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ABSTRACT. Techniques for determining the number of stochastic trends
generating a set of non-stationary panel data are applied to budget shares for
a number of commodity groups from the family expenditure survey (FES) for
the UK for the years 1973-2001. It is argued that some stochastic trends in
macro data are generated by the aggregation of fixed demographic effects in the
micro data. From cross section data, fixed effect coefficients are estimated which
incorporate both age and income distribution effects. The estimated coefficients
are combined with age proportion variables to form a set of I(1) indices for
broad commodity groups which are then incorporated into a system of aggregate
demand equations. The equations are estimated and tested in a non-stationary
time series setting.
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1. INTRODUCTION

In recent years, although empirical demand systems have been estimated in a time
series setting, e.g., Lewbel and Ng [18, 2004], Ng [20, 1995], Attfield [1, 1997], cen-
tral theoretical propositions such as homogeneity and symmetry are generally still
not found to be satisfied. One of the arguments for this failure, and one recently
analysed by Lewbel and Ng [18, 2004], is the omission of demographic effects in most
empirical analyses. In this paper we also incorporate demographic effects into the
demand analysis but take a different approach from Lewbel and Ng. It is argued that
as the proportion in each age group in the population is shifting over time - exem-
plified by the “ageing population” - these changing proportions generate stochastic
trends, I(1) variables, which impact on aggregate budget shares. The mechanism
generating the trends lies in the aggregation across households when there are fixed
age cohort effects. The aggregation of the micro data naturally leads to the stochastic
proportions appearing in the aggregate demand equations.

Recent research, Bai [2, 2002], and Bai and Ng [3, 2002] and [4, 2004], has shown
that it is possible to obtain the number of stochastic trends generating a set of I(1)
variables by application of factor model techniques to a set of panel data. In section
2 we adopt these techniques to obtain the number of stochastic trends generating
a panel of budget shares using the Family Expenditure Surveys (FES) from 1973

*I am indebted to David Demery, Nigel Duck and participants at the Staff Seminar, University
of Bristol, for comments on an earlier draft. Any remaining errors or omissions are my own respon-
sibility. The paper forms part of the research under the ESRC project “Investigation of Demand
Systems with Nonstationary Variables”, RES-000-22-0306.
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to 2001. Having obtained the number of non-stationary factors (stochastic trends)
driving budget shares over time, in section 3 we argue that demographic trends,
formed from the aggregation of micro-data, play an important role in aggregate de-
mand systems. We demonstrate that fixed age group effects at the household level -
which also contain income distributional effects - when aggregated, lead to the inclu-
sion of variables which are functions of the proportion of each age group in the total
population. These proportions are significant I(1) variables and their exclusion from
previous analyses would lead to misspecification problems. In section 4 we estimate
the fixed effect parameters and use them to construct the functions of the age propor-
tion variables, thereby forming demographic indices for commodity groups. Section
5 of the paper incorporates the demographic indices into Deaton and Muellbauer’s [9,
1980] “Almost Ideal Demand Model”, (AIDM), in a pure non-stationary time series
setting. The number of stochastic trends - estimated from the Johansen maximum
likelihood procedure - are found to be consistent with the number of trends in the
panel data. In the aggregate time series data, with the inclusion of the demographic
indices, we find that the relatively small number of stochastic trends (relatively large
number of cointegrating equations) enables us to specify a demand system which in-
cludes homogeneity and some symmetry as simple normalisations and that the null of
the remaining symmetry of the price coefficients can be tested and is not rejected by
the data. Moreover, “adding up” is satisfied and the substitution matrix is negative
semi-definite. The empirical demand system therefore satisfies all the theoretical
properties of demand models. Section 6 concludes the paper.

2. ANALYSIS OF AGGREGATE BUDGET SHARES
To analyse the number of stochastic trends generating budget shares we constructed
budget shares for all households for 53 commodities from the FES for each of the
years 1973 to 2001. The commodities are 25 components of “Food”, 7 components
of “Alcohol & Tobacco”, 12 components of “Clothing & Footwear”, 3 components of
“Fuels”, “Housing” goods, “Durable” goods, “Miscellaneous” goods, “Other” goods,
“Service” goods and “Transport” goods. Further details of the groups are given in
Table 1.
Table 1 Here

The aggregation results in a matrix of budget shares, W, with wj;, for j = 1,...,J
and t = 1,...,T and J = 53,7 = 29. In a series of papers Bai [2, 2002] and Bai
and Ng [3, 2002] and [4, 2004] show that the method of principal components can be
used to obtain the number of unknown factors, both stationary and non-stationary,
generating a set of data.

Assume that there are a set of k “significant” unknown factors F; and factor
loadings A; such that there exists a relationship of the form:

Wit = Cj + )\;Ft + €5t (1)

where the ej;s are stochastic errors and the Fis and ¢;;s may, or may not be non-
stationary. Of course, if either or both are non-stationary then the shares w;; may
be non-stationary. Bai [2, 2002] shows that as (J,T) — oo the following information
criteria converge on the correct number of non-stationary factors in the vector Fi:
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IPCy(k) = V(k)+k&’ar
IPCy(k) = V(k)+ké’ar

IPCs(k) = V(k)+ kd*ar

J T
where ar = T/[4In(In(T))], V (k) = (JT)_lzzE?t and 2 = V(kmaz), where

kmaz is the maximum value for k. To find the value of &k which minimises the criterion,
Bai suggests setting kmaz to 8[(T/100)'/4] and finding the minimum value for k, using
this value of k for kmax and continuing to iterate until £ no longer changes.

