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Abstract 

 
Ball and Mankiw (1995) use a static menu-cost model to explain the historical 

behaviour of the first and higher moments of commodity price changes in US 

producer prices. We show that when appropriately modified for a world of 

positive trend inflation and forward-looking behaviour by firms, the menu-cost 

model predicts a much weaker (possibly zero) correlation between the mean 

and the skewness of price changes than that found in the data. 
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The empirical correlation between the first and second moments of the 

distribution of price changes has long been recognized. Vining and 

Elwertowski (1976) and Parks (1978) provide evidence of this phenomenon in 

the US; Domberger (1987) provides similar evidence for the UK.1 Ball and 

Mankiw (1995) - henceforth BM - propose a menu-cost model to explain not 

only this correlation but also the correlation between inflation and the third 

moment of the distribution, the skewness of commodity price changes. Indeed 

the distinctive prediction of their model is that there should be a strong 

positive correlation over time between inflation and skewness. 

The central idea in BM's model is that if, because of menu-costs, firms 

do not re-set prices when faced with small shocks to their desired price, a 

skewed distribution of such shocks will affect the mean of actual price 

changes, the inflation rate: a positively-skewed distribution will raise it; a 

negatively-skewed distribution will lower it.2 They go on to present evidence 

based on annual post-WW2 data on US producer prices, which, they argue, 

shows that the observed relationships between the three moments of the 

distribution of price changes are broadly in line with their model; in particular 

skewness and inflation are strongly positively correlated. From this they argue 

more generally that “the empirical validation of our theory provides evidence 

for menu-cost models of price adjustment” and they add, “menu-cost models 

were developed to explain monetary non-neutrality. They gain credibility from 

their ability to fit the facts regarding inflation and relative-price change” (BM, 

p191). 
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However, BM's model incorporates two questionable assumptions: first 

that there is no trend inflation; and second that firms are not forward-looking in 

their price-setting behaviour. Recognizing the possible limitations of such a 

static model, BM suggest that “future research might consider a fully dynamic 

version” (p.172). In this paper we develop such a model, and use it to assess 

the robustness of BM's interpretation. 

The principal implication of our dynamic version is that the distinctive 

prediction of BM's model is noticeably weakened in the presence of positive 

trend inflation. In fact, when calibrated to mimic the main features of US 

producer price behaviour over the period 1948-2003, our model predicts only 

a weak, even zero, correlation between inflation and skewness, and therefore 

cannot explain the observed strong positive correlation. A version calibrated 

using a subset of low trend-inflation periods predicts a somewhat stronger 

correlation between skewness and inflation, though the predicted co-

movements are still weaker than those observed. 

Writing of the observed correlation between the first and second 

moments of the distribution of price changes Fischer (1982, p171) 

commented that “the nature of the association and its causation remain 

unclear”. Our results suggest that Fischer's comment could equally well be 

applied now to the observed correlations between the first three moments of 

the distribution of price changes; the menu-cost approach does not by itself 

provide a satisfactory explanation for them.3 

Our paper is organized as follows. In section 1 we sketch BM's static 

menu-cost model; in section 2 we extend it to allow for trend inflation, 

maintaining the static framework; in section 3 we develop a dynamic menu-
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cost model with trend inflation and forward-looking behaviour by firms; in 

section 4 we present our simulation results; and in a final section we offer 

brief summary. 

 

1.  THE BALL-MANKIW MODEL 

 
BM assume an economy consisting of a continuum of industries, each 

with a continuum of imperfectly competitive firms. Firms within the same 

industry have identical desired prices but face heterogeneous menu costs. 

For simplicity, initial desired and actual price levels (in logs) are assumed 

equal to zero. Desired price changes across industries are then subject to a 

mean-zero shock, θ , which is distributed across industries with density ( )⋅f . 

Since each price is in logarithms and has an initial equilibrium of zero, θ  is 

the rate of change of the equilibrium price. A firm which re-sets its price incurs 

a menu cost of C; a firm which does not incurs a loss of .2θ 4 

A firm will therefore adjust its price only if C> ||θ . BM assume C  is 

distributed across firms with distribution function ( ) ( )CaCG −−= exp1  

where a is parameter. For an industry confronted with shock θ , the proportion 

of firms that re-set will be ( )|| θG . Given the static framework, re-setting firms 

select a price θ . BM derive π , the inflation rate, as the average of these price 

changes across industries, 

 ( ) ( ) ( )[ ] θθθθθπ dffG −−= ∫
∞
0

      (1) 

If the density of ( )θf  is symmetric around zero, ( ) ( )θθ −− ff  and π  is 

zero. But if ( )θf  is asymmetric (i.e. skewed), then although the mean desired 
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price change is zero, the observed or actual inflation rate, π , will not be. BM 

use numerical methods to demonstrate the impact of the asymmetry of ( )θf  

on π  by assuming that ( )⋅f  is skew-normal and a takes the value 7.5 They 

derive the mean, standard deviation and skewness of actual price changes 

under varying assumptions about the standard deviation and skewness of the 

shocks to desired prices. They find that increased skewness in the underlying 

shocks raises the inflation rate, an effect amplified as the standard deviation 

of the shocks rises. Similarly, a rise in the standard deviation raises π , an 

effect which is amplified by higher skewness of the shocks.6 

 

2.  THE BALL-MANKIW MODEL WITH TREND INFLATION 

 
BM use (1) to show that if θ  is symmetrically distributed around zero 

then, regardless of whether there are menu costs, inflation will not diverge 

from the mean value of θ , zero: the “range of inaction” caused by menu costs 

- the range of shocks to which firms will not respond by changing price - will 

prevent just as many price falls as equivalently-sized price rises. Our first 

point is that when the mean of θ  ( θµ ) is positive, this is no longer the case: 

whilst the distribution of θ  has been shifted to the right the range of inaction 

will still be centred around zero; and so there will be fewer firms who wish to 

lower their price but, because of menu costs, choose not to do so than there 

are firms wishing to raise them but choosing not to. Hence, in the presence of 

menu costs, if θµ  is positive, inflation will, in general, be below θµ  even when 

the distribution of θ  is symmetric. Only in the limiting case of hyperinflation, 

when the distribution of θ  has been shifted so far to the right that the loss of 
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profits from not resetting overwhelms all firms' menu costs, will this effect 

disappear and the higher moments of price changes have little or no effect on 

the mean.7 More generally, positive trend inflation can be expected to change 

the co-movements of mean, standard deviation and skewness. Figure 1 

illustrates the point. For clarity, the upper and lower bounds that trigger re-

setting behaviour are assumed to be the same for all firms and assumed 

densities, and, when they re-set, firms set price to the desired level. In panel 

(a) the desired price shocks are symmetric around a zero mean. The shaded 

area indicates the densities of the prices being re-set: firms hit by shocks 

greater than the upper threshold raise their prices; those hit by shocks below 

the lower threshold lower them. The net effect is zero and the mean of actual 

price increases is equal to the mean of the desired price increases: both are 

zero. 

