

i
| {z }

(B)

− 1
b∆1∆2| {z }
(C)


Now, if z is not positive, K(t) will necessarily be negative. In order to analyse the effects of

this restriction, let us assume that r is equal to θ(g− δ) + ρ. Then R0 = ∆1, term (A) is zero and

z simplifies to

z = − si(R)

b∆1∆2
bR
h bR+ (1− b)(δ − λ)

i
But since bR > 0 and δ > λ, it must necessarily be true that bR+ (1− b)(δ − λ) > 0. But in

this case z would be negative. We have therefore shown that r cannot be equal to θ(g − δ) + ρ.

On the other hand, Condition 1 (i) in main text reads r > g − m − δ. If g − m − δ >

θ(g− δ)+ρ, then the inequality r > θ(g− δ)+ρ is trivially verified. So consider the case where

g−m− δ < θ(g−δ)+ρ.41 What happens if g−m− δ < r < θ(g−δ)+ρ? Then R0 > ∆1 and

term (A) is negative. Moreover, since ∆1 > ∆2, term (B) is also negative. But in this case z
would be negative. Hence so far we have established the following: r > θ(g − δ) + ρ, R0 < ∆1,
and term (A) must be positive.

But can θ(g−λ)+ρ ≥ r > θ(g− δ)+ρ? Then in this case∆2 ≤ R0 < ∆1, 1
∆2
≥ 1

R0 >
1
∆1

,
δ−λ
∆1∆2

≥ 1
R0 − 1

∆1
> 0, and 0 ≥ 1

R0 − 1
∆2

> λ−δ
∆1∆2

. So term (B) would be non-positive and

1
R

h
1
R0 − 1

∆1

i
− si(R)

1
b∆1∆2

≤ 1
R

δ−λ
∆1∆2

− si(R)
1

b∆1∆2

39Notice that we could have obtained this number directly from equation (29) by setting s to 0. This would have
amounted to assume that the population consists entirely of workers.

40To get the expression to the right of si(R), we substituted R for bR + δ − λ and (1/∆1 − 1/∆2) for −(δ −
λ)/(∆1∆2).

41This is necessarily true when θ ≥ 1.
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or
1
R

h
1
R0 − 1

∆1

i
− si(R)

1
b∆1∆2

≤ 1
∆1∆2

h
− λ

R +
δ
R − si(R)

b

i
(45)

Now, given Condition 3, which amounts to say that si(R)
b > δ

R , the l.h.s. of inequality (45)

must be negative. But in this case z would be negative. We can therefore conclude that, when

δ > λ, R0 < ∆2 < ∆1, (A) and (B) will both be positive, and a necessary condition for

equilibrium is that r > θ(g − λ) + ρ.

A.4 Derivation of c(t, t)L(t, t) as a function of C(t) and K(t)

Let ypv(j, t) stand for the present value of labour income at t for a individual born at time j. We

have ypv(j, t) =
R∞
t e−(r+m)(x−t)y(j, x)dx, where y(j, x) = w(x)hy(j, x). We need to make a

distinction between those agents alive at t who already work and those who do not. Regarding

those not yet working, t ≤ j0, 42 we can use eq. (16) to get:

ypv(j, t) =

Z ∞

j0
e−(r+m)(x−t)y(j, x)dx = w(t)h(t, t)ef(s)−Rs(j+s−t)Ψ1(r),

where we recall thatΨ1(r) =
h
1
R +

si(R)bR 1−b
b

i
. As for those already in the workforce, t > j0,

and once again making use of eq. (16), we obtain

ypv(j, t) = w(t)h(t, t)ef(s)

"
eδ(j+s−t)

R
+ si(R)

(³
R

b(δ−λ) − 1
´ eλ(j+s−t)bR − eδ(j+s−t)

b(δ − λ)

)#

Defining Y pv(t) as aggregate human wealth, Y pv(t) =
R t
−∞ ypv(j, t)L(j, t)dj, we have

Y pv(t) =

Z t−s

−∞
ypv(j, t)L(j, t)dj +

Z t

t−s
ypv(j, t)L(j, t)dj

= w(t)h(t, t)L(t, t)ef(s)

"
Ψ3(r)e

−(m+n)s +Ψ1(r)
e−Rss − e−(m+n)s

n+ g − r

#

or

Y pv(t) = w(t)h(t, t)L(t, t)e−(m+n)s+f(s)
"
Ψ3(r) +Ψ1(r)

e(n+g−r)s − 1
n+ g − r

#
(46)

But aggregate wealth W (t) is equal to aggregate human wealth Y pv(t) plus aggregate finan-

cial wealth, K(t). Moreover, aggregate consumption is proportional to aggregate wealth. So we

also have

Y pv(t) =
C(t)

r +m− θ−1(r − ρ)
−K(t) (47)

On the other hand, c(t, t) =
£
r +m− θ−1(r − ρ)

¤
ωT (t, t). Using eq. (23), we have

42We recall that j0 = j + s.
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ωT (t, t) = w(t)h(t, t)e−Rss+f(s)Ψ1(r), hence

c(t, t)L(t, t) = w(t)h(t, t)L(t, t)e−Rss+f(s)
£
r +m− θ−1(r − ρ)

¤
Ψ1(r)

Finally, using eqs. (46) and (47) we can cancel term w(t)h(t, t)L(t, t) of the last eq. to get:

c(t, t)L(t, t) =
C(t)− £r +m− θ−1(r − ρ)

¤
K(t)

e(r−n−g)sΨ3(r)Ψ1(r)−1 + (e(r−n−g)s − 1)/(r − n− g)

This is the expression which is then substituted in eq. (31) in order to obtain eq. (32).
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