Figures 1& 2 Here

This procedure results in Figure 1 for the budget shares data where IPCy(k) is
minimised for all criteria at kK = 5 implying five stochastic trends are responsible for
generating the matrix of budget shares.

We can test whether the budget shares matrix, W, and the errors in equation
(1) are non-stationary by applying a pooled augmented Dickey-Fuller test for a unit
root. Assuming that the j; are independent across j, to test the null that p; =1
against the null that p; <1 in the model:

Agjt =, + pjgjt,1 + 01A’§jt,1 + ...+ GpAgjtip + error

calculate the p-value for each commodity group j, pvalj; the pvals are distributed
as uniform variates over the interval [0,1] and therefore —2In(pval;) is a chi square
variate with two degrees of freedom. It follows that the statistic:

J
-2 Z In(pval;) — 2J

pr=—
VAT

is asymptotically distributed as a standard normal variate (cf. Choi [7, 2001], and
Bai and Ng [4, 2004, p.13]) and we reject the null of a unit root if the test statistic
exceeds the critical value in the upper tail of the standard normal, i.e., 1.65 at the
5% level.

With k set to 5 and the number of lags in the ADF test set to:

p = 4ceil{(min(J,T)/100)*/*},

i.e., p =4, the pooled P test statistic for the null of non-stationarity of the equation
errors is 18.83 so we can reject non-stationarity in the equation errors and assume
that all the non-stationarity in the model comes from the stochastic trends, F, and
not from the errors. A similar test on the raw data matrix, W, resulted in a test
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statistic of -0.48, so that we cannot reject the hypothesis that the budget shares are
non-stationary, as might be expected since the shares are a linear combination of the
5 non-stationary factors!.

This analysis suggests that across the years there are at least five stochastic trends
generating aggregate demand for commodities. The theory of demand and empirical
demand studies generally have budget shares as functions of prices and income (total
expenditure). There is a good deal of empirical evidence that income and prices
are I(1) variates [cf. Lewbel and Ng [18, 2004], Ng [20, 1995], Attfield [1, 1997]], so
we would anticipate trends associated with income and with prices. Some studies
include higher order functions of income so other trends could be associated with
such functions, although Gorman [13, 1981] has shown that for utility maximising
consumers, exactly aggregable budget share Engel curves can have a maximum of two
functions of income. Lewbel and Ng [18, 2004] show that an “evolving” population
could be an important factor. They derive a model in which aggregation with a
slowly changing population results in a non-stationary error process in the demand
equations.

In recent history in the UK the combined effects of birth control and lower mor-
tality, due to advances in health care, have led to proportions in the lower age groups
declining while proportions in the upper age groups have been increasing. The Office
for National Statistics (ONS) calculates the percentage of the population of 25 years
of age and under in 1971 to be 38% falling to 30% by 2001, while the proportion of
those aged 50 and over rose from 32% to 34% over the same period. Figure 3 graphs
these movements.

Figure 3 Here

The Lewbel and Ng model is not appropriate for proportions but in the next
section we show how aggregation over a fixed effect model can lead to a demand
structure which reflects these changes in the demographic structure of the economy
and we show formally that we cannot reject the null hypothesis that the age propor-
tion variables behave like unit root processes.

3. AGGREGATION AND DEMOGRAPHICS

In figure 2 are the results of applying the analysis in the previous section to the 25
items in the food group alone. The results are very similar to those reported for
all commodities together, the information criteria being minimised at 4, 5 and 6 sto-
chastic trends. What is striking is figure 4 where we show the results of aggregating
within commodity groups but disaggregating across age cohorts.

Figure 4 Here

That is, the top left panel in figure 4 gives the result of applying the information
criteria to a matrix of budget shares for aggregate food, for age cohorts 19 to 84
across the years 1973-2001. The remaining panels give the results for the other

! The analysis by Bai & Ng assumes large T and large J but they report good results for simulations
with smaller samples in the case of determining both stationary and non-stationary factors. When
min{J,T} = 40, for example, they find their criteria give precise estimates of the number of factors
[3, 2002, p.203].
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groups of commodities where we have combined the 25 food components into a Food
group; the 7 alcohol and tobacco components into an Alcohol & Tobacco group;
the 12 components of clothing and footwear into a Clothing & Footwear group; the 3
components of fuel and the housing goods into a Fuel & Housing group; and combined
the durable, miscellaneous, other, service and transport goods into an Other Goods
group. For food (and all other commodity groups) the number of stochastic trends
drops dramatically to only one trend in most cases. An interpretation of this result
is that aggregating across age groups increases the number of trends when there are
fixed age cohort effects. We show below that if the shares at age cohort level are
functions of a shift demographic parameter, of real income and of prices, aggregation
across age cohorts leads to the introduction of non-stationary demographic variables.
Figure 4 implies that at age cohort level there is only one stochastic trend whereas
we would expect at least two due to prices and income. However, we are dealing
with small samples which may lack sensitivity and if the value of kmaz is increased
to fifteen for a number of the commodity groups the value of k rises to two - but to
no more than two.

To see how aggregating across age cohorts can lead to the introduction of a number
of stochastic trends suppose all households at a particular time are grouped into
those with heads the same age and that there are G such age groups denoted by G,
g=1,..,G. Let {, = ng/N; be the proportion of households in age group Ggt, ngt,
in the total number of households, N;. We formally tested these proportions for a
unit root for the age groups from 19 to 84 across all the 29 years of the survey using
the pooled ADF test statistic, P:. The test statistic, with 4 lags?, is P: = 0.46 so the
null of a unit root in these proportion series cannot be rejected under the standard
normal distribution.