In panel (b) we assume a trend inflation of 0.03, so the mean of the 

symmetric distribution is now positive (and indicated by the long-dash vertical 

line). The unshaded area of the density captures the price changes that would 

have been made by firms who, because of menu costs, have not reset. In this 

case the unshaded area above zero (to the right of the short-dash vertical 

line) is greater than that below zero, so a greater proportion of non-resetting 

firms would, in the absence of menu costs, have re-set at a higher rather than 

lower price. Because these firms do not re-set, the actual inflation rate (the 

bold vertical line) will be below the mean of desired price changes. At higher 

trend inflation rates this effect will gradually disappear as the number of firms 

not re-setting falls. 
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In panel (c) of Figure 1 we repeat BM's case of positive skewness in the 

desired price distribution with zero trend inflation. The area of the unshaded 

density above zero is less than that below. Because these firms do not re-set, 

the mean of actual price changes (bold vertical line) is above the mean of 

desired price changes (long-dash vertical line). This is how BM explain the co-

movement of the skewness of price changes and their mean. In panels (d) 

through (f) the densities are all positively skewed, but the mean is 

progressively raised from 3% to 20%. As the distribution moves to the right, 

the respective unshaded densities above and below zero change. In panel (e) 

for example the proportion of firms who would have raised their price in the 

absence of menu costs is far greater than the very small proportion who 

would have lowered them, and hence the mean of the actual price change 

(bold vertical line) is lower than the mean of desired price changes (long-dash 

vertical line). When the mean of desired price changes is 0.2, skewness, 

menu costs and their interaction become irrelevant: virtually all firms re-set 

and the means of actual and desired price changes become equal. 

The graphs illustrate that the effect of menu costs on the moments of 

price changes is likely to be more complex when there is trend inflation. To 

demonstrate this complexity more formally, consider an economy where θ  is 

symmetrically distributed. And assume, with BM, that all initial prices are 

equal to their desired values of zero and that firms, when they re-set, set a 

price of θ .8 What will be the effect of variations in the mean and standard 

deviation of θ  on the mean and higher moments of actual prices? We 

numerically generate the distribution of actual price changes, ( )||θθG , and 

calculate the mean ( pµ ), standard deviation ( pσ ) and skewness ( pk ) of this 
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distribution given different assumptions about the mean ( θµ ) and standard 

deviation ( θσ ) of θ .9 Note (from Figure 1b for example) that whereas there is 

no skewness in the distribution of desired price changes, the failure of some 

firms to re-set when confronted by sufficiently small shocks means that the 

distribution of actual price changes will be positively skewed if 0>θµ . Table 1 

presents the results. The first three rows in the table are based on 0=θµ .10 

The inflation rate ( pµ ) and skewness ( pk ) are both zero and independent of 

θσ  and pσ , confirming BM's results for this case. The remaining rows set out 

the moments of actual prices when 0>θµ . With 5% trend inflation, a rise in 

the standard deviation of θ  raises pσ  and pµ  but lowers pk . Looking across 

the 5% rows one would be tempted to expect skewness ( pk ) and inflation 

( pµ ) to be negatively correlated. With the more extreme 25% trend inflation, a 

rise in the standard deviation of θ  again raises pσ  and pµ  but now it also 

generally raises pk . 

The moments set out in Table 1 are based on the simplest possible 

framework: a static model in which firms are confronted by symmetric shocks 

to their desired prices. Yet even here the relationships between the moments 

of actual price changes are noticeably more complex than those BM derived 

for the zero trend inflation case. And the degree of complexity would be even 

greater had we allowed for skewness in the distribution of θ . 
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3.  A DYNAMIC MENU-COST MODEL 

 
An obvious weakness in BM's original model, and in the model allowing 

for trend inflation that we have just described, is that they are both static, or 

single-period, models. Such a framework precludes firms from taking into 

account the potential future benefits from re-setting. One likely consequence 

of this weakness is that the model will underestimate the proportion of firms 

that re-set: the menu cost of changing a price is incurred in a single period 

whereas the benefits could be felt over all future periods; firms which do not 

find the benefit of resetting in the current period worth the cost might find it 

profitable if they took into account future benefits.11 

A second likely consequence is that a forward-looking, re-setting firm will 

not set a price of θ . The firm will anticipate that, in the presence of trend 

inflation, its desired price will be higher in the future. Recognizing that it may 

not re-set its price for some time, a firm which is re-setting its price will 

therefore typically set a price above its currently desired level, accepting 

higher current losses in return for lower expected losses in the future. 

Furthermore, because it is more likely not to be re-setting its price for some 

time thereafter, a re-setting firm with a high menu cost will set a price higher 

than a re-setting firm with a low menu cost. Less obviously, firms faced with 

skewed shocks will not re-set at θ  even with zero trend inflation. For 

example, a firm faced with a positively skewed distribution of shocks will 

expect frequent small negative shocks, each of which may not justify a price 

re-set, and infrequent, larger positive shocks which do. If it re-sets its current 

price below θ  the small negative future shocks will, for some time at least, 
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nudge its desired price towards its actual price; and any positive shock is 

more likely to be large enough to justify re-setting even if the current price 

were set at θ  rather than below it. So there are possible gains from setting 

the current price below θ and possibly little to lose. Symmetrically, a firm 

subject to shocks from a negatively skewed distribution will typically set a 

price above θ . 

It follows from all this that, when a firm is forward-looking, the mean, 

standard deviation and skewness of the shocks will have effects on its pricing 

behaviour that will be quite different from those implied by a static model. To 

explore the implications of forward-looking behaviour by firms we develop a 

dynamic version of the menu-cost model which we then use to simulate the 

relationship between inflation and the higher moments of the distribution of 

price changes. 