To incorporate these demographic variables into the analysis we need to specify
a formal demand system. Lewbel and Ng [18, 2004] point out that demand sys-
tems that have Diewert [8, 1974] flexibility, i.e., do not impose unlikely constraints
on demand elasticities, are the AIDM of Deaton and Muellbauer [9, 1980] and the
Translog of Jorgenson, Lau and Stoker [15, 1982]. Both these models include, as
explanatory variables, the log of real income and logged prices. Moreover, Lewbel
and Ng [18, 2004] show for data for the USA when the square of log real income
is included as an additional explanatory variable in the AIDM (as in the QUAIDS
models of Blundell, Pashardes and Weber [5, 1993] and Banks, Blundell and Lewbel
[6, 1997]) the demand equations are not cointegrated. This implies that the square of
log real income cannot be a candidate for a stochastic trend in a cointegrated demand
system. As mentioned in the previous section however, they do find some empirical
evidence to support the argument that aggregation over heterogenous consumers in
a slowly changing population can lead to the non-stationarity of equation errors.

To incorporate the age proportion variables directly into the demand system sup-
pose the budget share for good j at time ¢ for household h is given by the same

’In a later section we test for unit roots in age proportions in a pure time series setting using the
procedures of Ng & Perron (1997) which automatically select lag length.
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functional form as in the AIDM, that is:

Whjt = Qoj + Z'Yijlﬂpit +In(zne / Pl) B, (3)

where xj; is per-household total income, p;; is the price of commodity ¢ at time ¢, and
InP; is Stone’s price index® which linearises the theoretical AIDM model, Deaton and
Muellbauer [9, 1980, p.316], and the coefficient fB; is constant across all households.
We assume that the constant «,; subsumes a fixed effect for each age group in the
population, which can be thought of as a taste parameter in the utility function, so
that the intercept in (3) is given by:

Qoj = Goj + ng.

Then, budget shares of good j for household h are:

where xp;; = pjiqnj¢ is expenditure on good j by household h, and zp; = thjt
J

is total expenditure on all goods by household h. Aggregate budget shares for all
households in group g are then:

g Thjt g ThtWhjt

Tqit heGgt heGgt
Wyt = xgj — 9 — 9 — 90]' + ng + Z’Yijlnpit + thﬁj, (4)
gt Z Tht Z Tht i
heggt h€ggt

where zy; is log real income per capita for age group g. Aggregation within an age
group is along the same lines as the overall aggregation in Deaton and Muellbauer
[9, 1980, p.314]. That is, we can assume that there is a component, say Inkg, which
reconciles the aggregation over levels with the aggregation over logarithms such that:

Tht Tht
Ink,, Ehj <5Ugt> In (xgt) :

Deaton and Muellbauer [9, 1980, p.315] refer to Inkgy as the log of Theil’s [25, 1972]
entropy measure of equality. Testing Ink,; for a unit root, using the pooled test, we
found the null of a unit root could be rejected for all lags up to 3 in the ADF test with
statistics 37.15, 19.59, 8.91, 4.01 for lags 0, 1, 2 and 3. With 4 lags the test statistic is
1.33. The critical 5% value under the standard normal is 1.65 so it is safe to assume
that Inky; is stationary. If income were equal within the group, Ink, would be a
constant but would not be the same constant across groups. We tested for equality
of group means of Inky - over time - using a Wald test. The result, 5783 with 65
degrees of freedom, rejects the null of equality at any conventional significance level.

3Stone’s price index is defined as InP; = Z wjn(pji), where wj; is the budget share for the jth

J
commodity at time ¢ aggregated across all households.
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Since the Inky; are stationary we assume that each is equal to a constant (its mean)
plus a random error. The constant is absorbed into 6,; and the random component
into the equation error. This means that the estimates of each 6 ; contain a fixed
age effect plus a measure of the inequality of the income distribution for that age
cohort.

Now, aggregating over all G age groups gives:

Z ot Z TgtWyjt Z Tgt0g;
% =3 = = j g .. . )
T Z Tyt - Z gt 00] + Z o + ; 'ywlnpzt + ztﬁj (5)
g g 7

where z; is the log of total real income per capita. The aggregation procedure is
similar to that outlined above but now the discrepancy index is given by:

Tgt gt
1k:_§ 29t ) t’Lon I
i (ﬂft)n(ﬂ?t)

g

Wit =

We assume Ink; is stationary® with mean 4.1104 and estimated standard error 0.0022.
As in the case of age groups, we assume that Ink; is a constant (its mean) plus a
random error so that the constant is absorbed into the equation intercept and the
error into the equation disturbance.

The second term in the final expression in (5) can be written:

, Lgt o Ngt
? Tgily; g ,,Tgt@gj N, -
. Y 0, o
> gt > gt g 1
g g

Ny

where Ty = w4 /ng is average total expenditure per household in age group g,
T; = x¢/Ny is average total expenditure across all households and & gt = gt /Ni. The
ratio of group means to overall means, Ty / Ty, turns out to be stationary as ratios
often are, e.g., the “great” ratios consumption/income and investment /output®.

In its present form (6) is difficult to construct for researchers working with aggre-
gate time series as although the population proportion variable is readily available
the parameter 6,; has to be estimated, and the variable x4, obtained, from cross
section sources. Since the ratio of means, Zg/ Ty, is stationary, we assume:

T = 5y + gt (7)
Ly
where vy is a random error. The parameter d, for each age group is assumed constant
over time and can be directly estimated by least squares from the cross section data

*The Ng & Perron [21, 1997] test stistic is -1.96 with a 5% critical value of -1.98 so it is on the
borderline of being non-stationary.

>The pooled test statistic is greater than 3.4 for all lags less than and including 4, so the null of
a unit root in Ty:/ Ty is rejected.
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to give Sg which is, of course, the sample mean of the ratio for the gth group. The
null hypothesis that the mean of the ratio T /Z; is the same across all g, i.e., 64 = c,
for all g, is comprehensively rejected by a Wald test with statistic 69540 with 65
degrees of freedom. Substituting (7) into (6) yields:

Z Tglg;
g - Zagegjggt. (8)
g

> Tg
9
Substituting the estimate in (8) into (5) results in:

wjt = o5 + Zggegjﬁgt + Z%jlnpit + 20, (9)
g i

which contains stochastic trends associated with the demographic, income and price
variables. The omission of the demographic variables could explain the “no coin-
tegration” result of many demand studies. Lewbel and Ng [18, 2004], for example,
show that for data for the USA, budget share demand systems which include z; and
logged prices do not cointegrate, i.e., have a non-stationary equation error.

To make (8) operational, in the next section, we estimate 6,; using pooled cross
section/time series data, to form a set of demographic indices for each commodity
group, fjt, of the form:

I = ZSgégjggt. (10)
g

The construction of an index for Inkg, the income distributional part of 64;, from
cross section data is a suggestion of Deaton and Muellbauer [9, 1980, pp.314-315].

4. ESTIMATING THE DEMOGRAPHIC INDICES

In this section we use datasets created by forming variables for age cohorts over time
to estimate a demand system in the form of equation (4) for each commodity group,
and use the estimates of the coefficients on the age proportion variables, 6,;, to form
the demographic index which measures the impact of a changing population structure
on that commodity.

For age cohorts we treat the budget share equations as a set of share Engel curves.
That is, we suppress the price variables and treat the relationships as a system of
cross section Engel curve equations of the form:

Wyjt = Qoj +0gj + 2g1 0 + ugji.

where ug4;; is a random error term. To estimate the model we need series on
commodity prices over time to construct the real expenditure variable. From pub-
lished sources it isn’t possible to obtain price series for each of the 53 commodities
we analysed in section 2, but only for broad groups. In addition, when we turn to
aggregate time series data and methods in the next section it isn’t feasible to esti-
mate a model with a large number of commodities. We therefore aggregated within
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the commodity groupings, as in the previous section, to form five major groups, viz.,
Food, Alcohol & Tobacco, Clothing & Footwear, Fuel & Housing and Other Goods.
We obtained annual price indices for these five groups over the time period of the
analysis from the ONS data bank.

We estimated the coefficients for each commodity group by the least squares
dummy variable (LSDV) method by defining a set of dummy variables for each age
group and dropping the last group - aged 84 - to avoid collinearity. =~ When the
coefficient for the dropped group is required in constructing the demographic indices
below, we assume that the coefficient for the age 84 group is the same as for the
group aged 83.

The estimation procedure ignores any non-stationarity in the group shares and
income but the point estimates are still consistent and we employed the HAC pro-
cedure of Newey and West [19, 1987] to allow for any serial correlation caused by
non-stationarity. Also, we tested for stationarity of the equation errors using the
ADF method proposed for panel data by Kao [16, 1999]. Two lags were used in the
ADF model - the maximum in the Kao procedure - and we obtained test statistics of
-6.43, -8.52, -13.92, -3.86 and -2.15 for the groups Food, Alcohol & Tobacco, Cloth-
ing & Footwear, Fuel & Housing and Other Groups respectively. Kao shows that
as T — oo and J — oo sequentially, the test statistic tends to a standard normal
variate so that in all cases the null of no cointegration can be rejected. This con-
firms that the budget share equation errors are stationary before aggregating over all
households.

Because of the large number of coefficients estimated we do not tabulate them in
detail but give plots in figure 5. Since we are using budget shares as the dependent
variable, the coefficients 0,; sum to zero across commodities so that some have to be
negative. If the demographic variables had no impact on budget shares the graphs in
figure 5 would all be horizontal. The coefficients for Fuel and Housing and for Other
Goods form a U-shape while those for Alcohol & Tobacco, Clothing & Footwear and
Food are inverted U. Food appears to be a reflection of Other Goods. This latter
contains expenditures on house purchase and other durables. “Housing” in Fuel
& Housing contains only expenditure on household goods such as white goods and
small electrical items, floor coverings and furnishings, kitchen utensils and cleaners.
The impact of the age coeflicients is to cause the share of these Other Goods to fall
between the ages of 19 and 30, flatten out and then increase from age 70. The share
of Food increases (relatively - the coefficients are in the negative quadrant) from age
19 to 30 and then levels out until age 70 when it starts to decline. The Fuel &
Housing share declines very slightly from age 19 to 50 but then increases to age 80
and over.