Our “benchmark” model retains many features of BM's static model. We 

assume a model economy consisting of a large number of industries, each 

with a large number of imperfectly competitive firms. Firms within each 

industry share the same desired price but they have different menu costs, with 

C  distributed across firms with distribution function ( ) ( )CaCG −−= exp1 . 

Firm i in industry j is assumed to incur a loss in each period t of ( )2*
,,, tjtji pp −  

where tjip ,,  is the actual (log) price and *
,tjp is the equilibrium price. The 

change in equilibrium price (θ  in BM's notation) has a known distribution, but 

in our first departure from BM's model we assume that it has a positive mean 

for all industries. In a second departure we assume that firms are forward 

looking. This requires us to derive a set of price-setting rules which are 
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appropriate for a dynamic framework: it is no longer valid to assume that firms 

will reset when ( ) Cpp tjtji >−
2*

,,,  and that a firm which does reset will reset at 

*
,,, tjtji pp = . 

 

3.1  Price-setting rules 

We assume that the firm has an infinite planning horizon and is faced 

with i.i.d. shocks to its desired price. Conditional on its menu cost and the 

distribution of the desired price shocks, the optimal policy of such a firm can 

be characterized by three numbers: an upper threshold ut , such that if 

utpp >− *  the firm changes its price; a lower threshold lt , such that if p-

ltpp <− *  the firm also changes its price; and a reset value, r, that *pp −  is 

set to whenever price is changed. Because we assume that each firm's menu 

cost is fixed over time, the firm's strategy is conveniently summarized in these 

three parameters. For firms with zero menu costs, 0=== rtt lu . For positive 

menu-cost cases we obtain estimates of rtt lu  and  ,  by a numerical grid-

search method. For computational tractability, we derive estimates of the 

three parameters for ten menu-cost “nodes”, corresponding to the first nine 

deciles and the 99.9 percentile of the assumed distribution of C, and use 

linear interpolation to derive estimates of the three parameters for any 

particular menu cost. For a firm i with menu-cost node iC , the realised 

present value of the loss function is, 
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where ktiD +,  is an indicator variable which takes the value 1 when the firm re-

sets its price and zero at other times; and ( )( )11 −−≡ δβ  is a discount 

parameter, with δ  assumed to be 2%. We approximate the PVL of infinite-

horizon firms by setting T = 200. We draw M (= 1,000) paths of *p  over T 

periods and grid-search12 over values ut , lt  and r that minimize, 
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3.2  Model Calibration 

Our main aim is to investigate whether the dynamic menu-cost model 

can account for the observed correlations of mean, standard deviation and 

skewness found in US producer price indices (PPI) over the period 1948 to 

2003.13 To do so we calibrate our benchmark model so that it matches as 

closely as possible key features of these data, namely the mean inflation rate, 

the standard deviation across commodities of their price changes, the 

standard deviation of this standard deviation over time, the skewness of price 

changes and the standard deviation of skewness over time. Once the model 

has been satisfactorily calibrated we then use it to predict the correlations 

between inflation, the standard deviation and skewness of price changes. The 

test of the menu-cost approach is therefore the success it has in predicting 

these correlations. Following BM, we use PPI largely because of its high 
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degree of disaggregation: price data were readily available at the four-digit 

level. The number of industries covered each year varies, ranging from 203 in 

1947 to 368 in 1995.14 151 industries appeared every year. We give details of 

the inflation rate and weighted15 standard deviations, skewness and the Q 

statistic of PPI inflation rates in the appendix. Q captures both variance and 

skewness in a single descriptive statistic. It is defined as, 

∫
∞
∞−

⋅= dqqqhqQ )(||         (3) 

where q is the commodity's price change minus the inflation rate and h(q) is 

the density of q. Q averages the product of each relative price change and its 

own absolute value. It takes the value zero for a symmetric distribution, 

moves positively with skewness and is amplified by a larger variance. 

The mean “all-commodity” PPI inflation rate was 3% over the data 

period, peaking at over 17% in 1974. All three moments of price changes - 

mean, standard deviation and skewness - vary substantially over the period. 

This is particularly true of skewness, which frequently switched sign from one 

year to the next: for example (weighted) commodity price changes were 

negatively skewed in 2002 (-2.4) and equally positively skewed a year later 

(2.6). The mean weighted standard deviation was 6.1%, and there was also 

substantial annual variation, ranging from 2.6% in 1963 to over 14% in 1974. 

The simple correlations with inflation over the full period are 0.608 for 

weighted skewness, 0.411 for weighted standard deviation and 0.805 for 

weighted Q. It is these correlations that we seek to explain using a dynamic 

menu-cost model. 

To capture the time variation in PPI skewness, we follow a suggestion of 

Bryan and Cecchetti (1999): shocks to desired price changes are drawn from 
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a distribution exhibiting excess kurtosis. In any single year, a relatively small 

sample of such shocks will display positive skewness if a number of shocks 

are drawn from the upper tail of the distribution. And similarly negative 

skewness will be present in a small sample containing a number of draws 

from the lower tail without any counter-balancing draws from the upper tail. In 

this way we can mimic the time variation of skewness exhibited in the US PPI 

data. 

In fact Bryan and Cecchetti (1999) argued that such an underlying data-

generating process can explain why skewness is correlated with the mean: a 

small-sample containing draws from the upper (lower) tail will raise (lower) 

both mean and skewness, with no underlying economic mechanism required. 

Ball and Mankiw (1999) respond with an appeal to the standard theory of 

price determination: the aggregate inflation rate is determined by monetary 

factors whilst real factors (such as demand and costs in the various 

industries) determine N-1 relative prices, where N is the number of industries. 