Using the HAC estimated variance-covariance matrix we used the Wald statistic
to test the null hypothesis that the age effect coefficients within each commodity
group are: (i) equal - which would imply constancy across all age groups thereby
forming a constant in the commodity equation (the proportions sum to unity) which
would be of little interest, (ii) jointly zero and thus irrelevant. For both (i) and (ii)
the null hypothesis could easily be rejected at the 5% level so the age proportion
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variables do make a significant contribution.®

5. TIME SERIES DEMAND SYSTEMS WITH DEMOGRAPHIC INDICES
For most practical uses of demand systems researchers employ time series data where
it isn’t possible to calculate the demographic variables. In this section we use the
demographic indices calculated above with quarterly time series data from the ONS
data bank” for the period 1971Q1 to 2001Q1 firstly, to test for the cointegrating rank
of an AIDM model, and secondly, to estimate the parameters of the demand model.
Annual series on age proportions were obtained from the Government Actuarial ser-
vice but are only available from 1971 for each age group in the population®.
The starting point is the structural demand model of equation (9) for each com-
modity group, j:

wjt = 0o + wjfjt + Z’inlnpit + 28, + uje (11)
i

where uj; is a random error and we have aggregated over all G age groups and
include a parameter, 1;, on the estimated demographic index Et, firstly, to allow
for any differences in magnitude between the cross section and time series data, and
secondly, to allow a fixed linear relationship between the proportion of households
in each age group, in the FES samples, and the proportion of each age group in the
population in the ONS series. The budget shares and prices are ordered j =1,...,5
for Food, Alcohol & Tobacco, Clothing & Footwear, Fuel & Housing and Other Goods.

In the time series data, we tested all variables for unit roots using the procedures
by Ng and Perron [21, 1997] and Perron and Ng [23, 1996] which optimally choose the
lag length for the ADF test. Their DF-GLS test for a unit root did not reject unit
roots for any of the variables, including the demographic indices”. In the estimation
procedures and system tests which follow, one equation has to be dropped because
on the null hypothesis of a demand system, the “adding up” restriction leads to a
singularity if all equations are used. Dropping the equation for Other Goods means
that the demographic index for this commodity group does not appear in the system

we are estimating and testing. Sufficient conditions for adding up to be satisfied are:

J J J
Z9oj=1; Vi = 0,Vi; Zﬁjzo
J J J

®The Wald statistics for Food, Alcohol & Tobacco, Clothing & Footwear, Fuel & Housing and
Other Goods were 761, 2677, 1651, 492, 298 with 65 degress of freedom for the hypothesis in (i) and
687, 2365, 1499, 467, 263 with 64 degrees of freedom for the hypothesis in (ii).

"Quaterly, seasonally unadjusted, series on real and nominal expenditures for all categories of
goods were obtained and aggregated into the five main groups described in the main text. Com-
modity price indices and total expenditures (income) were derived from these data sets. Prior to
analysis, seasonal components were removed using seasonal dummies.

8Prior to 1971 population statistics are available for 5-yearly age groupings only. The annual
population series were converted to quarterly using the logarithmic interpolation procedure.

9The 5% critical value for the test is -1.98 and the test statistics for all the variables in the time
series data set were greater than -1.58.
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and:
J ~
> Wil =0. (12)
j

Substituting the formulae for the indices in equation (10) into (12) yields:

J
Do | Do ibai | 08 =0
g J

J
so that adding up is satisfied if Z %‘591‘ = 0,VYg. We can therefore write 1 ; -

J
the coefficient on the Other Goods demographic index which isn’t estimated - as:

J—1 _
ijegj
1/}59) - _ J _

= (13)

where the superscript (g) denotes that there will be G “solutions” to the equations.

The solutions, wff), must all be equal. With the estimates Egj and estimates of 1;,
j=1,..,J — 1, this equality hypothesis can be tested. We report the result of the
test below.

We tested for cointegration in the demand system using Johansen’s [14, 1995]
likelihood ratio procedures. That is, we test for the rank of the matrix 7 in the
vector error correction formulation:

Axy=0o+ 01021+ ... + 0 Az s + i1 + (4,

where x; contains the set of 14 variables, i.e., 4 budget shares, 5 prices, 4 demographic
indices and log real per capita. To find the number of lags in first differences, s, we
estimated an unrestricted equation in levels with lags 1 to 4. The BIC, Hannan-
Quinn and Akaike information tests (obtained with PcGive [11, 2001]) gave results
for lag lengths of 1, 4, and 4 respectively (in levels [0, 3 and 3 in first differences)).
We therefore carried out the tests and subsequent estimation using 3 lags in first
differences. The trace test statistic for the null of 8 cointegrating vectors is 136.21
with a 5% critical value of 94.15 so we can reject 8 cointegrating vectors in favour
of 9 or more. The A-maz statistic for the null of 8 is 39.84 with 5% critical value
of 39.37 so that, with this statistic, we can also reject 8 in favour of 9 cointegrating
vectors. The trace test statistic for the null of 9 cointegrating vectors is 96.36 with
a 5% critical value of 68.52 so we can reject 9 cointegrating vectors in favour of 10
or more but the A-mazx statistic for the null of 9 is 30.39 with 5% critical value of
33.46 so that we cannot reject 9 in favour of 10!°. Taking evidence from both test
statistics together we accept the null of 9 cointegrating vectors.

The result of 9 cointegrating vectors ties in extremely well with the finding, in
section 2, of 5 stochastic trends generating the budget shares. The relation between

10Critical values were obtained from Osterwald-Lenum [22, 1992]
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stochastic trends and cointegrating equations is outlined in Stock and Watson [24,
1988] and can be summarised as follows. Suppose x; is a p x 1 vector of I(1) variables
and there are r < p cointegrating relations, then from the Wold theorem the moving
average representation of the VECM model is:

Azy = i, + C(L)Cy,

where C(L) = I + C1L+ C3L? +... . Substituting for C(L) = C(1) + (1 — L)C*(L)
we obtain:

Axy = p, +C(1)¢, + C*(L)AC,
and therefore:

t
xy = const + p,t + C(1) Z ¢+ C* (L),

t
In the term C(1) ZCZ- it can be shown that C(1) has rank p — 7 so we can always
i

define a non-singular elementary matrix A such that C(1)A~! = [C1,0] where C; is
pxp—r. It follows that:

(1) Z ¢ = C(HAT'A Z Gi

i

~ (LAY ¢ (14)

t
Let ; = A Z (;, then 7 is a vector of p random walks, i.e.

(2

t
T :Tt—1+ACt:AZ<i'

| Tt
Tt =
T2t

where 71, is p — 7 x p and then the expression in (14) becomes:

Partition 7; into:

¢
C(1)> ¢ =Ciru
i
and is a function of just p — r random walks, or common stochastic trends, and
therefore the model can be written:
xy = const + p,t + Ci11e + C*(L)(,

and the vector of observed variables x; are generated by a constant, a time trend, a
set of p — r = k stochastic trends and a stationary term.
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With p = 14 in the model and r = 9 cointegrating equations there will be p —r =
k = b5 stochastic trends so the results from the panel of budget shares and the results
from the time series analysis complement each other.
It follows then that the rank of the p x p matrix 7 is equal to 7 so that we can
write:
T =y

where v is p X r and « is p X r and is the matrix of cointegrating coefficients.
To identify and estimate the cointegrating equations we need some structure on
the relations. Since there are 7 = 9 cointegrating relations we can always write:

= fa = GG

where G is any r X r nonsingular matrix. Therefore, to identify the coefficients of
the demand equations we need at least 9 restrictions on each equation. Consider the
following structural definition of the cointegrating vectors, o’ :

wy wor w3¢ w4 Inpyy Inpey Inpsy Inpy Ly Iop I3 Ilnpsy Iy oz

=10 0 0 vy Yu Y Ya Y1 0 0 5 0 5
0 -1 0 0 72 722 Y2 Y2 0 ¥y 0 75 0 By
0 0 =1 0 73 723 33 Y3 0 0 4¢3 753 0 PBs
0 0 0 -1 v Y24 V34 Va4 0 0 0 Vsa V4 Ba )
0 0 0 0 —1 0 0 0 0 11 G921 a3l Q41 Q51
0 0 0 0 0 -1 0 0 0 19 (G99 32 42 (52
0 0 0 0 0 0 -1 0 0 Q13 (93 33 43 Q53
0 0 0 0 0 0 0 -1 0 o4 o4 @34 Qg O5g
0 0 0 0 0 0 0 0 -1 15 Q925 a3y 45 Q55

(15)
A necessary condition for identification of all the coefficients in the 5 and o matrices is
that there are at least 72 = 81 restrictions on the structural o matrix which contains
126 elements. Without any loss of generality we have normalised the first 4 equations
as the budget share equations in (15). 9 restrictions have been placed on each of
the remaining 5 equations so that the variables wi¢, wor, wst, War,Inp1e,Inpos,Inpss, Inpay
and Iy; are thought of (arbitrarily) as being driven by Tgt, E,t, In ps;, Iy and 2. As it
stands there are only 7 restrictions on each of the first four rows in (15), the budget
share equations, which are the normalisations of the coefficients on the budget shares
and the exclusion restrictions on all the indices but the ‘own’ demographic index.

5
These restrictions sum to 73 in all. Homogeneity, Z vij = 0, = 1,...,4 adds another
i=1
one restriction to each demand equation and the symmetry relations:

Y21 = 712
Y31 = 713
Y41 = T4
Y32 = 723
Ya2 = V24

Y43 = V34
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add a further 6 restrictions giving 83 restrictions in all so that the necessary condition
is satisfied. A necessary and sufficient condition for identification is that the Jacobian
matrix for the relations 7’ = a8’ has full column rank (cf., for example, Doornik [10,
1995]. That is:

Ovec(r') Ovec(a)

dvec(¢') ovec(¢')
where ¢ is the 43x 1 vector of unknown coefficients in (15) after imposing homogeneity
and symmetry. We used the rank procedure in GAUSS [12, 2002], with random values
for the 8 matrix and ¢ vector, to verify that J’ has full column rank.

Of course, with the exclusion restrictions in (15) plus homogeneity and symmetry,
the elements of a and § are overidentified, in the sense that there are two overiden-
tifying restrictions. An interesting aspect of this analysis is that the “unrestricted
model” can be written as containing the homogeneity and 4 of the symmetry re-
strictions - the “restricted model” then restricts the remaining 2 sets of symmetry
coefficients. Put another way, in the unrestricted model we are estimating a demand
system with homogeneity and some symmetry already imposed by normalisation and
which is perfectly consistent with the data in the sense that it will generate an iden-
tical likelihood to a completely unrestricted model with rank(w) = 9. It is the
large number of cointegrating equations relative to the number of stochastic trends
which enables sufficient normalisations to identify a complete demand system (less
two symmetry conditions).

To obtain estimates operationally, since the restrictions on the matrix « in (15)
are all linear, we can write:

= [5 ®Ip]

vec(a) = H, + H10

with H, and H; known matrices. Taking the rank r estimate of 7 from the ML
procedure, say 7, and solving the following set of equations iteratively starting with
random values for the coefficients in 8 gives us ML estimates of the restricted a.

-1
o) = (W(S)/W(S)> w sy (vec(%/)— (5(8)@’[1)) HO)
vec(a®) = H,+ Hi¢®
~1
vec(BUHD) = 1p®(a<s>’a<5’) o'vec(7)

where W = (3 ® I,) Hy and (s) denotes the s iteration. The process was assumed
to have converged when the differences between estimates were of the order |0.00001|
in successive iterations. The procedure produces o and [ matrices such that «
contains all the normalisations and the product Sa/ is identically equal to the rank r
matrix 7.