According to BM, Bryan and Cecchetti “merely offer a statistical version of the 

layman's misconception” - that sectoral shocks determine all N nominal prices 

and that the aggregate price level is simply determined by the average of 

these prices.16 To avoid this misconception, we assume that the change in the 

aggregate equilibrium price level is determined by an exogenous “monetary 

process” - characterized by a given mean and variance. The N desired 

relative prices are required to have a mean-zero distribution exhibiting excess 

kurtosis.17  
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We assume that the change in industry j's equilibrium price is influenced 

by two factors: a “monetary” component ( tεµ + , common to all industries) and 

an industry-specific relative price shock ( tj,υ ), so we write, 

tjttjtj pp ,
*

1,
*
, υεµ ++=− −        (4) 

where the money component has a mean of µ  and a variance of 2
εσ ; and the 

relative price shock tj,υ  has a variance 2
υσ  which is assumed common to all 

industries. The presence of the common shock will mean that desired and 

actual price changes will be correlated across industries. The mean of the “all-

commodity” PPI over the period 1948-2003 was 0.03 and we adopt this in the 

benchmark model as our estimate of µ . To derive an estimate of 2
εσ  we 

assume that the variance of all-commodity PPI inflation is partly attributable to 

variations in the moments of industry price changes (their skewness and 

standard deviation as the menu-cost model predicts) and partly due to 

variations in the common shock. 2
εσ  is estimated as the residual variance in a 

regression of inflation on the skewness and the standard deviation of 

producer prices. Over the period 1948-2003 the standard deviation of the all-

commodity inflation rate was 0.04 and the standard deviation of the 

regression residual was 0.03, which we take as our estimate of εσ .18 

The relative price shocks ( tj,υ ) of N industries are assumed to be drawn 

from a mean-zero Student's t-distribution with 2.5 degrees of freedom, scaled 

to replicate the average standard deviation of observed price changes.19 As 

we later note, this degree of freedom generated small sample distributions 

with patterns of skewness and standard deviation in simulated actual industry 
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price changes similar to those observed in the data. The relative desired price 

shocks are assumed to have a standard deviation 08.0=υσ , as this 

replicates the observed average standard deviation of actual price changes in 

the PPI data. Although the relative prices were drawn from an assumed 

mean-zero distribution, aggregation consistency is ensured by scaling the 

relative prices so they sum to zero. 

Trend inflation since the early 1980s has been substantially lower than 

that over the full period. When applied to the PPI data, a Markov switching 

model20 identifies two distinct inflation “regimes”: a low inflation regime 

covering the periods 1953-72 and 1983-2003 and a high inflation regime over 

the other years. The mean inflation rate in the low-trend period was 1.5% and 

over 7% in the 15 years of high-trend inflation. During the low-trend period the 

mean standard deviation of the all-commodity inflation rate was substantially 

lower - 2% compared with 4% over the full period. And the average standard 

deviation of commodity inflation rates was a little lower with a mean of 5.4% 

(compared with 6.1% over the full period). The simple correlations with 

inflation over the low-inflation sub-periods are (with the full period correlations 

in brackets) 0.718 (0.608) for weighted skewness, 0.025 (0.411) for weighted 

standard deviation and 0.749 (0.805) for weighted Q.21 In a further set of 

simulations, we therefore re-calibrated the model to capture these features of 

the low-inflation regime. Following the approach described above, the 

parameters for low trend inflation calibration are: 015.0=µ , 07.0=υσ  and 

015.0=εσ . 
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3.3  Simulation procedure 

Our simulation results presented below are based on 500 replications of 

the simulated behaviour over 66 years of 10,000 firms equally divided into 100 

industries. For these simulations we first, from its assumed distribution, 

randomly assign to each firm a menu cost which is assumed constant over 

time. By comparing this cost with the relevant pair of adjacent menu-cost 

“nodes”, we derive the firm's unique ut , lt  and r by linear interpolation. 

Following BM, in the benchmark model we set the menu-cost parameter a=7. 

This implies (at least in the static context) that the maximum deviation 

between actual and desired prices the average firm will tolerate is 15% which 

BM argue is consistent with the observed frequency of price adjustment. In 

our dynamic model this parameter value leads to a distribution of contract 

lengths which, as we explain below, is broadly in line with US experience. 

We next set the initial equilibrium price for each commodity to zero but 

we assign an initial price to each firm within each industry as follows. First, for 

each menu-cost node we compute a numerical steady-state distribution of 

*pp − .22 Each firm's initial price is then a random draw from the numerical 

distribution of the node which is the closest match to its own menu cost. From 

these initial prices we then generate 66 years of observations for the 10,000 

firms. To further remove any influence of initial conditions, we drop the first 10 

years observations: the remaining 56-year period then matches the 1948-

2003 PPI sample.23 

The simulated commodity price is then the mean price across firms in the 

industry. Our simulations of skewness and standard deviation are based on 

the distribution of the implied series on changes in these prices. 
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4.  SIMULATION RESULTS 

 
The key simulation results of the benchmark model are set out in Table 

2. In panel (a) we present the estimated values of ut , lt  and r for the ten 

menu-cost nodes and we present the first nine graphically in Figure 2. A firm 

with the median menu cost will not reset price if -0.076< *pp −  <0.099. This 

range of inaction is not symmetric around zero and this asymmetry is more 

pronounced as menu costs rise. The reasons for this were first identified by 

Ball and Mankiw (1994): if the firm's current price is above its equilibrium, 

inflation (which implies a rise in *p ) will close the future gap; but if the current 

price is below equilibrium, inflation will further widen the gap; hence the firm 

will tolerate a larger positive gap between their current and desired price than 

a negative one. A re-setting firm with median menu cost re-sets at 

0163.0* += pp : anticipating a rise the desired price in the future, the firm re-

sets above the current equilibrium in an attempt to avoid incurring future menu 

costs. Figure 2 compares these parameters with those implied by the static 

model, where CppC +<−<− *  is the range over which a firm will not re-

set and 0=r . The outer dashed lines are the upper and lower reset 

thresholds in the static model and these are symmetric functions of menu 

costs. The dynamic thresholds (the inner solid lines) are lower than their static 

equivalents in absolute terms: firms are more inclined to adjust their prices 

because they gain both in the present and the future. 

According to Blinder (1994), 40% of the US prices he sampled were 

reset annually, 10% were reset more frequently and 50% less frequently. In 
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their more recent analysis of consumer goods prices, Bils and Klenow (2004) 

found that half of goods prices lasted less than 4.3 months. Blinder's survey 

mainly comprised firms producing intermediate goods (79% of their sales) 

whereas Bils and Klenow's coverage was exclusively consumer goods retail 

prices. As our calibrations are based on producer price data, the Blinder 

findings are, perhaps, more relevant. In our simulations the median “contract 

length” was one year. 53.7% of prices lasted only one year and 46.3% 

remained unchanged over two or more years. Noting that in our simulations 

price contracts of less than one year are not possible, these results are 

broadly in line with Blinder's findings. 

In panel (b) of Table 2 we compare the model's simulations with the US 

data. The 3% trend inflation rate in the data is confirmed in the simulations. 