Maximum likelihood estimates of the coefficients of the demand equations with
normalisations for homogeneity and four symmetry conditions imposed are given in
Table 2. A Wald test of the remaining symmetry relations (abitrarily chosen as
Y32 = Va3 and Y94 = 7Y49) produced a statistic of 0.741 with 2 degrees of freedom so
the null hypothesis of overall symmetry cannot be rejected.

Table 2 Here
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The indices in the Food and Alcohol & Tobacco equations are not significantly
different from zero in the cointegrating equations. This does not mean that these
indices can be dropped from the analysis as they do have an impact in the dynamic
part of the VECM. Because of the large number of coefficients we do not give them
here but report that lagged changes in the alcohol and tobacco index do have a
significant impact in all the other demand equations and lagged changes in the food
index have a significant impact on demand for clothing and footwear and on fuel and
housing.

Conventional demand elasticities for the AIDM model, calculated at the point of
the sample mean of the variables, are given in Table 3.

Table 3 Here

The formula for the price elasticities was derived on the assumption of the true price
index given by:

1
InP; = const + ; aplnp + 3 Z g vkjlnpktlnpjt
J

with the ay and v;; as given in (11).
The income elasticity of demand for commodity ¢ at time ¢ is given by:

and price elasticity11 of demand by:
9 -
niitzh_ﬁi_l‘f‘w.

Wig Wit

All the own price elasticities for the full ML system have the correct negative sign.
Food and Alcohol & Tobacco are close to being unit price elastic while Clothing &
Footwear and Fuel & Housing are price inealstic. Income elasticities classify all goods
as necessities (0 < n; < 1).

Table 3 also gives point estimates of eigenvalues which imply that the substitution
matrix is at least negative semi-definite. Finally, a Wald test for equality of the wfjg)
in (13) results in a test statistic of 22.8 with 64 degrees of freedom so that equality
cannot be rejected and the set of demand equations satisfy the adding-up restriction.

6. CONCLUSION
In this paper we have found agreement between the number of stochastic trends
generating budget shares in a set of panel data derived from the Family Expenditure
survey and aggregate time series data obtained from the ONS. It is argued that
at least some of the stochastic trends are generated by demographic shifts in non
stationary age-group proportion variables. The proportion variables enter into the

11 B2ze+Bivi Lt . . . . . . e .
The term ——————t is neglible in practice and has been omitted from the calculations as it

makes little or no difference to the results quoted. The same applies to the symmetry condition in
the substitution matrix below.
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demand equations in aggregating over fixed age group effects. The age group fixed
effects are found to be highly significant in cross section data and indices formed using
these effects plus the effects of aggregation from household to population level are
significant in the aggregate time series equations. The omission of the demographic
variables could account for the finding of “no cointegration” in some previous demand
studies.

The slow-moving shifts in population age group proportions observed in compar-
atively recent years are likely to have dramatic effects on the economy and we would
expect them to have an impact on demand for commodities. The demographic in-
dices constructed in this paper should enable researchers and forecasters to increase
the precision of their results by incorporating these indices into demand systems
thereby allowing for such demographic effects.
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Table 1. Commodity Group Composition Definitions

NookwNE

10.
11.
12.

13.
14.
15.
16.
17.

18.
10.
20.
21.
22.
23.
24.
25.

26.
27.
28.
29.
30.
31.
32.

Food Group

Bread, milk loaves, rolls

Flour, biscuits,cakes, composite, cereals

Beef and ved, including minced meat

Mutton and lamb

Pork

Bacon and ham, uncooked

Offal, sausages uncooked,sausage meat, poultry,
other meat, meat products

Fish — fresh, canned, frozen, fish and chips

Eggs, fresh and dried

Butter

Margarine

Fresh milk, cream, yoghurt, fresh cream, skimmed
milk, canned and dried milk and cream, yoghurt,
other milk products, baby milk foods

Cheese, including processed

Lard, cooking and other oils and fats

V egetables, tomatoes - fresh, canned, frozen, dried
Raw and all potato products

Fruit- fresh, canned, bottled, frozen, dried;

juices - fresh, canned, bottled

Tea

Coffee, coffee essence

Food drinks not baby milk foods

Sugar

Syrup, lemon curd, honey, jam, marmalade

Ice cream

Sweets and chocolates

All other food including school meals & meals out

Alcohol & Tobacco Group

Beer, stout, shandy, cider, home & away

All wines, fortified and unfortified, home & away
All spirits and liqueurs, home & away

All other alcohol, home & away

Cigarettes, cigarette tobaco and papers

Pipe tobacco

Cigars, snuff

33.

35.
36.
37.
38.

40.

41.
42.
43.

45.

46.
47.

49,
50.
51.
52.
53.

Clothing & Footwear Group

Men's outerwear

Men's underwear & hosiery

Women's outerwear

Women's underwear & hosiery

Boy's outerwear

Boy's and girl’s underwear

Girl's outerwear

Men's, women's and children's accessories:
headgear, belts, ties, gloves, scarves, haberdashery
Men's footwear

Women's footwear

Children's and infant's footwear

All other clothing and clothing charges

Fuel, Power & Housing Group

Anthracite, coal, coke, smokeless fuels,
concessionary coal & coke

Gas, electricity
Paraffin, fuel oil & other fuel
Housing
Other goods
Durables
Services
Miscellaneous
Transport
Other




Table 2. ML Estimates of Full System

Dependent
Variable Explanatory Variables Diagnostics
~ ~ ~ ~ R2 .
Inp, Inp, Inp; Inp, I I, I3 Inp;s I, z Box-Ljung( /T =10 lags)
Wi -0.0131 0.0015 0.0014 -0.0177 -0.0002 - - 0.0280 - -0.0135 1(0.81 11.67 (pval = 0.31)
(0.0093)  (0.0029)  (0.0075)  (0.0051)  (0.0280) (0.0082) (0.0107)
W 0.0015 0.0007 0.0005 0.0046 - 0.0270 - -0.0074 - -0.0232 [0.83 3.80 (pval = 0.96)
(0.0029)  (0.0021)  (0.0026)  (0.0023) (0.0378) (0.0111) (0.0030)
W3 0.0014 0.0024 0.0003 0.0047 - - -0.6247 -0.0087 - -0.0465 [0.72 8.36 (pval = 0.59)
(0.0075)  (0.0070)  (0.0088)  (0.0057) (0.0815)  (0.0117) (0.0095)
Wy -0.0177 0.0095 0.0047 -0.0091 - - - 0.0126 2.495 -0.0304 [0.83 7.02 (pval =0.72)
(0.0051)  (0.0055)  (0.0057)  (0.0054) (0.0086)  (0.4133)  (0.0264)

Commodity groups are: 1. Food; 2. Alcohol & Tobacco; 3. Clothing & Footwear; 4. Fuel & Housing; 5. Other Goods

7 ; Demographic index for commodity group j

Estimated asymptotic standard errors in parenthesis




Table 3. Estimated Demand Elasticities

ML System Estimates

Calculated at Sample

Means
Commodity Group Own price Income Own Price Income
coefficient coefficient Elasticity Elasticity
Food -0.0131 -0.0135 -1.0841 0.9082
(0.0093) (0.0107)
Alcohol & Tobacco 0.0007 -0.0232 -1.0302 0.5570
(0.0021) (0.0030)
Clothing & Footwear 0.0003 -0.0465 -1.1507 0.3482
(0.0088) (0.0095)
Fuel & Housing -0.0091 -0.0304 -1.0597 0.8186
(0.0054) (0.0264)

Estimated asymptotic standard errors in parenthesis

Mean eigenvalues of Substitution Matrix: -0.166, -0.132, -0.078, -0.049
Eigenvalues of substitution matrix at mean data points: -0.157, -0.141, -0.078, -0.050.
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Fig.3. Comparison of Population Proportions 1971—-2001

0.32 0,33 0.34 0.35 0.360 0.3/ 0.338

Proportion of Total Population

25 Yedrs of Age and Under

— — 50 Years of Age and QOver

0.30 0.31

1970 1974 1978 1982 1986 1990 1994 1998 2002

Yeadr



IRy (k), IPCz(k), IPCxK)

PR (k) IPC2lkd, IPERKK)

0,09

(]

0.08

a9z

.16

0.14

012

110

D04

Plat of Criteria IPCy (k). IPC(K) and IPC3(K}

Foad

Plat of Criteria IPCy(k), 1PCa(k) and IPC5(K}

Acahol & Tobaaoo

— IPCq(k)
- |PCs(k)
ecssce |F"C3(K)

0,07

0134

DD

IPC (k) IRCHK), IPCHCK

D038

a,a14

1012

Q432

D.p2E

IPC (k)
IPCy(k)
IPC3(K)

0,024

D\DZD

Plot of Criteria IPC1(k). IPCalk] =nd IPClk)

Fuel & Housing

o.nnd

12

Plat of Criteria IPC (k). IPCa(k) and IFC3(k}

Other Geads

— [PC4(K)
-« IPCy(Kk)
ceseee [PC5(K)

n.né

D04

IRC4 (k)n |F|Cz(kj, IPC;,[]O

02D

9,40 D45

D38

IPC, (k)
IPC (k)
IPC5(K)

9,40

D28

D13

@10

AL

1z

Plet of Criterda IPC(k). IPFCLK] and IPC3k)
Clathing & Foatwaar

— |PC;(k)
=+ |PCqy(k)
| | eecces |F"C3(K)

IPC4(K), IPCalk), IPCzlK)
QD10 D.D14 4418 DD22 DA2B 9.0X D.DI4 0038 0,042 DD46 0080

Fig 4

Information Criteria for Shares

10

All Age Groups by All Years

16



Coefficient

0.10 0.15 0.20 0.25

—0.10 —0.00

—0.20

Fig.5. Age Cohort Coefficients,O4:,for Commodity Groups

g)’

T ' ' ' '

N\
| \ — F00d )

------- Alcohol & Tobacco /
\ = = = - Clothing & Footwear
| e = -+ Fuel & Housing / n
\ = e QOther
| \ 7 <~ — \ / N~ ~ —\/ |
- / - ]
."';.~.*’§————\—°\'?~k ........

.. —/ ........... ee =" " \—~-—.'\"_"_-
| -7 \“.'\.\ 7]
10 20 30 40 50 60 /0 30

90



	page1.pdf
	frontpage.pdf
	2.	THE DATA & DEATH CLUSTERING IN INDIA
	3. 	THE ECONOMETRIC MODEL
	4.5. Distributional Assumptions
	Conditional distribution of yij* (F)
	and    �.						(7)
	7.	SENSITIVITY OF ESTIMATED SCARRING EFFECT
	7.1	Estimates obtained on a left-truncated sample
	7.2	Introducing preceding birth interval as a regressor
	Preliminary investigation of alternative mechanisms driving scarring suggests that shorter birth intervals following the death of a child in the family constitute an important part of the story, although birth spacing alone does not entirely account for
	REFERENCES
	Means and Standard Deviations of Variables Used in the Analysis