The assumption of excess kurtosis in the distribution of price shocks does 

lead to time-variation in the skewness and standard deviation of industry 

prices similar to those found in the data: the mean simulated standard 

deviation of skewness over time is 2.5 compared with 2.4 in the data and the 

mean simulated cross-time standard deviation of the standard deviation of 

prices is 0.029, compared with 0.027 in the data. The mean simulated 

standard deviation of actual price changes was 0.067 (compared with a 

historical mean of 0.061). The model is less successful at capturing the time 

variation in inflation: the mean simulated value of the standard deviation of 

inflation is 0.024 whereas in the data it is 0.043. As we shall see this arises 

because in the simulations, skewness and the standard deviation have no 

significant effect on inflation and hence the variability of inflation over time 

arises only because of the common shocks.24 
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In panel (b) we also compare (with their weighted historical equivalents) 

the simulated correlations of inflation with skewness (SK), standard deviation 

(SD) and Q. In the benchmark model the simulated correlations are all 

substantially lower than those found in the data, particularly in the cases of SK 

and Q. Interpreting the 2.5th and 97.5th percentile range as the bootstrapped 

95% confidence interval, the correlations of SK and Q observed in the data 

are significantly above those we would expect from the dynamic menu-cost 

model and the observed correlation with SD is close to the simulated upper 

bound. In this (and later) simulations we find that when the historical 

correlation of inflation with SK is outside the model's 95% confidence interval, 

the same is true of Q. 

We repeated the simulation exercise for a model economy with zero and 

6% trend inflation, all other model parameters set to their benchmark values. 

The results are shown in the top panels of Table 3. For the case of zero trend 

inflation (panel (a)), the simulated correlations of inflation with skewness and 

Q are stronger than those in the benchmark case though still substantially 

weaker than those observed. For example the observed correlation of inflation 

with SK is 0.608, whereas with zero trend inflation we would expect a 

correlation in the range -0.006-0.452. The correlation with the standard 

deviation is now substantially weaker than both the benchmark case and its 

actual value. With trend inflation at 6% (panel (b) in Table 3), the simulated 

correlation between the standard deviation of price changes and inflation is 

more in line with its actual value but the mean simulated correlation of 

skewness and inflation is now mildly negative - something we might have 

expected given the results of the static model with symmetric shocks reported 
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in Table 1. Looking across the 5% rows in Table 1, the inflation rate is 

positively related to the standard deviation in actual prices but negatively 

correlated with their skewness. So, BM's prediction of a correlation of 

skewness with inflation appears to be mainly a feature of an economy with 

zero trend inflation, and even in this case the correlation predicted by our 

menu-cost model with forward-looking firms is distinctly weaker than that 

observed. 

In the lower panels of Table 3 we report two robustness checks. In panel 

(c) we raise menu costs by assuming 4=a , which implies that the maximum 

deviation between actual and desired prices the average firm will tolerate is 

approximately 25% (compared with 15% in the benchmark case).25 The mean 

simulated correlations are only marginally affected by this change. 

In panel (d) we report simulated correlations from a model where the 

standard deviation of desired price changes is twice that of the benchmark 

model, i.e. 0.16 compared with 0.08. The mean simulated correlation of 

inflation with SK (0.136) is higher than the benchmark and that with SD 

(0.068) substantially lower. In this high variance case the menu-cost model 

fails to explain either the correlation of inflation with SK or its correlation with 

SD. 

The results of a model calibrated to capture the low trend inflation 

periods are set out in Table 4. In this case the assumed trend inflation is lower 

and monetary and relative price shocks less volatile than the benchmark 

case. Because of these combined changes, the thresholds ut , lt  and r are 

very similar to those of the benchmark case: the zone of inaction is narrower 

but the differences are marginal. Whilst the mean simulated correlation of 
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inflation with SK (0.200) is higher than the benchmark (0.088), the historical 

correlation (0.718) is still well outside the model's 95% confidence interval 

0.493) to (-0.115 . So, in a dynamic setting with trend inflation as low as that 

experienced in the US since the early 1980s a menu-cost model provides a 

poor explanation of the observed correlations amongst the moments of 

commodity price changes, especially between the first and third moments.26 

The failure of menu-cost effects to match the data is potentially due to 

one or all of the following: (i) the effects are weakened when we move from a 

static model of the firm to dynamic one; (ii) trend inflation complicates the 

relationships among the moments of the distribution of price changes; (iii) 

allowing for common shocks introduces “noise” into the inflation process and 

this masks the expected correlations between the moments. We present 

evidence on the separate importance of these three influences in Table 5. 

In panel (a) of this table we report correlations based on a static model of 

the firm under differing assumptions about the common shock's mean and 

standard deviation.27 The simulated correlations of inflation with skewness are 

far stronger than those with the standard deviation but the former is weakened 

when the variance of the common shock is raised. In this static framework, 

when the mean of θ  is zero the observed correlation of inflation with 

skewness can only be explained if no common shocks are assumed; and the 

observed correlation with the standard deviation of producer prices cannot be 

explained. When the mean value of θ  is assumed to be 0.03 the correlation of 

inflation with skewness is reduced whilst the correlation of inflation with the 

standard deviation of product prices is raised. As in the zero trend case the 
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correlations with both SK and SD are substantially weakened when the 

variance of the common shocks is raised. 

In panel (b) we report simulated correlations in a dynamic model with 

forward-looking firms. Moving from static to dynamic modelling of firm 

behaviour has only marginal effects on the correlations. The presence of 

common shocks and the assumption of a positive trend inflation thus both 

substantially weaken the predicted correlation of skewness and inflation. The 

assumption of forward-looking behaviour by firms has a relatively minor effect. 

 

5.  CONCLUSIONS 

 
The relationship between first- and higher-order moments of the 

distribution of price changes has been a puzzle to economists for many years. 

To explain it Ball and Mankiw (1995) put forward a menu-cost model whose 

distinctive prediction is of a correlation between the skewness of price 

changes and inflation rate. We have shown that when appropriately modified 

for a world of non-zero trend inflation and forward-looking behaviour by firms, 

and when calibrated to capture the main features of US data over the period 

1948-2003, the menu-cost model predicts a substantially weaker correlation 

between inflation and the skewness of price changes than that found in the 

US Producer Price data. Our conclusions are much the same when we 

calibrate using data from the low inflation sub periods, 1953-1972 and 1983-

2003. Overall, our results suggest that when the menu-cost model is modified 

to allow for non-zero trend inflation and forward-looking behaviour by firms it 

does not by itself provide a satisfactory explanation for the observed 

correlations between the moments of the distribution of price changes.
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1 The relationship between individual prices and the aggregate price level was 

first noted in Mills's (1927) analysis of the US price system. 

 

2 An alternative explanation is provided by Balke and Wynne (1996, 2000) 

who introduce skewed technology shocks into a flexible-price multi-sector real 

business cycle model. In this model the skewness of sectoral price changes is 

correlated with the inflation rate, providing there are strong contemporaneous 

correlations of the sectoral technology shocks. 

 

3 In both the Ball-Mankiw and Balke-Wynne models, the direction of 

contemporaneous causation runs from relative-price shocks to inflation. In a 

series of Granger-causality tests (using US and German data), Fischer (1982) 

attempted to shed some light on causality - but his results were inconclusive. 

 

4 The profit loss from not re-setting is given by the square of distance between 

the actual and equilibrium price. BM argue this is “equivalent to taking a 

second-order approximation to a general profit function” (p169). 

 

5 The skew-normal class of densities was given its name by Azzalini (1985) - 

see also Azzalini and Capitanio (1999). This distribution reduces to normal 

when skewness is zero and to half-normal when skewness approaches an 

upper bound of ( ) 995.0
2

245.0
5.1

≈







−
−⋅=

π
πz  and a lower bound of -z. 
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6 These features apply symmetrically to negatively skewed distributions, but 

with the signs reversed. 

 

 

7 In their review of modern hyper-inflations, Fischer et al (2002) find that the 

evidence “supports the notion that nominal rigidities are weakened as inflation 

reaches higher levels” (p877). 

 

8 Even if the true mean of θ  were positive, re-setting at θ  would be an optimal 

strategy for a firm expecting its own θ  to have a zero mean. 

 

9 We follow BM in assuming a = 7. 

 

10 The first three rows are identical to the first three rows of BM's Table 1, 

page 171. 

 

11 This would be true even in a world of zero trend inflation. Firms would be 

more likely to re-set if, by so doing, they reduce future as well as current 

losses. 

 

12 The grid search sweeps over the parameters in steps of 0.001 for ut  and 

lt , and 0.0001 for r which requires finer precision, and we ensure that the 

solutions are not on any boundary. The initial *p is set to zero and following 
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BM's suggestion (see page 172) the initial p is assumed to be distributed 

triangularly between C−  and C+ . To further avoid undue influence of 

‘invalid' initial conditions, period t in equation (2) is year 51 in the grid-search 

exercise, at which stage starting prices can be viewed as being drawn 

numerically from the steady-state distribution of *pp − . 

 

13 We use similar data to BM, revised and updated to 2003. The data are 

available at this URL: http://www.ecn.bris.ac.uk/www/ecdd/bm/. 

 

14 BM's own sample covered a range of industries from 213 in 1949 to 343 in 

1989. 

 

15 The weights are those used by the Bureau of Labor Statistics in computing 

the overall PPI (broadly measuring the “relative importance” of the industry in 

1997). 

 

16 Ball and Mankiw (1999) cite a Newsweek article by Milton Friedman (1975) 

on the effects of oil-price rises in the early 1970s. Friedman asks, “Why 

should the average level of all prices be affected significantly by changes in 

the prices of some things relative to others?” 

 

17 The N desired relative prices were scaled by subtracting the mean of the 

initial simulated series from all simulated values to ensure that they did in fact 

sum to zero. 
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18 We later consider alternative assumptions about the variance of the 

common or monetary shock. 

 

19 The standard deviation of the Student's t-distribution is 
2−

=
df

df
tσ , where 

df is the degree of freedom. Each draw of the distribution is scaled by 
tσ

συ  

where υσ  is selected to replicate the standard deviations of actual price 

changes in the data. 

 

20 We applied the two-state Markov switching model described in Hamilton 

(1990). 

 

21 Very similar features apply to the 1983-2003 period on its own. In particular 

the trend was just over 1.5% and the correlations of inflation with skewness, 

standard deviation and Q are (respectively) 0.828, 0.051 and 0.839. 

 

22 In deriving the numerical distribution of *pp −  we assume that the initial 

price of a firm with menu cost node iC  is distributed triangularly between 

iC−  and iC . We then generate 6,000 ‘years' of shocks to the industry's 

desired price and apply the firm's price-setting rules to generate 6,000 values 

for *pp − . We drop the first 1,000 values to purge any influence of the 

presumed initial distribution. 
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23 For the low inflation period we carried out the same procedure but for only 

51 years, and again by dropped the first 10 years observations: the remaining 

41-year period then matches the low trend inflation sub-samples (1953-72 

and 1983-2003). 

 

24 The mean standard deviation of simulated inflation is less than the 

assumed standard deviation of the common shocks. This is because some 

firms do not reset their price when hit by a common shock to their desired 

price. The mean skewness predicted by the model is greater than actual 

skewness but, as noted above, skewness is a very volatile variable and so 

this result is not surprising. 

 

25 With higher menu costs price contracts lengthen: the median contract 

length is now 2 years compared with 1 in the benchmark case. 

 

26 Our menu-cost model assumes that all firms within an industry share the 

same desired price for their product but set different prices because they have 

different menu costs. Firms also have different initial prices, drawn from 

numerical steady-state distributions appropriate for the firm's menu cost. We 

also explored a model suggested by recent contributions by Midrigan (2005, 

2006) and Golosov and Lucas (2007) in which firms incur identical menu 

costs but face idiosyncratic price shocks in addition to ‘monetary' and industry 

shocks shared by other firms in the same industry. Specifically we assumed 

that the firm's desired price is subject to three influences: an aggregate 
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‘money' shock which affects all firms in all industries, an industry shock which 

affects firms in the same industry and an idiosyncratic shock which is peculiar 

to each firm. Firms within the same industry share the same menu cost, but 

menu costs vary across industries, the distribution of which is the same as 

that assumed earlier across firms. This captures the notion that price-setting 

technologies are more likely to vary across industry rather than across firms 

within the same industry. After appropriate calibration - details available from 

the authors - the model produced predicted correlations almost identical to 

those presented in Table 4. 

 

27 Industry desired price shocks are again drawn from a Student's ‘t' 

distribution with a standard deviation of 0.08 and with 2.5 degrees of freedom, 

as in the benchmark case. 
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Table 1 Actual Price Moments 
[Symmetric Distributions of θ ] 

 
 
  θσ  

θµ   0.05 0.10 0.15 0.20 0.25 
       
 pµ  0.0000 0.0000 0.0000 0.0000 0.0000 

0 pσ  0.0217 0.0657 0.1171 0.1708 0.2248 

 pk  0.0000 0.0000 0.0000 0.0000 0.0000 

       
 pµ  0.0229 0.0325 0.0386 0.0422 0.0445 

0.05 pσ  0.0286 0.0699 0.1197 0.1723 0.2258 

 pk  1.2529 0.7344 0.3824 0.2114 0.1260 

       
 pµ  0.0562 0.0688 0.0787 0.0853 0.0897 

0.10 pσ  0.0403 0.0801 0.1263 0.1765 0.2285 

 pk  0.7602 0.8559 0.5863 0.3668 0.2317 

       
 pµ  0.1007 0.1106 0.1215 0.1295 0.1353 

0.15 pσ  0.0489 0.0915 0.1352 0.1826 0.2325 

 pk  0.3819 0.6608 0.5997 0.4370 0.2980 

       
 pµ  0.1521 0.1582 0.1673 0.1757 0.1820 

0.20 pσ  0.0537 0.1008 0.1442 0.1897 0.2376 

 pk  0.1756 0.4229 0.5025 0.4301 0.3241 

       
 pµ  0.2071 0.2098 0.2163 0.2235 0.2298 

0.25 pσ  0.0558 0.1068 0.1519 0.1964 0.2429 

 pk  0.0611 0.2282 0.3647 0.3740 0.3139 

       
 
Notes: This table sets out the moments of actual price changes given different 
assumptions about the moments of desired price changes in BM's static 
model of the firm. θµ  and θσ  are the mean and standard deviation of desired 
price changes (the distribution is assumed symmetric). pµ , pσ  and pk  are 
the mean, standard deviation and skewness of actual price changes. 
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Table 2 Benchmark Model 
03.0=µ ; 03.0=εσ ; 08.0=υσ ; 7=a  

 
(a) Threshold Parameters 

Menu Cost Percentile ut  lt  r 
    

10 0.015 -0.015 0.0002 
20 0.033 -0.030 0.0016 
30 0.053 -0.045 0.0052 
40 0.071 -0.061 0.0111 
50 0.099 -0.076 0.0163 
60 0.124 -0.095 0.0277 
70 0.150 -0.113 0.0295 
80 0.179 -0.125 0.0445 
90 0.214 -0.162 0.0643 

99.9 0.507 -0.335 0.1587 
    

    
(b) Simulated inflation and its moments 

 Actual(c) Mean Simulated 
Mean Inflation(a) 0.030 0.030 
Standard Deviation of Inflation(b) 0.043 0.024 
Mean Standard Deviation(a) 0.061 0.067 
SD of Standard Deviation(b) 0.027 0.029 
Mean Skewness(a) 0.235 0.817 
SD of Skewness(b) 2.431 2.498 
    
 Correlations with inflation 
 SK SD Q 
Actual (1948-2003) (c) 0.608 0.411 0.805 
Simulations:    
Mean 0.088 0.200 0.103 
2.5pc(d) -0.195 -0.094 -0.191 
97.5pc(d) 0.346 0.462 0.370 
 
Notes: Desired price changes have a common component with a mean and 
standard deviation of 0.03 and a standard deviation across commodities of 
0.08. SK is skewness and SD is standard deviation. Q is defined in equation 
(3). (a) Means over time of the three cross-commodity moments. (b) Standard 
deviations over time of the three cross-commodity moments. (c) The actual 
figures are based on US Producer Price data, 1948-2003, presented in the 
appendix below. (d) Percentiles drawn from 500 replications of model 
simulations, representing the 95% confidence interval. 



32 

 
 

Table 3 Alternative Models 
 

 Correlations with inflation 
 SK SD Q 
    
Actual (1948-2003) (a) 0.608 0.411 0.804 
    

(a) Zero Trend: 0.0=µ ; 08.0=υσ ; 03.0=εσ ; 7=a  
 SK SD Q 
    
Mean 0.253 -0.003 0.190 
2.5pc(b) -0.006 -0.265 -0.101 
97.5pc(b) 0.452 0.267 0.435 
    

(b) High Trend: 06.0=µ ; 08.0=υσ ; 03.0=εσ ; 7=a  
 SK SD Q 
    
Mean -0.070 0.231 -0.008 
2.5pc(b) -0.347 -0.060 -0.271 
97.5pc(b) 0.200 0.499 0.257 
    

(c) High Menu Costs: 03.0=µ ; 08.0=υσ ; 03.0=εσ ; 4=a  
 SK SD Q 
    
Mean 0.086 0.259 0.127 
2.5pc(b) -0.176 -0.056 -0.155 
97.5pc(b) 0.329 0.544 0.406 
    

(d) High Variance: 03.0=µ ; 16.0=υσ ; 03.0=εσ ; 7=a  
 SK SD Q 
    
Mean 0.136 0.068 0.121 
2.5pc(b) -0.123 -0.220 -0.171 
97.5pc(b) 0.385 0.347 0.387 
    
 
Notes: This table presents actual and simulated correlations for alternatives to 
the benchmark model. SK is skewness and SD is standard deviation. Q is 
defined in equation (3). (a) The actual figures are based on US Producer 
Price data, 1948-2003, presented in the appendix below. (b) Percentiles 
drawn from 500 replications of model simulations, representing the 95% 
confidence interval. 
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Table 4 Low Inflation Regime Calibration 
015.0=µ ; 015.0=εσ ; 07.0=υσ ; 7=a  

 
Menu Cost Percentile ut  lt  r 

    
10 0.015 -0.015 0.0004 
20 0.032 -0.030 0.0022 
30 0.050 -0.043 0.0042 
40 0.065 -0.055 0.0078 
50 0.085 -0.069 0.0118 
60 0.106 -0.085 0.0191 
70 0.132 -0.102 0.0282 
80 0.151 -0.122 0.0414 
90 0.205 -0.155 0.0504 

99.9 0.483 -0.294 0.0715 
    

 
 Actual(c) Mean Simulated 
   
Mean Inflation(a) 0.015 0.015 
Standard Deviation of Inflation(b) 0.020 0.011 
Mean Standard Deviation(a) 0.054 0.056 
SD of Standard Deviation(b) 0.025 0.026 
Mean Skewness(a) -0.007 0.807 
SD of Skewness(b) 2.118 2.681 
   
 
 Correlations with inflation 
 SK SD Q 
Actual(c)    
[1953-1972, 1983-2003] 0.718 0.025 0.749 
Simulations:    
    
Mean 0.200 0.134 0.194 
2.5pc(d) -0.115 -0.244 -0.170 
97.5pc(d) 0.493 0.447 0.503 
    
 
Notes: Desired price changes are assumed to have a common component 
with a mean and standard deviation of 0.015 and a standard deviation across 
commodities of 0.07. SK is skewness and SD is standard deviation. Q is 
defined in equation (3). (a) Means over time of the three cross-commodity 
moments. (b) Standard deviations over time of the three cross-commodity 
moments. (c) The actual figures are based on US Producer Price data, 1953-
72 and 1983-2003, presented in the appendix below. (d) Percentiles drawn 
from 500 replications of model simulations, representing the 95% confidence 
interval. 
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Table 5 Common Shock Assumptions 
08.0=υσ ; 7=a  

 
 Correlations with inflation 
 SK SD 
 Mean 2.5pc 97.5pc Mean 2.5pc 97.5pc 
 (a) Static Model 

εσ  0.0=µ  
0 0.771 0.660 0.865 -0.028 -0.653 0.634 

0.01 0.394 0.162 0.593 0.004 -0.430 0.383 
0.02 0.310 0.064 0.529 -0.005 -0.309 0.302 
0.03 0.283 0.022 0.511 -0.004 -0.262 0.267 

       
       
εσ  03.0=µ  

0 0.370 0.094 0.597 0.339 -0.140 0.108 
0.01 0.104 -0.158 0.390 0.176 -0.141 0.479 
0.02 0.069 -0.188 0.331 0.198 -0.076 0.466 
0.03 0.072 -0.176 0.344 0.222 -0.098 0.503 

       
       
 (b) Dynamic Model 
εσ  03.0=µ  

0 0.357 0.104 0.581 0.302 -0.094 0.649 
0.01 0.095 -0.198 0.363 0.152 -0.141 0.429 
0.02 0.074 -0.238 0.359 0.170 -0.128 0.450 
0.03 0.088 -0.195 0.346 0.200 -0.094 0.462 

       
 
Notes: This table reports correlations of the moments of price changes with 
alternative assumptions about the mean ( µ ) and standard deviation ( εσ ) of 
the shocks common to all industries. The dynamic model assumes that firms 
are forward-looking in their behaviour and the static model assumes they are 
not. SK is skewness and SD is standard deviation.
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Data Appendix 
 

  Weighted 
Year Inflation SD SK Q 
1948 0.0788 0.0734 1.3948 0.0037 
1949 -0.0519 0.0871 -2.0974 -0.0037 
1950 0.0373 0.0564 4.8784 0.0023 
1951 0.1076 0.0596 2.4920 0.0033 
1952 -0.0267 0.0586 -8.2840 -0.0020 
1953 -0.0136 0.0644 -3.1541 -0.0025 
1954 0.0034 0.0476 -2.7084 -0.0010 
1955 0.0000 0.0529 -0.6548 -0.0001 
1956 0.0336 0.0441 -0.4041 0.0002 
1957 0.0293 0.0475 -1.4134 -0.0001 
1958 0.0127 0.0497 1.5365 0.0007 
1959 0.0032 0.0370 -1.2571 -0.0002 
1960 0.0000 0.0361 -2.1393 -0.0003 
1961 -0.0032 0.0318 -1.2753 -0.0002 
1962 0.0032 0.0257 -1.4089 -0.0001 
1963 -0.0032 0.0256 1.6891 0.0000 
1964 0.0000 0.0282 1.5641 0.0002 
1965 0.0219 0.0343 2.8668 0.0007 
1966 0.0305 0.0299 2.4672 0.0006 
1967 0.0030 0.0338 -3.7033 -0.0005 
1968 0.0237 0.0312 1.7710 0.0003 
1969 0.0401 0.0343 1.7285 0.0006 
1970 0.0359 0.0401 2.2400 0.0007 
1971 0.0320 0.0428 -0.0086 0.0003 
1972 0.0437 0.0381 4.9556 0.0011 
1973 0.1228 0.1026 3.6863 0.0092 
1974 0.1730 0.1419 2.1772 0.0141 
1975 0.0876 0.1060 -0.9776 0.0014 
1976 0.0452 0.0714 1.6814 0.0019 
1977 0.0603 0.0641 2.2571 0.0021 
1978 0.0742 0.0530 1.6951 0.0017 
1979 0.1186 0.0741 2.2952 0.0043 
1980 0.1319 0.0975 2.3394 0.0066 
1981 0.0874 0.0704 1.1850 0.0022 
1982 0.0202 0.0715 -1.2809 -0.0011 
1983 0.0129 0.0474 0.0881 0.0001 
1984 0.0234 0.0384 0.7755 0.0003 
1985 -0.0048 0.0526 -3.2655 -0.0016 
1986 -0.0295 0.1147 -3.3712 -0.0098 
1987 0.0256 0.0551 0.0144 0.0001 
1988 0.0391 0.0689 1.1821 0.0015 
1989 0.0484 0.0404 1.4904 0.0006 
1990 0.0359 0.0623 1.6150 0.0014 
1991 0.0017 0.0505 -1.2485 -0.0008 
1992 0.0060 0.0443 -2.6791 -0.0005 
1993 0.0144 0.0447 1.2301 0.0003 
1994 0.0125 0.0519 1.9610 0.0002 
1995 0.0351 0.0689 1.3817 0.0011 
1996 0.0238 0.0883 -1.0220 0.0012 
1997 -0.0008 0.0453 -2.1578 -0.0004 
1998 -0.0254 0.0975 -2.3259 -0.0055 
1999 0.0088 0.0740 1.7170 0.0021 
2000 0.0558 0.1347 2.4449 0.0122 
2001 0.0112 0.0709 -1.0232 -0.0002 
2002 -0.0234 0.0770 -2.3818 -0.0034 
2003 0.0520 0.1120 2.5989 0.0081 
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